

800 East 96th St., Indianapolis, Indiana, 46240

Jason Lefebvre

Paul Bertucci

ADO.NET
in24Hours

Teach Yourself

00 0672323834 FM 4/19/02 2:25 PM Page i

Sams Teach Yourself ADO.NET in 24
Hours
Copyright © 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-67232-383-4

Library of Congress Catalog Card Number: 2001099191

Printed in the United States of America

First Printing: May 2002

05 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of programs
accompanying it.

EXECUTIVE EDITOR

Michael Stephens

ACQUISITIONS EDITOR

Neil Rowe

DEVELOPMENT EDITOR

Kevin Howard

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Elizabeth Finney

COPY EDITOR

Margaret Berson

INDEXER

Sandra Henselmeier

PROOFREADER

Leslie Joseph

TECHNICAL EDITOR

John Purdum

TEAM COORDINATOR

Lynne Williams

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

PAGE LAYOUT

Susan Geiselman

00 0672323834 FM 4/19/02 2:25 PM Page ii

Contents at a Glance
Introduction 1

Hour 1 Introducing ADO.NET 3

2 Working with DataSets and DataTables 13

3 Using T-SQL: A Crash Course 27

4 Adding Relationships and Constraints to DataSets 39

5 Connecting to a Data Source 55

6 Retrieving Data from the Data Source 65

7 Modifying Database Data 77

8 Using the DataReader and DataAdapter 91

9 Binding Data to List Controls 103

10 Working with XML 123

11 Filtering and Sorting Data 133

12 Paging Data 151

13 Handling ADO.NET Errors 167

14 Managing ADO.NET Concurrency 183

15 Working with Stored Procedures 199

16 ADO Upgrade Concerns 215

17 Using Connection Pooling 227

18 Working with Transactions 239

19 Using Automatically Generated Commands 255

20 Working with Typed DataSets 267

21 Optimizing Data Access Using Tiered Development 287

22 Modifying Data in an N-Tier Application 303

23 Adding Data Access to Existing Web Forms Using
Visual Studio .NET 319

24 Automatic Data Binding to Windows Forms Using
Visual Studio .NET 331

Appendix A Answers to Quizzes 343

Index 353

00 0672323834 FM 4/19/02 2:25 PM Page iii

00 0672323834 FM 4/19/02 2:25 PM Page iv

Contents
Introduction 1

Hour 1 Introducing the Microsoft .NET Framework and ADO.NET 3

The Microsoft .NET Framework Class Library ..4
What Is ADO.NET? ..5
ADO.NET Versus ADO ..7
The System.Data Namespace ..8

The DataSet ..9
The DataTable ..9
The DataRow and DataColumn ..9

The System.Data.SqlClient and System.Data.OleDb Namespaces10
The Connection Object ..10
The Command Object ..10
The DataAdapter Object ..10
The DataReader Object ..10

Installing the Microsoft .NET Framework ..11
Summary ..11
Q&A ..11
Workshop ..11

Quiz ..12
Exercise ..12

Hour 2 Working with DataSets and DataTables 13

Crash Course on Database Schema ..14
DataSet Overview ..14
Creating DataSet Schema ..15

Instantiating a New DataSet ..15
Adding a DataTable ..16
Adding DataColumns ..16

Adding and Removing Data ..17
DataRows Contain Data ..17
Creating and Configuring a New ASP.NET Test Web18

Summary ..25
Q&A ..26
Workshop ..26

Quiz ..26
Exercise ..26

00 0672323834 FM 4/19/02 2:25 PM Page v

Hour 3 Using T-SQL: A Crash Course 27

Retrieving Data with SELECT ..28
Adding New Data with INSERT ..31
Modifying Data with UPDATE and DELETE ..32
Using the Built-in SQL Functions ..34

Working with Strings ..34
Working with Dates ..35
Mathematical Functions ..36

Summary ..37
Q&A ..37
Workshop ..37

Quiz ..38
Exercise ..38

Hour 4 Adding Relationships to DataSets 39

Database Relationships and Constraints ..40
Relationships ..40
The Join Operator ..44
Constraints ..45

The DataRelation Object ..45
The DataSet Relations Collection ..46

Adding a Relationship Between Two DataTables ..46
Navigating DataSet Relationships ..47

Summary ..53
Q&A ..53
Workshop ..53

Quiz ..53
Exercise ..53

Hour 5 Connecting to a Data Source 55

The Connection Object ..56
Anatomy of a Connection String ..56
Connection Object Methods and Properties ..57

Connecting to Various Data Sources ..58
SQL Server ..58
OLE DB Data Sources ..59

ODBC (Open Database Connectivity) ..61
Connection Pooling ..62
Summary ..63
Q&A ..63
Workshop ..63

Quiz ..63
Exercise ..64

vi Sams Teach Yourself ADO.NET in 24 Hours

00 0672323834 FM 4/19/02 2:25 PM Page vi

Hour 6 Retrieving Data from the Data Source 65

The Command Object ..65
Associating Connection Objects with Command Objects66
Overloaded Constructors Save Time ..67

Filling a DataSet with the DataAdapter ..68
DataAdapter Fill() Method ..68

Retrieving a Single Value from the Database ..72
Summary ..74
Q&A ..74
Workshop ..75

Quiz ..75
Exercise ..75

Hour 7 Modifying Database Data 77

Using ExecuteNonQuery() ..78
Inserting New Data ..78
Deleting Data ..83
Modifying Data ..86

Summary ..89
Q&A ..90
Workshop ..90

Quiz ..90
Exercise ..90

Hour 8 Using the DataReader and DataAdapter 91

DataReader Versus DataAdapter ..91
Instantiating the DataReader ..93
Binding DataReader Results to a Web Control ..94
Stepping Through Data with the DataReader ..96
Limitations of the DataReader ..100
Summary ..101
Q&A ..101
Workshop ..101

Quiz ..101
Exercise ..102

Hour 9 Binding Data to List Controls 103

Binding Data to Controls ..104
Simple Data Binding ..104
Complex Data Binding ..104
BindingContext and CurrencyManager Objects ..104
Data Binding Scenarios ..105

Contents vii

00 0672323834 FM 4/19/02 2:25 PM Page vii

Simple Data Binding in Windows Forms ..106
Create a New Project in VS .NET ..106
Add the Data Connection, Data Adapter, and DataSet106
Create Text Boxes, Labels, and Buttons ..108
Add Code to Populate the DataSet ..108
Bind the Text Boxes to the DataSet ..109
Test It! ..110

Complex Data Binding in Windows Forms ..111
Create a New Project in VS .NET ..111
Add the Data Connection and Two Data Adapters112
Generate a DataSet ..113
Adding the ListBox and DataGrid Controls ..116
Add Code to Populate the DataSet ..118
Test It! ..118

Summary ..119
Q&A ..119
Workshop ..120

Quiz ..120
Exercise ..121

Hour 10 Working with XML 123

What Is XML? ..123
Reading XML ..124
Creating a DataSet from an XML File ..124
Serializing DataSets to XML ..127

Viewing the Contents of a DataSet ..127
Writing a DataSet to an XML File ..128

Using XmlReader ..129
Using XmlReader with SQL Server 2000 ..130

Summary ..131
Q&A ..132
Workshop ..132

Quiz ..132
Exercise ..132

Hour 11 Using the Built-In ASP.NET List Controls 133

Some General Notes About List Controls ..134
Working with the Repeater ..135
Working with the DataGrid ..138
Working with the DataList ..146
Summary ..149
Q&A ..150

viii Sams Teach Yourself ADO.NET in 24 Hours

00 0672323834 FM 4/19/02 2:25 PM Page viii

Workshop ..150
Quiz ..150
Exercise ..150

Hour 12 Formatting ASP.NET List Controls 151

A Quick Overview of CSS ..151
Formatting the Repeater ..156
Formatting the DataList ..158
Formatting the DataGrid ..162
Summary ..165
Q&A ..165
Workshop ..166

Quiz ..166
Exercise ..166

Hour 13 Handling ADO.NET Errors 167

Using Formal Error Handling (Ready, “Catch”!) ..168
Design Considerations ..168
How the Exception Mechanism Works ..169
The Try/Catch/Finally Structure ..169
The On Error Construct ..171
Throw It If You Know It ..173

Typical Errors to Handle ..173
Test It! ..176

Using RowError of the DataSet ..178
DataAdapter Events ..179
XML Persisted Row Errors ..181

Summary ..181
Q&A ..181
Workshop ..182

Quiz ..182
Exercise ..182

Hour 14 Managing ADO.NET Concurrency 183

Optimistic Versus Pessimistic Concurrency ..184
Coding for Optimistic Concurrency ..187
Comparing DataSet Values Against the Database for Optimistic Concurrency 188
Using a Timestamp for Optimistic Concurrency ..192
XML and Optimistic Concurrency ..194
Summary ..195
Q&A ..196

Contents ix

00 0672323834 FM 4/19/02 2:25 PM Page ix

Workshop ..196
Quiz ..196
Exercise ..197

Hour 15 Working with Stored Procedures 199

What Are Stored Procedures? ..200
Executing a Stored Procedure ..204

Using Exec() ..204
Specifying CommandType ..206

Using Parameters ..206
Specifying Parameter Value ..207
Setting Parameter Direction ..207
Putting It All Together ..207

Summary ..212
Q&A ..212
Workshop ..212

Quiz ..212
Exercise ..213

Hour 16 ADO Upgrade Concerns 215

General Upgrade Issues from ADO to ADO.NET ..216
ADO.NET Completely Disconnected ..216
ADO.NET Is Strongly Typed ..216

Accessing an ADO Recordset from ADO.NET ..218
COM Interoperability ..221
Importing Type Libraries ..222
Server.CreateObject ..223
Filling a DataSet with ADO Recordset Data ..223

Summary ..226
Workshop ..226

Quiz ..226
Exercise ..226

Hour 17 Using Connection Pooling 227

What Is Connection Pooling? ..228
OLE DB .NET Data Provider ..231
Summary ..236
Q&A ..236
Workshop ..237

Quiz ..237
Exercise ..238

x Sams Teach Yourself ADO.NET in 24 Hours

00 0672323834 FM 4/19/02 2:25 PM Page x

Hour 18 Working with Transactions 239

What Is a Transaction? ..240
Transactions and ADO.NET ..240

Starting a Transaction ..240
Rolling Back a Transaction ..242
Committing a Transaction ..246
Canceling a Transaction ..246
Saving a Transaction ..246

Transactions with Stored Procedures ..250
Summary ..252
Q&A ..253
Workshop ..253

Quiz ..253
Exercise ..254

Hour 19 Using Automatically Generated Commands 255

Automatically Generated Commands ..256
Automatically Generated Commands Criteria ..256

Using the CommandBuilder ..257
Showing What Was Automatically Generated ..259
If the SELECT Statement Changes ..259
Windows Form Designer-Generated Code—VS .NET260

Summary ..263
Q&A ..263
Workshop ..264

Quiz ..264
Exercise ..265

Hour 20 Working with Typed DataSets 267

The Typed DataSet ..268
Generating a Typed DataSet ..269

Using XSD.exe: The XML Schema Definition Tool273
Typed DataSets in Visual Studio .NET ..277

Create a New Project in VS .NET ..278
Add the Data Connection and Data Adapter ..278
Generate the Typed DataSet ..280
Add an Instance of the DataSet to the Form ..281
Add Some Controls to Display the Data ..281
Add Code to Populate the DataSet ..282
Bind the Text Box to the DataSet ..282
Test It! ..283

Contents xi

00 0672323834 FM 4/19/02 2:25 PM Page xi

Summary ..283
Q&A ..284
Workshop ..284

Quiz ..284
Exercise ..285

Hour 21 Optimizing Data Access Using Tiered Development 287

What Is Tiered Development? ..288
Implementing Tiered Development ..290

Planning Your Approach ..290
Creating Your Own Assembly ..290

Creating Your Own Classes ..291
Using Custom Objects Instead of Single Rows of Data295

Summary ..301
Q&A ..302
Workshop ..302

Quiz ..302
Exercise ..302

Hour 22 Modifying Data in an N-Tier Application 303

Updating Product Data ..303
Adding Product Data ..311
Summary ..316
Q&A ..316
Workshop ..316

Quiz ..317
Exercise ..317

Hour 23 Optimizing Data Access 319

Optimizing ADO.NET Code ..319
DataReader Versus DataSet ..320
Managing Database Connections ..320
Choose Your Data Provider Wisely ..320
Use “SELECT *” Sparingly ..321
Automatically Generated Commands ..321

ASP.NET Tracing ..321
Improving Your Queries with the SQL Query Analyzer324

Loading the Database with Sample Data ..325
Showing the Query Execution Plan ..326
Analyzing Table Indexes ..327

Simulating Application Traffic ..328

xii Sams Teach Yourself ADO.NET in 24 Hours

00 0672323834 FM 4/19/02 2:25 PM Page xii

Data Caching ..328
Summary ..330
Q&A ..330
Workshop ..330

Quiz ..330
Exercise ..330

Hour 24 Transmitting DataSets Using Web Services 331

Sending a DataSet Using Web Services ..332
Consuming a DataSet from a Web Service ..336
Summary ..340
Q&A ..340
Workshop ..341

Quiz ..341

Appendix A 343

Hour 1 Answers to Quizzes ..343
Hour 2 Answers to Quizzes ..343
Hour 3 Answers to Quizzes ..344
Hour 4 Answers to Quizzes ..344
Hour 5 Answers to Quizzes ..344
Hour 6 Answers to Quizzes ..344
Hour 7 Answers to Quizzes ..345
Hour 8 Answers to Quizzes ..345
Hour 9 Answers to Quizzes ..345
Hour 10 Answers to Quizzes ..346
Hour 11 Answers to Quizzes ..346
Hour 12 Answers to Quizzes ..346
Hour 13 Answers to Quizzes ..347
Hour 14 Answers to Quizzes ..347
Hour 15 Answers to Quizzes ..348
Hour 16 Answers to Quizzes ..348
Hour 17 Answers to Quizzes ..348
Hour 18 Answers to Quizzes ..349
Hour 19 Answers to Quizzes ..349
Hour 20 Answers to Quizzes ..349
Hour 21 Answers to Quizzes ..350
Hour 22 Answers to Quizzes ..350
Hour 23 Answers to Quizzes ..350
Hour 24 Answers to Quizzes ..351

Contents xiii

00 0672323834 FM 4/19/02 2:25 PM Page xiii

00 0672323834 FM 4/19/02 2:25 PM Page xiv

About the Authors
JASON LEFEBVRE is vice president and cofounder of Intensity Software
(http://www.intensitysoftware.com), a software development company specializing
in Microsoft .NET development. Aside from software development, Jason is the coauthor
of Pure ASP.NET (Sams Publishing), the code-intensive reference to ASP.NET. In addi-
tion, Jason has written numerous articles for nationally known magazines such as Visual
C++ Developer’s Journal, Visual Studio Magazine, and MSDN Magazine.

PAUL BERTUCCI is managing principal and founder of Database Architechs
(http://www.dbarchitechs.com), a database consulting firm based in San Francisco,
California, and with European offices in Paris, France. He has more than 20 years of
experience doing database design, data architecture, data replication, performance and
tuning, distributed data systems, data integration, and systems integration for numerous
Fortune 500 companies. He has authored numerous articles, standards, and courses such
as Sybase’s “Performance and Tuning” course and “Physical Database Design” course.
Paul is a frequent conference speaker and regularly teaches database design, performance
and tuning, data modeling, OLAP, Supply Chain Management, and SQL courses. He has
worked heavily with .NET, MS SQL Server, Sybase, DB2, and Oracle, and has archi-
tected several commercially available tools in the database, data modeling, performance
and tuning, and data integration arena. He also was one of the primary authors for
Microsoft SQL Server 2000 Unleashed (Sams Publishing). Paul received his formal edu-
cation in computer science from UC Berkeley. He lives in northern California with his
wife, Vilay, and five children (the fifth came right in the middle of writing Chapter 19 of
this book—a boy!). Paul can be reached at pbertucci@dbarchitechs.com and by phone
at 925-674-0000.

00 0672323834 FM 4/19/02 2:25 PM Page xv

Dedication
This book is dedicated to my nephew, Jerry, who reminds me what it’s like to see the world with

young eyes.—Jason Lefebvre

I would like to dedicate this book to my loving wife Vilay and our new son Donald. Even during delivery,
we joked about when I was going to finish my chapters.—Paul Bertucci

Acknowledgments
I would like to thank the entire Sams team for making this book the best it can possibly
be. Special thanks goes to our acquisitions editor, Neil Rowe, who kept us on task and
made sure our deadlines didn’t slip (much). Thanks also to the development editor on
this book, Kevin Howard, who was understanding and patient as the table of contents
underwent some last-minute changes, and also to John Purdum (technical editor) and
Elizabeth Finney (project editor).

Special thanks to my business partner, Robert Lair, for shouldering more than his fair
share of the burdens while this book was wrapping up. Thanks also to Mike Amundsen
for helping me to properly gauge the multiple layers of “late” and to keep things in
perspective.

And of course, the most special of special thanks goes to my family, for their support and
to my friends, who’ve marvelously endured the strained relations caused by too much
work and not enough play.—Jason Lefebvre

I would like to thank my family (Vilay, Juliana, Paul Jr., Marissa, Nina, and little Donny)
for allowing me to encroach on months of what should have been my family’s “quality
time.” I’m sure my children wonder if daddy ever sleeps. They see me working when
they go to bed and they see me working when they wake up in the morning.

Special thanks must go to one of the most outstanding consultants I know, Martín
Sommer. His help in digging through many technical and coding issues during the chap-
ter creation process was invaluable.

Many good suggestions and comments came from the technical and copy editors at Sams
Publishing, along with Jason Lefebvre, yielding an outstanding effort.—Paul Bertucci

00 0672323834 FM 4/19/02 2:25 PM Page xvi

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can
e-mail, or write me directly to let me know what you did or didn’t like about this book—
as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail:

Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

00 0672323834 FM 4/19/02 2:25 PM Page xvii

00 0672323834 FM 4/19/02 2:25 PM Page xviii

Introduction
ADO.NET is more than just the next version of ADO; to date, it’s the most powerful set
of data retrieval and data manipulation tools available. Using ADO.NET and the
Microsoft .NET Framework, you can create powerful data-driven ASP.NET and
Windows Forms applications. ADO.NET is much more robust and scalable “out of the
box” than any of its predecessors.

Sams Teach Yourself ADO.NET in 24 Hours breaks ADO.NET into 24 bite-sized hours,
each designed to present a single task-oriented ADO.NET topic. At the end of each hour
you’ll find a question-and-answer section, and a workshop consisting of a brief quiz and
an exercise. The workshop is designed to test your comprehension of the current hour, as
well as reinforce the concepts presented in previous hours.

As with most computer books, the topics are presented with progressively more diffi-
culty. The book begins by presenting fundamental concepts such as the ADO.NET base
objects, including the DataSet and DataTable. Then you’ll see how to connect to your
data source, retrieve data, and save that data back to the data source. Later hours build on
the knowledge presented in earlier chapters to tackle topics such as stored procedures,
data binding, error handling, and using Web services to send a DataSet to a remote
application. In addition, extensive examples are presented in each hour so that the read-
ers can sink their teeth into real-life code and reap the benefits of the concepts quickly.
Practice makes perfect!

ADO.NET concepts apply to many different types of applications including Web forms
and Windows forms. This book utilizes examples of both types. Though not required, to
get the most out of this book you should be familiar with the rudiments of ASP.NET or
Windows Forms. Some knowledge of T-SQL would also be helpful, but don’t worry if
you’re a little rusty: Hour 3 provides a brief tutorial on building SQL statements, to get
you up to speed even if you’ve never built a SQL query before.

Additionally, though no previous knowledge of ADO is assumed, several references are
made throughout the book comparing ADO to ADO.NET. If you’ve developed applica-
tions in Visual Basic 6.0 or ASP using ADO, you should feel right at home learning
ADO.NET.

Because ADO.NET is, at the most basic level, just a set of classes in the Microsoft .NET
Framework, it is purely agnostic with regard to programming languages and development
environments. Most of the examples in this book are presented in Visual Basic .NET
only. However, whenever you see a set of code for the first time, the example will nor-
mally be followed by the same example written in C#. Likewise, many examples are

01 0672323834 intro 4/19/02 2:19 PM Page 1

presented as ASP.NET Web forms created using Notepad. However, the ADO.NET code
can easily be stripped out of the Web form and placed into a Windows Forms application,
and the reverse. In hours that cover Windows Forms applications, the examples are cre-
ated in Visual Studio .NET.

Conventions Used in This Book
This 24-hour course uses several common conventions to help teach the programming
topics included in this book. Here is a summary of the typographical conventions:

• Code listings, computer output, and code terms mentioned in the text appear in a
special monospaced font.

• Words you type appear in a bold monospaced font.

2 Sams Teach Yourself ADO.NET in 24 Hours

01 0672323834 intro 4/19/02 2:19 PM Page 2

HOUR 1
Introducing the
Microsoft .NET
Framework and
ADO.NET

The Microsoft .NET Framework is one of the most significant technology
shifts Microsoft has ever made, analogous to the release of Windows 95
when Windows 3.1 was the prevalent operating system. The new framework
is more than just an upgrade—it’s an entirely new platform enabling soft-
ware developers to create new types of applications, mainly by offering
developers new tools, such as Web services, a set of strongly typed program-
ming languages that are syntactically identical whether used to program for
the Web or for the desktop, a common language runtime, a set of framework

02 0672323834 Ch01 4/19/02 2:19 PM Page 3

classes encapsulating areas of common functionality, and a greatly improved data access
model.

The Microsoft .NET Framework ships with a set of useful built-in classes. These classes
contain many of the objects you’ll use to create applications, both for the Web and for
the desktop, such as all built-in Web controls, Windows forms controls, and collection
objects. Several of these built-in classes comprise ADO.NET.

In this hour, you will learn the following topics:

• An overview of the ADO.NET namespaces

• An overview of the ADO.NET objects

• How to download and install the Microsoft .NET Framework Software Developer’s
Kit (SDK)

The Microsoft .NET Framework Class Library
You’ll find a staggering amount of classes and methods inside the Microsoft .NET
Framework. To organize the classes, they are placed within groups called namespaces. A
namespace is simply a logical division, and can be as large or small as desired.

4 Hour 1

Any Microsoft .NET developer should become familiar with a free sample
application from Microsoft called the .NET Framework Class Browser (see
Figure 1.1), available online at
http://www.IntensitySoftware.com/ClassBrowser. However, the
class browser is part of the QuickStart tutorials published by Microsoft and
should be available on any machine with the QuickStart tutorials installed. If
you accepted defaults during the installations of the QuickStart examples, it
should be installed locally at
http://localhost/quickstart/aspplus/samples/classbrowser/vb/
classbrowser.aspx. Much more than a set of static help pages, the class
browser loads the namespaces at runtime to display their methods and
properties. Thus, if you are running the class browser locally, you are assured
of up-to-date information on the assemblies installed on your system.

The class browser shows you the list of Microsoft .NET Framework namespaces on the
left side of your screen as seen in Figure 1.1. It is absolutely worth your time to become
familiar with these namespaces and the classes they contain.

02 0672323834 Ch01 4/19/02 2:19 PM Page 4

What Is ADO.NET?
ADO.NET is Microsoft’s platform for data access in its new .NET Framework. Out of
the box, ADO.NET is scalable, interoperable, and familiar enough to ADO developers to
be immediately usable. By design, the ADO.NET object model and many of the
ADO.NET code constructs will look very familiar to ADO developers.

At the most basic level, ADO.NET is a set of framework namespaces, specifically:

• System.Data

• System.Data.Common

• System.Data.SqlClient

• System.Data.OleDbClient

• System.Data.SqlTypes

The System.Data namespace contains many of the objects upon which ADO.NET is
built. This is where you’ll find the DataTable, DataSet, DataRelation, and DataView
objects. Additionally, this is where ADO.NET constants are stored. For instance, the
System.Data.SqlDbType class shown in Figure 1.2 contains all the Microsoft SQL data
types.

Introducing the Microsoft.NET Framework and ADO.NET 5

1
FIGURE 1.1
The Microsoft .NET
Framework Class
Browser application is
used to browse the
framework’s built-in
classes and methods.

02 0672323834 Ch01 4/19/02 2:19 PM Page 5

The System.Data.SqlClient namespace contains objects designed to work with a
Microsoft SQL Server database, version 7.0 and higher. This is where you’ll find famil-
iar objects such as SqlCommand, SqlConnection, and SqlParameter as well as new faces
such as SqlDataAdapter and SqlDataReader. If you’re a SQL developer, this namespace
will be your sandbox for most of this book. The namespace uses a managed SQL
provider to work with the database. By working directly with SQL database APIs,
SqlClient bypasses ODBC (Open Database Connectivity) and OLE DB (Object
Linking and Embedding for Databases) entirely, offering a very robust and efficient
interface.

The System.Data.OleDbClient namespace is designed to work with any valid OLE DB
source. This includes data sources as varied as Oracle databases, Microsoft Excel files,
standard ASCII comma-delimited text files, and Microsoft Access files, as well as ver-
sions of Microsoft SQL Server prior to version 7.0. As mentioned earlier, if you’re work-
ing with Microsoft SQL Server 7.0 or higher, the System.Data.SqlClient offers a much
better way to work with your data.

6 Hour 1

FIGURE 1.2
The
System.Data.SqlDbType

class contains constant
values for all the data
types in Microsoft SQL
Server version 7.0 and
higher.

OLE DB, ODBC, and Managed Providers (Oh My!)

You’ve probably heard the terms OLE DB, ODBC, and managed provider
used when speaking of connecting to databases, but you might not know
how to distinguish each from the others.

02 0672323834 Ch01 4/19/02 2:19 PM Page 6

The System.Data.OleDbClient namespace mirrors the System.Data.SqlClient name-
space almost precisely. In fact, if you scan the classes in both, you’ll notice that the class
names differ only by their preface (for example, SqlCommand versus OleDbCommand).
Fortunately, after you’ve worked with one namespace, you’ve learned how to use both.

ADO.NET Versus ADO
The relationship between ADO and ADO.NET is analogous to the one between Active
Server Pages (ASP) and ASP.NET. Many of the object and method names are similar, but
behind the curtains everything has been redesigned and improved.

For instance, the ADO data model was based on the recordset object. In essence, the
recordset was a spreadsheet of data in memory. You were very limited in what you could
do with a recordset of data. It was difficult to do advanced data filtering or combine two
recordsets. Additionally, although it is possible to transmit an ADO recordset to a remote
server, you must configure all firewalls between the two servers to enable the proprietary
ports required for COM martialing.

Introducing the Microsoft.NET Framework and ADO.NET 7

1Back in the dark ages (roughly 15 years ago), the prospect of retrieving data
from a database was much more difficult than it is today. For each separate
database type, you would have to learn that system’s interfaces to retrieve
any data. The interfaces of any given database system could be wildly differ-
ent than any of the others because there were no standards.

By the late 80s, several vendors (including IBM and Microsoft) realized that
it would be a good idea to offer programmers a standardized database
interface. By factoring a standard interface from the mire of proprietary
APIs used by the database system, programmers only had to learn one API
instead. This standard API is known as ODBC.

OLE DB is much like ODBC, but based on COM (Component Object Model).
OLE DB offers much better performance than ODBC, but it is only available
to Microsoft-based solutions.

ODBC and OLE DB are both layers that exist between application code and
the database. As such, they are not as fast as interfacing with the database
system directly, in its language. The developers of ADO.NET created a name-
space that works with Microsoft SQL Server (versions 7.0 and up) using its
native APIs. Because the code connects directly to SQL Server and is man-
aged by the framework, it’s known as a managed provider.

Regardless of which method is used to connect to the database, ADO.NET
provides a single interface for retrieving data. You don’t need to worry
about the underlying connection method.

02 0672323834 Ch01 4/19/02 2:19 PM Page 7

Additionally, the remote server must know what an ADO recordset is—for all intents and
purposes, this means that the remote server must be running a Microsoft operating sys-
tem. Because of the limitations of the ADO recordset object, solutions based on ADO
were likewise limited.

Microsoft has fixed these problems with ADO.NET. The centerpiece object of ADO.NET
is the DataSet. The DataSet is an in-memory representation of data that provides a con-
sistent relational programming model regardless of the data source. The DataSet con-
tains a collection of DataTables, which are very much like recordsets in that each
DataTable is a set of data. However, rather than just being a container for various
DataTables, the DataSet can store relations and constraints pertaining to the
DataTables! Not only can a DataSet mirror the relations and constraints in your data
source, but you can add new ones as the logic of your application dictates. This gives
you complete control of filtering and combining DataTables.

Additionally, DataSets (and the DataTables within them) are represented internally by
strongly typed XML. Thus, at any point, it is possible to save a DataSet to XML. This
might not seem like such a major point at first glance. However, this means that any plat-
form that can parse XML—and I do not know of any platform that cannot—can retrieve
data from an ADO.NET DataSet.

DataSets are easily transmitted to remote machines, as well. Web services are designed
to transmit XML data via SOAP to remote machines. Because the DataSet is represented
internally as XML, sending a DataSet to a remote server requires no special handling.
The remote server could be running any platform that understands XML, such as Java-
based solutions like IBM WebSphere. A WebSphere developer would only need to parse
the XML.

8 Hour 1

SOAP (Simple Object Access Protocol) is an open standard that defines how
objects should be packaged (via XML) and transported over TCP/IP (via port
80). The official SOAP specifications and other documents are available
online at http://www.w3.org. Choose SOAP from the main menu.

The System.Data Namespace
The System.Data namespace contains most of ADO.NET’s base objects, or the objects
upon which ADO.NET relies to represent data retrieved from the data source. It also
contains various supporting objects, such as many of the various ADO.NET exceptions
(specific errors). Figure 1.3 shows how the various ADO.NET objects interrelate.

02 0672323834 Ch01 4/19/02 2:19 PM Page 8

The DataSet
The DataSet object is the parent object to most of the other objects in the System.Data
namespace. Its primary role is to store a collection of DataTables, and the relations and
constraints between those DataTables. The DataSet also contains several methods for
reading and writing XML, as well as merging other DataSets, DataTables, and
DataRows.

The DataTable
The DataTable stores a table of information, typically retrieved from a data source. In
addition to simply containing the various DataColumns and DataRows, however, the
DataTable also stores metatable information such as the primary key and constraints.

The DataRow and DataColumn
The DataRow and DataColumn objects are at the bottom of the ADO.NET “food chain,”
so to speak. Ordinarily, you won’t have to deal with these objects in an application.
However, as you’ll see later in this book, there are instances where it is useful to drill
down to the actual columns and rows in a DataTable.

Introducing the Microsoft.NET Framework and ADO.NET 9

1
FIGURE 1.3
The ADO.NET object
model is hierarchical.

Microsoft

ORACLE

Client

Web Client

DataSet

XML

DataView

DataTableCollection

DataRelationCollection

ExtendedProperties

DataView

Constraints

DataRowCollection

DataRowDataColumnCollection

DataColumn

Othe
r P

rov
ide

rs

OLE
 D

B .N
ET D

ata
 P

rov
ide

r

OLE
 D

B S
er

vic
e C

om
po

ne
nt

OLE
 D

B P
rov

ide
r

SQLS
er

ve
r .N

ET D
ata

 P
rov

ide
r

.N
ET D

ata
 P

rov
ide

r
Data

Rea
de

r
Con

ne
cti

on

Tra
ns

ac
tio

n

Com
man

d

Para
mete

rs

Data
Ada

pte
r

Ins
er

tC
om

man
d

Dele
teC

om
man

d
Sele

ctC
om

man
d

Upd
ate

Com
man

d

Presentation
Tier

Application/Business
Tier

Data and Resources
Tier

OLE DB
data sources

SQL Server
7.0 & 2000

02 0672323834 Ch01 4/19/02 2:19 PM Page 9

The System.Data.SqlClient and
System.Data.OleDb Namespaces

As previously mentioned, the System.Data.SqlClient and System.Data.OleDb name-
spaces work with data sources. System.Data.SqlClient uses a managed provider to
interact directly with Microsoft SQL Server version 7.0 and higher. System.Data.OleDb
interacts with any valid OLE DB source. Though the namespaces are separate, the base
objects function in nearly the same exact manner. Both namespaces contain Connection,
Command, DataAdapter, and DataReader objects. Indeed, the namespaces almost exactly
mirror one another.

The Connection Object
As you might have guessed, the connection object opens a connection to your data
source. All of the configurable aspects of a database connection are represented in the
Connection object, including ConnectionString and ConnectionTimeout. Also, data-
base transactions are still dependent upon the Connection object.

The Command Object
The Command object performs actions on the data source. You can use the Command object
to execute stored procedures, or any valid T-SQL command understood by your data-
source. This is the object that performs the standard SELECT, INSERT, UPDATE, and DELETE
T-SQL operations.

The DataAdapter Object
The DataAdapter object is brand-new in ADO.NET. The DataAdapter takes the results
of a database query from a Command object and pushes them into a DataSet using the
DataAdapter.Fill() method. Additionally the DataAdapter.Update() method will
negotiate any changes to a DataSet back to the original data source. Unlike ADO, updat-
ing the original data source with modified data works reliably well.

The DataReader Object
The DataReader object is also brand-new in ADO.NET. The DataReader provides a very
fast, forward-only view of the data returned from a data source. In most instances, to dis-
play a set of data in a Web or Windows form, this is the object you’ll use, because there
is very little overhead. No DataSet is created; in fact, no more than one row of informa-
tion from the data source is in memory at a time. This makes the DataReader quite effi-
cient at returning large amounts of data. You can think of the DataReader as a firehose
that goes directly from the data source to the final destination. However, if you need to

10 Hour 1

02 0672323834 Ch01 4/19/02 2:19 PM Page 10

manipulate schema or use some advanced display features such as automatic data paging,
you must use a DataAdapter and DataSet.

Installing the Microsoft .NET Framework
To follow along with the examples in this book, you’ll need to install the Microsoft .NET
Framework, or find a hosting company supporting .NET (Eraserver offers limited hosting
for free at http://www.eraserver.net).

To download the Microsoft .NET Framework, navigate to
http://msdn.microsoft.com/net. After downloading and running the executable install
file, you still have a few additional steps to install the QuickStart tutorials.

After the SDK has completed installing, go to the Samples and QuickStart Tutorials
entry in the Microsoft .NET Framework SDK program group, and follow the onscreen
instructions. You will have to click one link to install the samples and another link to
configure them.

Summary
In this hour, you’ve been introduced to the ADO.NET object model and read about some
of the theoretical applications of ADO.NET. You saw how the DataSet object is the cor-
nerstone of ADO.NET development. You also saw how the DataSet contains the
DataTable that contains DataRows and DataColumns. Lastly, you downloaded and
installed the Microsoft .NET Framework so that you can follow along with the examples
in this book.

Q&A
Q If I install the Microsoft .NET Framework, will I still be able to build applica-

tions using ASP and Visual Basic 6.0?

A Absolutely! The Microsoft .NET Framework exists side by side with your other
development platforms. You can even mix ASP and ASP.NET files within the same
application! Likewise, Visual Basic applications are not affected at all.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Introducing the Microsoft.NET Framework and ADO.NET 11

1

02 0672323834 Ch01 4/19/02 2:19 PM Page 11

Quiz
1. Name the most important root object in ADO.NET.

a. The DataTable

b. The DataSet

c. The DataAdapter

2. True or false: ADO.NET represents all its objects internally using XML.

3. Which important ADO.NET namespace contains the DataSet, DataTable, and
DataRow?

Exercise
After downloading the Microsoft .NET Framework SDK (location and details provided
earlier in this hour), make sure to install the QuickStart samples provided in the frame-
work. Spend some time using the QuickStart Class Browser application to become more
familiar with the location of the built-in framework objects.

12 Hour 1

02 0672323834 Ch01 4/19/02 2:19 PM Page 12

HOUR 2
Working with DataSets
and DataTables

At the heart of the ADO.NET platform, you’ll find the DataSet and
DataTable objects. The DataSet operates just like an in-memory database.
That is to say, the DataSet object can contain multiple DataTables, along
with any relationships, constraints, and primary keys necessary to closely
represent the data returned from the data source.

In this hour, you will learn the following:

• The basics of the database schema

• How to instantiate and manipulate the basic ADO.NET objects, such
as the DataSet, DataTable, and DataColumns

• How to define the schema of a DataSet

• How to create and configure a new ASP.NET Web

03 0672323834 Ch02 4/19/02 2:19 PM Page 13

Crash Course on Database Schema
In a database, such as Microsoft SQL Server, data is stored and organized in tables.
Tables consist of a set of columns and a set of rows. The columns (also referred to as
“fields”) define what information you are storing about your object (such as name,
description, color, and so on). The columns define how your data will look. This is
referred to as the database schema. The rows (also referred to as “records”) are your
data—each row represents a group of columns of information.

A primary key is a column in your table that guarantees row-level accessibility. This
sounds more complicated than it really is. Think of the data in a table organized like a
spreadsheet. To access a particular row, the data provider needs to be able to distinguish
that row from the rest in an efficient manner. The primary key is any field (or set of
fields) that can be used to guarantee uniqueness. For instance, common examples of a
primary key include:

• Identity field—A special automatically incremented number field that stamps each
record added to the table with a unique number. No two records in the table will
have the same value in the identity field.

• Social Security number—A field like this will work just fine so long as each per-
son is listed only once in the table.

DataSet Overview
As mentioned, the DataSet object is the cornerstone of ADO.NET development. The
DataSet contains a set of DataTables, as well as any relationships between those tables.
Figure 2.1 shows the relationships between the objects within the DataSet.

14 Hour 2

Relationship
In a relational database, a relationship is a link between two entities (such as tables) that
is based on attributes of the entities. For instance, if you have a table of customer infor-
mation, you might link their CustomerID to the CustomerInvoice table, so that only valid
customers in the database are invoiced.

If you are new to the Microsoft .NET Framework, some of the code in this hour might
look intimidating at first. The good news is that the code in this hour is not required to
understand the rest of the book. Most developers will never need to construct an entire
DataSet from scratch, adding tables and creating the schema manually.

03 0672323834 Ch02 4/19/02 2:19 PM Page 14

By working through this chapter, you will gain a much deeper understanding of how the
DataSet and its component objects work. With this information, you will be able to more
effectively debug ADO.NET programming problems.

Working with DataSets and DataTables 15

2

FIGURE 2.1
The relationship
between the various
ADO.NET objects.

DataSet

DataView

DataTableCollection

DataRelationCollection

ExtendedProperties

Constraints

DataView

ParentRelations

ChildRelations

PrimaryKey

ExtendedProperties

DataRowCollection

DataRow

DataColumnCollection

DataColumn ExtendedProperties

DataSet Object Model

Creating DataSet Schema
In the next few sections, you’ll see how to create a new DataSet and new DataTable.
You’ll also see how to manually create the DataTable schema using DataColumns.
Finally, you will add some data to the DataSet using the DataRow object.

Instantiating a New DataSet
The first step to working with a DataSet is to create a new instance of a DataSet object.
You can do this by using the following code in Visual Basic .NET:

Dim dsCompany as New DataSet()

or like this using C#:

DataSet dsCompany = new DataSet();

03 0672323834 Ch02 4/19/02 2:19 PM Page 15

Adding a DataTable
When you have a DataSet object, the next step is to add a DataTable. The DataTable
contains the columns and rows that make up the data you’ll add later. To add a new table
to the DataSet, you use the Add() method of the Tables collection in the DataSet object,
as in the following line of Visual Basic .NET code:

dim dtEmployees as DataTable = dsCompany.Tables.Add(“Employees”)

or like this using C#:

DataTable dtEmployees = dsCompany.Tables.Add(“Employees”);

16 Hour 2

Notice how the “new” keyword is not used to add a new DataTable to the
DataSet. The Add() method of the Tables collection in the DataSet object
creates a new DataTable, adds it to the collection of tables inside the
DataSet, and then returns the object, automatically.

Adding DataColumns
Now that you have a DataTable, it’s time to define exactly what data the table will con-
tain. For this example, the DataTable contains only three columns: EmployeeID,
FirstName, and LastName. The EmployeeID is a standard identity field, which will also
serve as the primary key. The FirstName and LastName columns will contain strings.

DataColumns are added to a DataTable in precisely the same way DataTables are added
to DataSets. In this case, you will not need to refer back to the columns often, so you
can just add the columns to the table and ignore the DataColumn objects that are returned
from the Add() method. Listing 2.1 adds these three columns to the dtEmployees
DataTable in Visual Basic .NET. Listing 2.2 performs the same actions in C#.

LISTING 2.1 Adding DataColumns to a DataTable in Visual Basic .NET

dtEmployees.Columns.Add(“EmployeeID”, Type.GetType(“System.Int32”))
dtEmployees.Columns.Add(“FirstName”, Type.GetType(“System.String”))
dtEmployees.Columns.Add(“LastName”, Type.GetType(“System.String”))

LISTING 2.2 Adding DataColumns to a DataTable in C#

dtEmployees.Columns.Add(“EmployeeID”, typeof(int));
dtEmployees.Columns.Add(“FirstName”, typeof(string));
dtEmployees.Columns.Add(“LastName”, typeof(string));

03 0672323834 Ch02 4/19/02 2:20 PM Page 16

The second argument of the Add() method in Listings 2.1 and 2.2 expects a data type.
The Type.GetType() and typeof() methods return the proper data types that the Add()
method wants.

When adding data later in the next few sections, the EmployeeID column should auto-
matically generate a number for each new record added. To achieve this functionality,
you must enter one additional line of code:

dtEmployees.Columns(0).AutoIncrement = true;

or in C#:

dtEmployees.Columns[0].AutoIncrement = true;

Adding and Removing Data
At this point, the schema of the DataSet is entered and you’re ready to add some data.
Recall that the column collection of the DataTable defines the schema, and the rows col-
lection of the DataTable defines the data. In other words, to add data to our DataTable,
all we need to do is add some rows to our DataTable: dtEmployees.

DataRows Contain Data
Adding rows to the dtEmployees DataTable is easy to do. First, you need to use the
NewRow() method of the dtEmployees object. NewRow() returns a reference to a new row
for your DataTable. Next, you must specify values for the columns in the newly created
row. Lastly, you must add the row to the DataTable. Listings 2.3 and 2.4 demonstrate
this by adding a few rows to our existing DataTable, dtEmployees.

LISTING 2.3 Adding Rows to the dtEmployees DataTable in Visual Basic.NET

‘Create new row
Dim workRow as DataRow = dtEmployees.NewRow()
workRow(“FirstName”) = “John”
workRow(“LastName”) = “Fruscella”

‘Create another row
Dim workRow1 as DataRow = dtEmployees.NewRow()
workRow1(“FirstName”) = “Leigh”
workRow1(“LastName”) = “Chase”

‘Add new rows to the DataTable
dtEmployees.Rows.Add(workRow)
dtEmployees.Rows.Add(workRow1)

Working with DataSets and DataTables 17

2

03 0672323834 Ch02 4/19/02 2:20 PM Page 17

LISTING 2.4 Adding Rows to the dtEmployees DataTable in C#

//Create new row
DataRow workRow = dtEmployees.NewRow();
workRow[“FirstName”] = “John”;
workRow[“LastName”] = “Fruscella”;

//Create another row
DataRow workRow1 = dtEmployees.NewRow();
workRow1[“FirstName”] = “Leigh”;
workRow1[“LastName”] = “Chase”;

//Add new rows to the DataTable
dtEmployees.Rows.Add(workRow);
dtEmployees.Rows.Add(workRow1);

Creating and Configuring a New ASP.NET Test Web
Until now, you’ve probably taken it for granted that the code in this hour works.
However, with just a few minutes of effort, you can verify that it works. By itself,
ADO.NET code is not specific to Web forms or Windows forms. In fact, either can be
used to test the code in this chapter. If you are handy with Windows forms using Visual
Studio .NET or the tools inside the Microsoft .NET Framework SDK, feel free to plug
the code in Listings 2.3 or 2.4 into a Windows form application.

The next section walks you through the process of setting up a new virtual directory in
Windows 2000 and adding a Web form that can be used to test your code. Web forms
were chosen because they are compiled automatically when they are first requested by a
Web browser, thus saving you from having to manually compile a Windows form each
time you need to test some code. When you save the file, ASP.NET knows to recompile
the Web form the next time the file is requested.

Creating the Web Site
Installing a new Web site on a Windows 2000 machine is a straightforward process:

1. Make sure you are logged in as a user with administrative rights.

2. Locate (or create) a directory on your computer where you will place the files to be
served by Internet Information Server (IIS, Microsoft’s Web server that comes built
into Windows 2000).

3. In the Administrative Tools program group, load the Internet Services Manager.
Expand the entry for your computer. You should now see a screen much like Figure
2.2. If you do not have an entry for the Internet Services Manager, you probably do
not have IIS installed. You can use the Add/Remove Programs entry in the Control

18 Hour 2

03 0672323834 Ch02 4/19/02 2:20 PM Page 18

Panel to add the Windows 2000 IIS components. Please refer to your operating
system manual for more details.

Working with DataSets and DataTables 19

2

FIGURE 2.2
Use the IIS adminis-
trative console to cre-
ate new virtual
directories and man-
age the Web sites on
your machine.

4. Expand the Default Web Site entry (which is installed by default). You should see
a number of subentries.

5. Right-click on Default Web Site and select New Virtual Directory. The Virtual
Directory Creation Wizard appears (see Figure 2.3). Click Next.

FIGURE 2.3
The Virtual Directory
Wizard prompts you
for an alias.

03 0672323834 Ch02 4/19/02 2:20 PM Page 19

6. The wizard prompts you for an alias. Enter 24Hours and click Next.

7. In the next screen, either type or browse to the directory you created in step 1 and
click Next.

8. On the Access Permissions screen, leave Read and Run scripts checked and also
check Browse. Click Next.

9. You have successfully added a new virtual directory to your Web site!

Configuring the Web Site
If you are concerned about security, you should change the default security settings for
the new virtual directory.

1. Right-click on the 24Hours virtual directory under the Default Web Site.

2. Click on the Directory Security tab. Select the Edit button in the IP Address and
Domain Name Restrictions dialog box as shown in Figure 2.4.

20 Hour 2

FIGURE 2.4
The IP Address and
Domain Name
Restrictions dialog
box showing the vir-
tual directory’s prop-
erties.

3. Select the bottom bullet labeled Denied Access. Then click the Add button, enter
127.0.0.1, and click the OK button. The 24Hours site can now only be loaded from
the computer it is loaded on.

The site is now only available to users of your computer. If someone tries to access the
site from a remote machine, they will be denied access. The site can be accessed by
using either http://localhost/24Hours or http://127.0.0.1/24Hours. The site is
currently empty, but you will be able to browse to the folders and files of the site after
we add some Web forms.

Task: Creating a Test Harness for ADO.NET Code
Before you can test the code in this chapter, you must create a few pages that will con-
tain the code. One page is needed for the Visual Basic .NET examples and another is
needed for the C# examples.

03 0672323834 Ch02 4/19/02 2:20 PM Page 20

1. Create two new files in the 24Hours directory named _24HoursVB.aspx and
_24HoursCS.aspx. These files will be used as templates.

2. Place the code from Listing 2.5 into _24HoursVB.aspx and save the file.

3. Place the code from Listing 2.6 into _24HoursCS.aspx and save the file.

4. Create a copy of the _24HoursVB.aspx file and name it chapter2VB.aspx.

5. Create a copy of the _24HoursCS.aspx file and name it chapter2CS.aspx.

By repeating steps 4 and 5 of the previous task, you can use the _24Hours*.aspx files as
templates for the examples in this book, unless otherwise noted. When you are done con-
figuring these files, your directory will look like the one in Figure 2.5.

Working with DataSets and DataTables 21

2

FIGURE 2.5
Setting up the example
templates.

LISTING 2.5 VB.NET Code Test Harness

<% @Page Language=”VB” Debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”24Hours.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >

03 0672323834 Ch02 4/19/02 2:20 PM Page 21

Sub Page_Load(Source as Object, E as EventArgs)

‘Place VB.NET ADO.NET Code here

End Sub
</script>

</HEAD>
<BODY>

<h1>ADO.NET In 24 Hours Examples</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:Label id=”msg” runat=”server”></asp:Label>
<asp:DataGrid id=”myDataGrid” runat=”server”></asp:DataGrid>

</form>

<hr>
</BODY>
</HTML>

LISTING 2.6 C# Code Test Harness

<% @Page Language=”C#” Debug=true%>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”24Hours.css”>
<!-- End Style Sheet -->

<script language=”C#” runat=”server” >
void Page_Load(Object Source, EventArgs E)
{

//Place C# ADO.NET example code here

}
</script>

</HEAD>
<BODY>

<h1>ADO.NET In 24 Hours Examples</h1>
<hr>

22 Hour 2

LISTING 2.5 continued

03 0672323834 Ch02 4/19/02 2:20 PM Page 22

<form runat=”server” id=form1 name=form1>
<asp:Label id=”msg” runat=”server”></asp:Label>
<asp:DataGrid id=”myDataGrid” runat=”server”></asp:DataGrid>

</form>

<hr>
</BODY>
</HTML>

The Web forms in Listings 2.5 and 2.6 contain:

• A label Web control that will be used to display text messages

• A DataGrid Web control that will be used to display the contents of your DataSets

To test this hour’s code, just place the code from Listing 2.3 into the VB.NET test har-
ness in Listing 2.5 where it says “Place VB.NET ADO.NET Code here.” All that remains
is to connect the DataGrid to the DataSet. That can be achieved with two lines of code:

myDataGrid.DataSource = dtEmployees
myDataGrid.DataBind()

This instructs the DataGrid to use the dtEmployees DataSet as its data source and dis-
play it on the page when the page loads. Listing 2.7 contains the entire example in
VB.NET. When you load the page, your results should look similar to those in Figure
2.6. For more information on the DataGrid Web control, please see Hour 11, “Using the
Built-In ASP.NET List Controls.”

LISTING 2.7 The Complete VB.NET Web Form Example

<% @Page Language=”VB” Debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”24Hours.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

‘Create Principle Objects
dim dsCompany as new DataSet()
dim dtEmployees as DataTable = dsCompany.Tables.Add(“Employees”)

‘Create Columns

Working with DataSets and DataTables 23

2

LISTING 2.6 continued

03 0672323834 Ch02 4/19/02 2:20 PM Page 23

dtEmployees.Columns.Add(“EmployeeID”, Type.GetType(“System.Int32”))
dtEmployees.Columns.Add(“FirstName”, Type.GetType(“System.String”))
dtEmployees.Columns.Add(“LastName”, Type.GetType(“System.String”))

‘Create new row
Dim workRow as DataRow = dtEmployees.NewRow()
workRow(“FirstName”) = “John”
workRow(“LastName”) = “Fruscella”

‘Create another row
Dim workRow1 as DataRow = dtEmployees.NewRow()
workRow1(“FirstName”) = “Santa”
workRow1(“LastName”) = “Claus”

‘Add new rows to the DataTable
dtEmployees.Rows.Add(workRow)
dtEmployees.Rows.Add(workRow1)

employees.DataSource = dtEmployees
employees.DataBind()

End Sub
</script>

</HEAD>
<BODY>

<h1>ADO.NET In 24 Hours Examples</h1>
<hr>

<form runat=”server”>
<asp:Label id=”lblMessage” runat=”server”></asp:Label>
<asp:DataGrid id=”employees” runat=”server”></asp:DataGrid>

</form>

<hr>
</BODY>
</HTML>

The code in Listing 2.7 may appear a bit daunting at first. However, it’s easier to under-
stand the code if you analyze it in logical sections. The code in Lines 1–3 sets some
global properties for the Web form. Specifically, Line 1 sets the language of the Web
form to Visual Basic .NET and turns on debugging. Lines 2–3 load the System.Data and
System.Data.SqlClient namespaces. This enables you to access objects such as the
DataSet and DataRow in the server-side code.

24 Hour 2

LISTING 2.7 continued

03 0672323834 Ch02 4/19/02 2:20 PM Page 24

Lines 10–39 in Listing 2.7 are a block of script that executes on the server. The code
consists of a single method: The Page_Load() event is automatically run whenever the
page loads. Inside the Page_Load() event, lines 13–14 create new DataSet and
DataTable objects. Lines 16–19 add some columns directly to the DataTable. These
columns define the appearance of the data that is added next.

Lines 21–33 use the previously defined columns of the DataTable to add a few rows of
data. Specifically, two new rows are created, configured, and then finally added to the
DataTable object in Lines 31–33. Finally, the DataTable is bound to the DataGrid Web
control, created on line 49. For now, don’t worry about the details of databinding; the
DataGrid just knows how to automatically loop through all the rows in the DataTable
and display them on the page as in Figure 2.6.

Summary
In this hour, you’ve seen how to construct the schema of a DataSet from scratch. Then
you added some data to the DataTable inside the DataSet. You also saw how to create a
new ASP.NET Web with some sample Web forms that you can use for most of the exam-
ples in this book.

Working with DataSets and DataTables 25

2

FIGURE 2.6
The appearance of our
test harness when
loaded with the code
from this chapter.

03 0672323834 Ch02 4/19/02 2:20 PM Page 25

Q&A
Q I don’t have access to a Windows 2000 Web server. Will I be able to follow

along with the examples in this book?

A You’ll still be able to follow along with the examples in this book, but you’ll need
access to a Windows 2000 Web server with the Microsoft .NET framework
installed somehow. You can get a free 30-day test account at
http://www.eraserver.net. Some other Internet service providers offer similar
promotions.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. True or false: In a DataTable object, the DataColumns specify the table schema and

the rows comprise the table data.

2. In your own words, describe the easiest way to add a DataTable to a DataSet.

Exercise
Create a Web form that builds a DataSet (with whatever schema you choose), adds some
data to the DataSet, and then removes one of the records added.

26 Hour 2

03 0672323834 Ch02 4/19/02 2:20 PM Page 26

HOUR 3
Using T-SQL: A Crash
Course

ADO.NET enables you to connect to a data source and retrieve and manipu-
late data. However, ADO.NET doesn’t actually gather the data itself. It sim-
ply sends a string to the data source with data processing instructions. The
language used to communicate with the data source is known as T-SQL
(Transact-SQL), which is a dialect of Structured Query Language (SQL).

Because you must provide ADO.NET with the proper T-SQL statements for
data retrieval and manipulation, knowledge of T-SQL is an essential skill for
any well-rounded developer. Hundreds of different kinds of T-SQL state-
ments are available in a product such as Microsoft SQL Server. You can
modify many aspects of the server itself, such as managing jobs, creating
and maintaining databases, and other administrative tasks. This chapter pro-
vides a primer; you’ll learn just enough about T-SQL to understand all the
examples in this book.

04 0672323834 Ch03 4/19/02 2:20 PM Page 27

In this chapter, you will learn how to do the following tasks:

• Retrieving data with the SELECT statement

• Adding data with the INSERT statement

• Modifying data with the UPDATE and DELETE statements

• Using some T-SQL built-in functions

Microsoft SQL Server and Microsoft Access both ship with a sample database called
Northwind. This database will be used for the examples in this chapter. The Northwind
access database is freely distributed. You can download it at http://www.
intensitysoftware.com/ADO.NET/nwind.mdb. If you are using a default installation of
Microsoft SQL Server, you’ll see an entry in your program group for the Query
Analyzer. You can launch this application, select Northwind as your database, and follow
along with the examples in this chapter directly.

If you are using another data source, such as Oracle, you still should be able to follow
along. Your database server probably ships with an application like Query Analyzer that
you can use to enter database queries. Use that to enter the queries in the following sec-
tions.

Retrieving Data with SELECT
The SELECT statement is used to retrieve and filter data from your data source. Listing
3.1 shows the simplified syntax of the SELECT statement. Read from top to bottom, this
statement says “select these columns from these tables where these search criteria are
true.” You can retrieve several column names from several tables, so long as you separate
the column names by commas.

LISTING 3.1 The Syntax of the SELECT SQL Statement

SELECT
column_names

FROM
table_names

WHERE
search_conditions

For instance, to retrieve all records from the Employees table, enter the following code in
the query manager and press F5 or click the green Play button to execute the query:

SELECT * FROM Employees

28 Hour 3

04 0672323834 Ch03 4/19/02 2:20 PM Page 28

This will return every single row and column in the Employees table. The results of your
query will look much like Figure 3.1.

Using T-SQL: A Crash Course 29

3

FIGURE 3.1
The Query Analyzer
has many uses, one of
which is to see the
results of your queries.

Suppose you only want to return a single record; you want to return one employee based
on his or her last name, for example. As you can see in Listing 3.1, the WHERE keyword
enables you to filter the data based on any number of search criteria. The content of the
search criteria itself is broad. However, most often, the values of various columns are
checked. For instance, to return all employees from the database with the last name
“King,” you would use the following query:

SELECT * FROM Employees WHERE LastName = ‘King’

Similarly, if you want to be even more specific and filter by the employee’s first name as
well, just add another condition to your query, as in the following SQL statement.

SELECT * FROM Employees WHERE LastName = ‘King’ and FirstName = ‘Robert’

T-SQL is not case sensitive. SELECT * FROM Employees is syntactically
identical to select * from employees. However, there is a convention to
capitalize T-SQL keywords such as SELECT and FROM to distinguish them
from table and column text.

04 0672323834 Ch03 4/19/02 2:20 PM Page 29

Filtering by date is another common need. Let’s say you want to return all employees
hired after May 3, 1993. The query you build looks like this:

SELECT * FROM Employees WHERE HireDate between ‘5/3/1993’ and getdate()

Notice that, like strings, dates in T-SQL are also delimited by single quotation marks.
Getdate() is a built-in function that returns the current date and time in DateTime
format.

Until now, we’ve used the wildcard “*” to select all columns for the table. This is fine
for testing purposes, but not when building an application. Unless you are planning on
using all the columns in the table, return only those columns that you plan to use in your
application. You can do this by specifying the exact columns you need, separated by
commas as shown in Listing 3.2.

LISTING 3.2 Specifying Columns in SQL Statements

SELECT
FirstName, Lastname, Title

FROM
Employees

WHERE
HireDate between ‘5/3/1993’ and getdate()

This greatly reduces the amount of data returned by the data source to your application.
Because the bottleneck in many applications is the database server, any way to make
your queries perform more efficiently is likely to make your application perform better.

30 Hour 3

Strings in T-SQL are delimited by single quotation marks. If you attempt to
use double quotation marks, an error will be returned by your data source.
If you are filtering by a numerical field, there’s no need for quotation marks
at all.

In Microsoft SQL Server, all extra “white space” is ignored and does not
affect processing. “White space” is defined as any character that does not
generate a character on the screen. For instance, spaces, tabs, and newline
characters are considered “white space.” This enables you to format the
appearance of queries however you want. Listing 3.2 separates the T-SQL
commands from the actual table objects they use. Though the code takes up
several more lines, it is easier to understand quickly.

04 0672323834 Ch03 4/19/02 2:20 PM Page 30

This section only scratches the surface of what is possible with the SELECT statement.
Microsoft SQL Server version 7.0 and higher ships with a terrific reference named SQL
Server Books Online. This can be found in your SQL Server program group.

The online books are used on a daily basis by professionals everywhere (some might not
admit to it), but new users might find it too terse to be very useful. In that case, there’s
certainly no lack of great books and Web sites devoted to the topic.

Adding New Data with INSERT
You can enter new data into the database by using the INSERT SQL statement. The syntax
of the command is fairly simple. However, before building the query to add new data,
you must know the schema of the table. Figure 3.2 shows the schema of the Categories
table in the Northwind database.

Using T-SQL: A Crash Course 31

3

FIGURE 3.2
The Microsoft SQL
Enterprise Manager
can display the
schema of your data-
base to help you build
queries.

Notice that the table consists of four fields, including the CategoryID column. This field
contains an integer that is automatically incremented for each new record added; we will
not need to add a value with our query. Additionally, notice that the only required field
in the table is CategoryName. The Description and Picture columns can both be left null.
When executed, the statement in Listing 3.3 adds a new record into the category table:

INSERT INTO Categories
(
CategoryName,

04 0672323834 Ch03 4/19/02 2:20 PM Page 31

Description
)
VALUES
(
‘Spam’,
‘Spam and other canned-meat products’

)

The first line uses the keywords INSERT INTO to specify that we are inserting the data
into the Categories table. Then the first parenthesized section of code specifies the fields
into which we’re putting our data. The VALUES keyword and the next parenthesized sec-
tion enter the actual values in the same column order as the first section.

Modifying Data with UPDATE and DELETE
So far, you have seen how to retrieve and add data to the database. However, suppose
you would like to modify existing database rows. To modify data, you would use the
UPDATE SQL statement. A simplified version of the syntax of the UPDATE statement looks
like the code in Listing 3.3.

LISTING 3.3 The Syntax of the UPDATE SQL Statement

UPDATE
table_name

SET
column_name = expression

WHERE
search_conditions

The specific example in Listing 3.4 explains the syntax quite well. After the statement in
Listing 3.4 is executed against the data source, any employee with last name of
“Peacock” and first name of “Margaret” as specified by the WHERE clause will be changed
to “Hogue” as specified by the SET clause of the statement. Figure 3.3 shows the change.

LISTING 3.4 Using the SQL UPDATE Statement to Change an Employee’s Last
Name

UPDATE
employees

SET
LastName = ‘Hogue’

WHERE
LastName = ‘Peacock’ and
FirstName = ’Margaret’

32 Hour 3

04 0672323834 Ch03 4/19/02 2:20 PM Page 32

It’s also possible to update several fields at once. You only need to place commas
between each segment as in Listing 3.5.

LISTING 3.5 Updating Multiple Columns in a Single UPDATE Statement

UPDATE
employees

SET
LastName = ‘Hogue’,
Address = ‘11 Longfellow St.’

WHERE
LastName = ‘Peacock’ and
FirstName = ’Margaret’

Using T-SQL: A Crash Course 33

3

FIGURE 3.3
The value in the
LastName column
changes for the
selected employee.

Be careful when using the UPDATE statement, particularly when working
with live data. Remember that every row meeting the conditions of the
WHERE clause in the statement will be updated. In fact, if you inadvertently
do not include the WHERE clause in the statement, your query will affect
every single row in the table!

04 0672323834 Ch03 4/19/02 2:20 PM Page 33

Compared to updating database rows, deleting database rows is easy. Listing 3.6 shows
the syntax of the DELETE SQL statement. It is the simplest query you have seen thus far.
All you need to specify is the name of the table and the search conditions.

LISTING 3.6 Deleting Rows from the Employee Table

DELETE FROM
table_name

WHERE
search_conditions

To delete the employee with EmployeeID of 7, you use the query in Listing 3.7.
Remember that if you are deleting only a single row, your search conditions must single
out that row. Normally, the purpose of an ID field in a database table is to guarantee this
uniqueness.

LISTING 3.7 Deleting Rows from the Employee Table

DELETE FROM
employees

WHERE
EmployeeID = 7

Using the Built-in SQL Functions
Hundreds of timesaving functions are built into Microsoft SQL Server. These functions
enable you to perform all sorts of tasks such as working with dates and strings and per-
forming mathematical calculations. Some of the most commonly used functions are
described in this section. However, you can locate a list of all built-in functions by
searching Microsoft SQL Server Books Online for “functions.”

Working with Strings
Microsoft SQL Server ships with a number of functions that enable you to manipulate
strings. For the most part, these string functions are similar to the ones used in Microsoft
Visual Basic.

For instance, the Left() and Right()functions are nearly identical to their counterparts.
They enable you to return part of a character string, from either the left or right end of
the string, respectively. They have the following function definitions:

Left(string, value)
Right(string, value)

34 Hour 3

04 0672323834 Ch03 4/19/02 2:20 PM Page 34

By calling the Left() function, and passing in ‘She sells sea shells’ as the string and 6 as
the value, Left() returns ‘She se’. Likewise, Right() with the same arguments returns
‘shells’.

Sometimes, when working with strings, you need to convert the entire string to either
uppercase or lowercase to compare two strings or to ensure that data is entered into a
certain field in a standard way. The upper() and lower() methods perform exactly these
tasks. The two methods accept the string to convert as a single argument.

Table 3.1 contains a list of some SQL string functions and their return values for a given
string.

TABLE 3.1 String Functions at a Glance

Function Definition Return Value for String: ‘ Gaiking Space Robot ‘

Len(string) 21

LTrim(string) ‘Gaiking Space Robot ‘

RTrim(string) ‘ Gaiking Space Robot’

Reverse(string) ‘ toboR ecapS gnikiaG ‘

Lower(string) ‘ gaiking space robot ‘

Upper(string) ‘ GAIKING SPACE ROBOT ‘

Using T-SQL: A Crash Course 35

3

Keep in mind that you can use string functions on other string functions
that return strings. In other words, this is a perfectly legal set of calls that
returns the length of a left and right trimmed string:

Len(LTrim(RTrim(string)))

Working with Dates
In addition to the string functions, there are several invaluable date manipulation func-
tions as well.

The DateAdd(datepart, number, date) function can be used to add a chosen unit
of time to a particular date. The first argument, datepart, controls the part of the date
you are adding. For a complete list of values for the datepart argument, see Table 3.2.
Number is the amount of the chosen datepart you’re adding to the date. For instance, in
order to add two months to the current date, you can use the following:

DateAdd(m, 2, getdate())

04 0672323834 Ch03 4/19/02 2:20 PM Page 35

TABLE 3.2 Common Codes for Special Symbols and Syntax

Code Symbol

Year yy, yyyy

Quarter qq, q

Month mm, m

Dayofyear dy, y

Day dd, d

Week wk, ww

Hour hh

Minute mi, n

Second ss, s

Millisecond ms

The functions Month(), Day(), and Year() are used to return the corresponding piece of
a given date. For instance, Month(‘12/7/1952’) returns 12, Day(‘12/7/1952’) returns
7, and Year(‘12/7/1952’) returns 1952. These functions can save hours of needless
parsing of dates by hand.

One last function that is indispensable when working with dates is Datediff
(datepart, startdate, enddate). This function returns the difference of two dates
in units determined by the datepart argument. Fortunately, it also uses the codes shown
in Table 3.2 for the values in its first argument.

Mathematical Functions
SQL Server contains a number of methods for working with numbers. You probably will
never use most of them in a query (when was the last time you needed to compute the
arctangent of a value as part of a query?). However, when you do need one of these
methods, they are quite handy. Table 3.3 shows some math functions and their return val-
ues. For a complete list, please see Microsoft SQL Server Books Online.

TABLE 3.3 SQL Server Math Functions

Function Description

Abs(expr) Returns the absolute positive value.

Cos(expr) Returns the cosine.

Exp(expr) Returns exponential value.

Log(expr) Returns natural logarithm.

36 Hour 3

04 0672323834 Ch03 4/19/02 2:20 PM Page 36

Pi() Returns the value of Pi.

Rand([seed]) Returns a random number. The seed is an optional argument giving Rand() a
start value.

Sin(expr) Returns the sine.

Square(expr) Returns the square.

Sqrt(expr) Returns the square root.

Tan(expr) Returns the tangent.

Summary
In this hour, you’ve seen the four most often used SQL queries: SELECT, INSERT, UPDATE,
and DELETE. You also saw how some of these queries run against the Northwind database
on Microsoft SQL Server. Lastly, you saw some built-in SQL Server methods that make
working with strings, dates, and numbers much easier.

Q&A
Q Where can I learn more about writing SQL queries?

A A great book for learning SQL syntax is Sams Teach Yourself SQL in 10 Minutes
Second Edition. This book focuses on the queries themselves and avoids delving
deep into database theory and database design. If you are interested in database
theory as well, Sams Teach Yourself Microsoft SQL Server 2000 in 21 Days might
be more appropriate for you.

Q If strings are delimited by the ‘ (single quote) character in SQL, how do you
enter the single quote character into a database field programmatically?

A This is referred to as “escaping” the special character. Simply enter two single
quotes instead of one. For instance, SQL Server will recognize the text “it’’s” as
“it’s”.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Using T-SQL: A Crash Course 37

3

TABLE 3.3 continued

Function Description

04 0672323834 Ch03 4/19/02 2:20 PM Page 37

Quiz
1. Which of the following SQL commands enables you to create new entries in a

database table?

a. INSERT

b. ADD

c. CREATE NEW RECORD

d. UPDATE

2. Which portion of a SQL query is used to filter the number of records returned?

Exercise
Write SELECT, INSERT, UPDATE, and DELETE queries for the Customers table in the
Northwind database. Verify that your queries work by running them in the Query
Analyzer application (SQL Server only).

38 Hour 3

04 0672323834 Ch03 4/19/02 2:20 PM Page 38

HOUR 4
Adding Relationships to
DataSets

In Hour 2, “Working with DataSets and DataTables,” you saw how to use a
DataSet to represent your data. You saw how DataTables are analogous to
tables in a database. In the last hour, you saw how to use the four major
SQL query commands to work with data in a database.

This hour extends the concepts in both Hour 2 and Hour 3 by first dis-
cussing database relationships, and then by showing how to create these
relationships in a DataSet.

In this hour, you’ll learn

• What a database relationship is

• How to use a database relationship

• How to use the Join operator

• How to use the DataSet Relations collection to add a relationship
between two DataSets

• How to use the DataRelation to retrieve data

05 0672323834 Ch04 4/19/02 2:20 PM Page 39

Database Relationships and Constraints
Before discussing how to create data relations inside a DataSet, it makes sense to
explain how relationships function inside a relational database system such as Microsoft
SQL Server. If you are already familiar with relational databases, you might want to skip
ahead to the section entitled “The DataRelation Object.”

Relationships
Suppose you have to store information about customer orders inside a database. You
might choose to use a database schema like the one shown in the database diagram in
Figure 4.1. There are five tables in this diagram, and they are all related to the main
Orders table. Notice the lines connecting the tables together. Each of these lines repre-
sents a relationship in the database.

40 Hour 4

Each of the relationships in Figure 4.1 are “one to many.” Notice how each
relationship has an infinity symbol on one terminating end and a key on the
other. The table connected via the infinity symbol may contain multiple
entries from a column in the other table. For instance, the CustomerID field
of the Orders table may only contain entries from the CustomerID field of
the Customers table. It can contain the same CustomerID as many times as
required (one per order per customer, in fact). If you try to enter a value in
the CustomerID field of the Orders table that is not also present in the
Customers table, you will receive an error.

This is done mainly to avoid duplicating data. Rather than storing redundant customer
data in the Orders table, you only need the CustomerID, which you can then use to
retrieve that customer’s information later, when you need it. (For information on retriev-
ing the customer information, see the section titled “The Join Operator.”)

If you are using Microsoft SQL Server 2000, creating a relationship between two tables
is easy:

1. Create a new database diagram in your database by right-clicking on Diagrams and
selecting New Database Diagram as in Figure 4.2. You are presented with the
Create Database Diagram Wizard. Click Next.

2. Add all the tables from the left to the tables in the new diagram, on the right side.
Select Next and then Finish to complete the wizard. You will see a screen much
like Figure 4.3.

05 0672323834 Ch04 4/19/02 2:20 PM Page 40

FIGURE 4.2
The Create Database
Diagram Wizard
assists in setting up a
new database diagram.

Adding Relationships to Datasets 41

4

FIGURE 4.1
A database diagram of
the built-in Microsoft
SQL Server Northwind
database

3. Right-click anywhere on the white background of the diagram window and select
New Table. Name the new table EmployeeAwards.

05 0672323834 Ch04 4/19/02 4:19 PM Page 41

4. Create the new table according to the values entered in Figure 4.4. When you are
done, right-click on the grey box to the left of the AwardID column. Select Set
Primary Key. A primary key must be present in both tables participating in a rela-
tionship.

42 Hour 4

FIGURE 4.3
After the Create
Database Diagram
Wizard completes, you
will see a screen like
this one.

FIGURE 4.4
Creating a new data-
base table inside the
diagram utility.

05 0672323834 Ch04 4/19/02 2:20 PM Page 42

5. Next, click and drag the box to the left of the EmployeeID column of the
Employees table and drag it on top of the EmployeeID column of the
EmployeeAwards table. You are presented with a screen like the one in Figure 4.5.

Adding Relationships to Datasets 43

4

FIGURE 4.5
After dragging and
dropping the new rela-
tionship, you are pre-
sented with the Create
Relationship screen.

6. Select OK and you are done. Notice that the graphical representation of the rela-
tionship is added to the diagram, as seen in Figure 4.6.

FIGURE 4.6
The relationship
between the two tables
appears.

05 0672323834 Ch04 4/19/02 2:20 PM Page 43

Now, if an employee wins an award, you can track it in the EmployeeAwards table.

The Join Operator
The only problem with using this type of data model is that whenever you need to
retrieve records with columns from both tables, you must perform a join operation. The
join operation enables you to select columns from two or more tables linked together by
a relationship like the one you’ve just created.

There are a number of different kinds of join operations you can perform. Listing 4.1 dis-
plays the syntax to perform an inner join. An inner join will return records from two
tables with matching records determined by the columns chosen for the join. For other
types of joins, please refer to your database documentation.

LISTING 4.1 The Syntax of the Join Operator

SELECT
column_names

FROM
table_a
INNER JOIN table_b on
table_a.column = table_b.column

WHERE
search_conditions

44 Hour 4

The join operation essentially lets you add columns from another table to
your current resultset based on the values in a common field. Syntactically,
the query in Listing 4.2 and the query in Listing 4.3 are exactly the same.

For instance, suppose you want to retrieve all customer orders from the Orders table and
also get their titles and phone numbers at the same time. The queries in Listings 4.2 and
4.3 will both retrieve the same data, one with a join, one without.

LISTING 4.2 A Database Query Utilizing the Join Operator

SELECT
Orders.*, Customers.ContactTitle, Customers.Phone

FROM
Orders
INNER JOIN Customers on
Customers.CustomerID = Orders.CustomerID

05 0672323834 Ch04 4/19/02 2:20 PM Page 44

LISTING 4.3 A Multitable Database Query Not Utilizing the Join Operator

SELECT
Orders.*, Customers.ContactTitle, Customers.Phone

FROM
Orders, Customers

WHERE
Customers.CustomerID = Orders.CustomerID

Constraints
Constraints are basically just rules about the contents of a database field. For instance,
Figure 4.7 shows a constraint present in the Employees table of the Northwind database.
This ensures that no one enters a future date in the birthdate field.

Adding Relationships to Datasets 45

4

FIGURE 4.7
A constraint present in
the Employees table of
the Northwind data-
base.

The DataRelation Object
As you’ve seen in Hour 2, “Working with DataSets and DataTables,” the ADO.NET
DataSet object can almost precisely mirror data returned from the data source. This
includes all the data relations and constraints present in the database as well as the data
itself!

05 0672323834 Ch04 4/19/02 2:20 PM Page 45

In other words, within the DataSet itself, you can create relationships, just like the ones
you saw earlier inside SQL Server. After the relationships are set up, you can retrieve
relationship-based information without having to write a database query.

46 Hour 4

New Functionality with the DataSet!
In addition to giving you great power and flexibility when working with
data retrieved from a database, ADO.NET also enables you to retrieve data
from two completely different data sources (such as a Microsoft Excel file
and a standard comma-delimited text file), create relations, and then navi-
gate those relationships. Essentially, you can apply the power of a relational
database system to such disparate data sources as XML files and Microsoft
Excel files, without first importing the data to a relational database like
Microsoft SQL Server.

The next few sections show you how to use the Relations collection of the DataSet to
create relations between two or more DataTables.

The DataSet Relations Collection
The DataSet contains a collection of DataRelation objects named, appropriately
enough, DataRelationCollection. This collection stores all DataRelations for the
DataTables in your DataSet. There’s no practical limit to the number of relationships
you can add to a DataSet.

Adding a Relationship Between Two DataTables
Adding a relationship between two DataTables is straightforward. You can simply add a
new DataRelation object to the Relations collection of your DataSet as in Listing 4.4.
The first argument to the Add() method is the name of the relationship. The second argu-
ment contains the parent DataColumn. The third argument contains the child DataColumn
of the relationship.

The parent is defined as the column in the relationship that is a primary key.
The other column is said to be a foreign key, and is also referred to as the
child. The child column may contain as many values from the parent column
as desired (even repeating the same value). Think of it this way: One
employee can work on multiple projects; one customer can make multiple
orders. In these cases, the employees and customers are the parents and the
projects and orders are the children.

05 0672323834 Ch04 4/19/02 2:20 PM Page 46

LISTING 4.4 Adding a Relationship between two DataTables in a DataSet

dsCompany.Relations.Add(“DataRelationName”, _
dsCompany.Tables(“Table1”).Columns(“PrimaryKeyColumn”), _
dsCompany.Tables(“Table1”).Columns(“ForeignKeyColumn”))

For instance, suppose you have two tables in your DataSet:

1. The first table named Customers contains a list of your customers, with a column
named CustomerID set as the table’s primary key.

2. The second table named Orders contains a list of your customers’ orders, using a
CustomerID column to keep track of which customer made which order. (In other
words, the CustomerID in this table will become the foreign key, after the
DataRelation is added.)

Adding Relationships to Datasets 47

4

The primary key column does not need to have the same name as the for-
eign key column. Often, however, the two do share the same column name.

Adding a DataRelation to this table ensures that the CustomerID field of the Orders
table contains only CustomerIDs from the Customers table. If you try to add a
CustomerID to the Orders table that is not also present in the CustomerID field in the
Customers table, you will receive an error (this applies to both tables in a database and
DataTables in a DataSet). Listing 4.5 shows how to create a relationship between a
Customers DataTable and an Orders DataTable using this example.

LISTING 4.5 Adding a Relationship between Two DataTables in a DataSet

dsCompany.Relations.Add(“CustomerOrders”, _
dsCompany.Tables(“Customers”).Columns(“CustomerID”), _
dsCompany.Tables(“Orders”).Columns(“CustomerID”))

After you have added a relationship between the Customers DataTable and the Orders
DataTable, you can easily retrieve all orders for a particular CustomerID without writing
a SQL query. This is referred to as “navigating” a relationship.

Navigating DataSet Relationships
When you have a DataRelation between two DataTables, you can retrieve all child
rows in the table with the foreign key for a particular row in the parent table by using the

05 0672323834 Ch04 4/19/02 2:20 PM Page 47

GetChildRows() method of the DataRow object. Building on the example from the previ-
ous section in Listing 4.5, the following code shows how to use the GetChildRows()
method:

dsCompany.Tables(“Customers”).Rows(0).GetChildRows(“CustomerOrders”)

For the customer in the first row of the Customer DataTable, the preceding code returns
any orders they have listed in the Orders table. It does this by using the CustomerOrders
DataRelation name passed to it as its only argument. So, if the first customer has a
CustomerID of 0, any rows in the Orders table that have a CustomerID of 0 are returned.

You can see a complete example using all of the concepts from this hour in Listing 4.6.
This is a very long code listing, but it is also easily broken down into pieces that you
have seen before, specifically in Hour 2, “Working with DataSets and DataTables.”
Because Listing 4.6 is so long, only the Visual Basic .NET code is provided. The C#
code is available online at http://www.sams.com.

Listing 4.6 builds a DataSet with two DataTables, creates a relationship between those
two tables, and then steps through each row of the parent DataTable displaying each
child row in the child table. In this case, the code will display a list of employees (the
parent DataTable) and a list of the projects each employee is assigned to (the child
DataTable). Keep in mind that the only new code in Listing 4.6 is the code with a grey
background.

LISTING 4.6 Adding a Relationship between Two DataTables in a DataSet

<% @Page Language=”VB” Debug=true%>
<%@ Import Namespace=”System.Data” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”24Hours.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

‘ Create Principle Objects
Dim dsCompany as new DataSet()

‘ Create new datatables
Dim dtEmployees as DataTable = GenerateCompanyDataTable()
Dim dtProjects as DataTable = GenerateProjectDataTable()

‘ Add new datatables to the dataset
dsCompany.Tables.Add(dtEmployees)
dsCompany.Tables.Add(dtProjects)

48 Hour 4

05 0672323834 Ch04 4/19/02 2:20 PM Page 48

‘ Create Relationships between tables in datasets

dsCompany.Relations.Add(“EmployeeProjects”, _

dsCompany.Tables(“Employees”).Columns(“EmployeeID”), _

dsCompany.Tables(“Projects”).Columns(“EmployeeID”))

‘ Bind to a datagrid to see DataTable data
employees.DataSource = dtEmployees
employees.DataBind()

‘ Bind to a datagrid to see DataTable data
projects.DataSource = dtProjects
projects.DataBind()

Dim strBuilder as new StringBuilder()
Dim EmployeeRow as DataRow
Dim ProjectRow as DataRow

‘ Display Employees and the projects they are currently
‘ Assigned to
for each EmployeeRow in dtEmployees.Rows

strBuilder.Append(“
” + “***************************” + “
”)
strBuilder.Append(“EmployeeID: “ + _

EmployeeRow(“EmployeeID”).ToString() + “
” + _
“EmployeeName: “ + EmployeeRow(“FirstName”).ToString() + _
“ “ + EmployeeRow(“LastName”).ToString() + “
”)

for each projectRow in EmployeeRow.GetChildRows(“EmployeeProjects”)
strBuilder.Append(“Currently working on: “ + “
” + _

“ProjectID: “ + _
projectRow(“ProjectID”).ToString() + “
” + _
“ProjectName: “ + _
projectRow(“ProjectName”).ToString() + “
”)

next
next

lblProjects.Text = strBuilder.ToString()
End Sub

public Function GenerateCompanyDataTable() as DataTable
‘Create Principle Objects

Dim dtEmployees as new DataTable(“Employees”)

‘Create Columns
dtEmployees.Columns.Add(“EmployeeID”, Type.GetType(“System.Int32”))
dtEmployees.Columns.Add(“FirstName”, Type.GetType(“System.String”))
dtEmployees.Columns.Add(“LastName”, Type.GetType(“System.String”))

Adding Relationships to Datasets 49

4

LISTING 4.6 continued

05 0672323834 Ch04 4/19/02 2:20 PM Page 49

‘Make the first column autoincrementing
dtEmployees.Columns(0).AutoIncrement = true

‘Create column array

Dim dcPrimaryKey(2) as DataColumn

‘Place EmployeeID in the column array

dcPrimaryKey(0) = dtEmployees.Columns(“EmployeeID”)

‘Set the primary key for the table using the column array

dtEmployees.PrimaryKey = dcPrimaryKey

‘Create new row
Dim workRow as DataRow = dtEmployees.NewRow()
workRow(“FirstName”) = “John”
workRow(“LastName”) = “Fruscella”
dtEmployees.Rows.Add(workRow)

‘Create another row
Dim workRow1 as DataRow = dtEmployees.NewRow()
workRow1(“FirstName”) = “Santa”
workRow1(“LastName”) = “Claus”
dtEmployees.Rows.Add(workRow1)

Return dtEmployees
End Function

public Function GenerateProjectDataTable() as DataTable
‘Create Principle Objects
Dim dtProjects as DataTable = new DataTable(“Projects”)

‘Create Columns
dtProjects.Columns.Add(“ProjectID”, Type.GetType(“System.Int32”))
dtProjects.Columns.Add(“EmployeeID”, Type.GetType(“System.Int32”))
dtProjects.Columns.Add(“ProjectName”, Type.GetType(“System.String”))
dtProjects.Columns.Add(“ProjectDescription”, _

Type.GetType(“System.String”))

‘Make the first column autoincrementing
dtProjects.Columns(0).AutoIncrement = true

‘Create column array
Dim dcPrimaryKey(2) as DataColumn

‘Place EmployeeID in the column array
dcPrimaryKey(0) = dtProjects.Columns(“ProjectID”)

50 Hour 4

LISTING 4.6 continued

05 0672323834 Ch04 4/19/02 2:20 PM Page 50

dcPrimaryKey(1) = dtProjects.Columns(“EmployeeID”)

‘Set the primary key for the table using the column array
dtProjects.PrimaryKey = dcPrimaryKey

‘Create new row - Assign EmployeeID 2 to this project
Dim workRow as DataRow = dtProjects.NewRow()
workRow(“EmployeeID”) = 1
workRow(“ProjectName”) = “Landslide”
workRow(“ProjectDescription”) = “Super secret Web services project.”
dtProjects.Rows.Add(workRow)

‘Create new row - Assign EmployeeID 1 to this project
Dim workRow1 as DataRow = dtProjects.NewRow()
workRow1(“EmployeeID”) = 0
workRow1(“ProjectName”) = “Avalanche”
workRow1(“ProjectDescription”) = “Super secret user control project.”
dtProjects.Rows.Add(workRow1)

Return dtProjects
End Function

</script>

</HEAD>
<BODY>

<h1>ADO.NET In 24 Hours Examples</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:Label id=”lblMessage” runat=”server”></asp:Label>

<p>
Employees:

<asp:DataGrid id=”employees” runat=”server”></asp:DataGrid>

<p>
Projects:

<asp:DataGrid id=”projects” runat=”server”></asp:DataGrid>

<p>
<asp:Label id=”lblProjects” runat=”server”></asp:Label>

</form>

<hr>
</BODY>
</HTML>

Adding Relationships to Datasets 51

4

LISTING 4.6 continued

05 0672323834 Ch04 4/19/02 2:20 PM Page 51

Let’s examine this code in depth. Notice that there are two methods,
GenerateCompanyDataTable() and GenerateProjectDataTable(), that create and con-
figure the DataTables for our example. Hour 2 covers the details of all the code in these
two methods. Each method returns a DataTable back to the Page_Load event, where the
new and interesting code exists.

The Page_Load method outputs a list of employees and their projects in the following
sequence:

1. A new DataSet is created, and two new DataTables are created from the two
methods that generate tables and then added to the DataSet.

2. A new DataRelation object is added to the Relations collection of the DataSet
object. The DataRelation is named “EmployeeProjects” and is set up with the
EmployeeID column of the Employees table as the parent and the EmployeeID
column of the Projects column as the child.

3. The two DataTables are bound to DataGrid Web controls so that we can see the
values they contain.

4. Two for-next loops are used to display all child rows for each parent row.
Specifically, this will display each employee along with each assigned project. The
StringBuilder object is used to build a string to place into the label Web control
to display the information in a Web form.

If you run the code in Listing 4.6, you should see a screen much like the one in Figure 4.8.

52 Hour 4

FIGURE 4.8
Listing 4.6 displays a
list of employees and
their projects by navi-
gating the
EmployeeProjects
DataRelation.

05 0672323834 Ch04 4/19/02 2:20 PM Page 52

Summary
In this hour, you saw how to create relationships using Microsoft SQL Server. Then you
saw how to retrieve information from the related tables using the SQL join operator. The
DataRelation object and the Relations collection were then covered in depth and paral-
lels made between the DataSet relations and relationships in SQL Server.

Q&A
Q Is it possible to still use regular join operations with the dataset?

A Yes, in fact you will still use joins in your database queries to retrieve data.
Retrieving data first into DataSets, setting up relationships, and then navigating the
relationships is much slower than simply using a join operation and letting your
data source assemble the records for you. However, there are many instances (such
as the case with varying data sources) where the DataRelation object comes in
very handy.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. If a relationship is created between two tables, what values are permitted in the for-

eign key column?

2. What happens if I attempt to delete a record from a parent table with dependent
rows in a child table?

Exercise
Using the example in Listing 4.6 as a base, create a Web form for an airline that does the
following:

1. Create a Flight DataTable to store flight information (with whatever schema you
choose) including which customers are booked for which flights.

2. Create a Customer DataTable to store customer information (with whatever
schema you choose).

3. Link the two DataTables by DataRelations. By using the GetChildRows()
method, display a list of flights and the customers booked to each flight.

Adding Relationships to Datasets 53

4

05 0672323834 Ch04 4/19/02 2:20 PM Page 53

05 0672323834 Ch04 4/19/02 2:20 PM Page 54

HOUR 5
Connecting to a Data
Source

In Hour 2, you saw how to work with DataSets by creating a few
DataTables and manually adding columns and rows. This is a terrific way to
learn how DataSets work. However, most often data is retrieved from a
database and used to populate a DataSet, automatically creating a copy of
the database schema and adding the requested data.

However, before you can retrieve anything from your database using
ADO.NET, you must create and open a connection to the database using the
Connection object. The Connection object uses a database connection
string to locate and connect a data source. The exposed properties and meth-
ods of the Connection object have changed very little since the days of
ADO 2.6.

06 0672323834 Ch05 4/19/02 2:21 PM Page 55

This hour discusses the properties, methods, and various uses of the Connection object.
Specifically, at the end of this hour, you will know how to

• Use the Connection object to connect to your data source

• Identify all important parts of a connection string

• Build a connection string for your data source

The Connection Object
The Connection object is the way ADO.NET’s built-in data providers connect to a data
source. There are two Connection objects that ship with the ADO.NET:
OleDbConnection and SqlConnection. As you might have guessed, the
OleDbConnection object is used to create a connection to any valid OLE DB data source
and the SqlConnection object is used to connect to Microsoft SQL Server versions 7.0
and up.

Just as in ADO, ADO.NET uses connection strings to connect to various data sources.
The next section discusses connection string syntax and gives you several examples
enabling you to connect to several types of databases.

Anatomy of a Connection String
A connection string is a semicolon-delimited set of name-value pairs that define the vari-
ous properties of a database connection. A connection string can have several properties
or as little as one property, depending on the requirements of the data source.

56 Hour 5

The connection properties are specified through a string rather than
through a set of individual connection object properties so that the proper-
ties can remain highly configurable. Each OLE DB data provider may require
setting special connection string properties. It would be difficult to encom-
pass all these properties by specifically enumerating them as a set of built-in
properties of the Connection object. Therefore, the connection string is
used because additional name-value pairs can easily be added.

Connection strings specify a wide variety of information, such as the type of OLE DB
provider you are using for your connection to the database (if you are using the
OleDbConnection object), database user information, and security information. Here’s a

06 0672323834 Ch05 4/19/02 2:21 PM Page 56

sample connection string enabling you to connect to a Microsoft Access database using
the standard admin password and the Microsoft Jet drivers:

“Provider=Microsoft.Jet.OLEDB.4.0;Data Source=FilePath;Jet OLEDB:
User Id=admin;Password=;”

OLE DB Data Providers
As previously stated, when using the OleDbConnection object and the OleDb namespace,
you are actually connecting to an OLE DB data provider. Therefore, with a few minor
exceptions, connection strings in ADO.NET are the same as the ones used in ADO.
When creating an OLE DB source connection string in ADO.NET, you must use the
Provider keyword. The Provider keyword specifies the OLE DB provider you are using
to connect to your data.

Specifying User Information
When you’re specifying user information for OLE DB providers, the username is nor-
mally specified by the User Id and the password by the Password key. However, you can
also specify your user name with UID and password with PWD.

Connection Object Methods and Properties
The Connection object has several methods and properties. Most of the properties of the
Connection object are read-only, set when the connection string is specified. These
include properties such as Database, which contains the name of the database you’re
working with, and Provider, which contains the name of the OLE DB provider you’re
using to connect to your data. You already know the ConnectionString property of the
Connection object. The following sections discuss the commonly used methods.

The Open() Method
The Open() method of the Connection object opens up a connection to your data source.
Because database connections are a very expensive resource memory-wise, you should
only call the Open() method just before you’re ready to retrieve the data. This ensures
that the connection is not open any longer than it needs to be.

The Close() Method
Immediately after you are done retrieving data, you should call the Close() method of
the Connection object. This closes the connection to the database. However, opening and
closing a connection to the database is time-consuming. When performing a number of
calls to the database in quick succession, it’s normally best to leave the connection to the
database open.

Connecting to a Data Source 57

5

06 0672323834 Ch05 4/19/02 2:21 PM Page 57

Connecting to Various Data Sources
It would be impossible to include code to connect to all the possible kinds of databases.
The next section shows you how to connect to Microsoft SQL Server versions 7.0 and up
using the managed SQL provider in the System.Data.SqlClient namespace and also
how to connect to various OLE DB data sources using the System.Data.OleDb name-
space.

SQL Server
When using the managed SQL provider, do not specify the Provider keyword in your
connection string. In fact, the only connection string properties you’re likely to need are
the ones in Table 5.1.

TABLE 5.1 SQL Connection String Options

Connection String Property Description

Initial Catalog Specifies the database you’re connecting to

Server Specifies the server you’re connecting to

User ID Specifies the user ID you’re using to make the connection

Password Specifies the password for the user you are using to connect to
the database

Listings 5.1 and 5.2 show how to connect to a Microsoft SQL database and open and
close a connection.

LISTING 5.1 Connecting to SQL Server in C#

SqlConnection conn = new
SqlConnection(“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=”);

conn.Open();
conn.Close();

58 Hour 5

Make sure to always call the Close() method. When the Connection
object is recycled by the framework garbage collector, connections to the
database are not automatically closed. You can use the State property of the
Connection object to test whether the Connection object is open or
closed.

06 0672323834 Ch05 4/19/02 2:21 PM Page 58

LISTING 5.2 Connecting to SQL Server in Visual Basic .NET

Dim conn as SqlConnection = New _
SqlConnection(“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=”)

conn.Open()
conn.Close()

Connecting to a Data Source 59

5

OLE DB Data Sources
The key to connecting to an OLE DB data source is using a properly formed connection
string. OLE DB providers exist for almost every type of data imaginable. The Internet
provides a wealth of connection string information for various OLE DB providers.

The following page contains a wealth of OLE DB connection strings: http://www.able-
consulting.com/ADO_Conn.htm. However, if you do not find one for your data source,
there are also hundreds of other well-written lists of connection strings on the Internet; a
quick Internet search should enable you to find one that will allow you to connect to
your database.

The following sections show you how to use ADO.NET to connect to some common
OLE DB providers: a Microsoft Access database, as well as an Oracle database.

Microsoft Access Database
The code in Listings 5.3 and 5.4 shows how to connect to a Microsoft Access database
using the Microsoft Jet OLE DB provider.

Don’t forget to include or import the System.Data.SqlClient namespace
into your project or Web form before attempting to use its objects, includ-
ing the Connection object.

The backslash character (“\”) is a special character when used in a string in
C#. Therefore, if you need to enter a single backslash, as in the path in
Listing 5.3, you must use two backslashes together, which C# interprets as a
single backslash. This is called “escaping” the special character.

06 0672323834 Ch05 4/19/02 2:21 PM Page 59

LISTING 5.3 Connecting to a Microsoft Access Database in C#

OleDbConnection conn = new OleDbConnection(
“Provider=Microsoft.Jet.OLEDB.4.0;” +
“Data Source=c:\\nwind.mdb;” +
“User Id=admin;” +
“Password=;”);

conn.Open();
conn.Close();

LISTING 5.4 Connecting to a Microsoft Access Database in Visual Basic .NET

Dim conn as OleDbConnection = New OleDbConnection(_
“Provider=Microsoft.Jet.OLEDB.4.0;” + _
“Data Source=c:\nwind.mdb;” + _
“User Id=admin;” + _
“Password=;”)

conn.Open()
conn.Close()

Oracle Database
Connecting to an Oracle database is straightforward. The code in Listings 5.5 and 5.6
will connect to an Oracle database using the OLE DB provider provided by Microsoft.

LISTING 5.5 Connecting to an Oracle Database in C#

OleDbConnection conn = new OleDbConnection(_
“Provider=OraOLEDB.Oracle” + _
“Data Source=DataBasename” + _
“User Id=username;” + _
“Password=password;”);

conn.Open();
conn.Close();

LISTING 5.6 Connecting to an Oracle Database in Visual Basic .NET

Dim conn as OleDbConnection = New OleDbConnection(_
“Provider=OraOLEDB.Oracle” + _
“Data Source=DataBasename” + _
“User Id=username;” + _
“Password=password;”)

conn.Open()
conn.Close()

60 Hour 5

06 0672323834 Ch05 4/19/02 2:21 PM Page 60

ODBC (Open Database Connectivity)
Though there is no ODBC .NET provider included with the Microsoft .NET Framework
SDK, you can download one for free at http://www.microsoft.com/data. You can use
this provider to connect to any valid ODBC source. Though ODBC is usually not an
optimal choice, if you are unable to find a managed or OLE DB provider for your data
source, you most likely will be able to find an ODBC driver.

You can use the following code to create a new instance of the ODBC Connection
object:

Dim conn as OdbcConnection = New OdbcConnection(“dsn=myDSN;UID=myUid;PWD=;”)

The preceding OdbcConnection object is using a DSN (Data Source Name) to connect to
the data source. A DSN provides a layer of abstraction in connecting to your ODBC data
source. By creating a DSN, you specify the details of the connection in one location.
This enables you to just enter the name of the DSN and any user authentication informa-
tion in your connection string. To create a DSN for your ODBC data source, follow these
steps:

1. In your computer’s Control Panel, locate the ODBC Data Source Administrator.
The name of the Control Panel applet differs between operating systems, but in all
cases the name contains “ODBC.” In Windows 2000, it’s the Data Sources
(ODBC) icon in the Administrative Tools folder. When the ODBC Data Source
Administrator is running, click on the System DSN tab. Your screen will look like
the one in Figure 5.1.

Connecting to a Data Source 61

5
FIGURE 5.1
The ODBC Data
Source Administrator.

06 0672323834 Ch05 4/19/02 2:21 PM Page 61

2. Click the Add button to add a new System DSN. On the next screen, you’re
prompted to choose the ODBC driver that the DSN will use to connect to your data
source. Choose the appropriate ODBC driver.

3. The next screen is specific to the ODBC driver chosen. If you chose the Microsoft
Access driver in step 2, you’re presented with the screen in Figure 5.2. After filling
out all required fields for your data source, a new DSN is added to your system,
which you can then reference from your application. Keep in mind that if you
deploy your application to another machine, you will need to re-create the DSN on
that machine in order for your code to work.

62 Hour 5

FIGURE 5.2
Adding an ODBC con-
nection to a Microsoft
Access database.

Connection Pooling
Opening a connection to the database is an expensive operation in the form of both time
and memory. If you had to open and close a connection to the database each time it was
required by your application, the performance of your application would deteriorate, par-
ticularly if there are many concurrent users.

Luckily, both the OLE DB and managed SQL providers in ADO.NET automatically pro-
vide connection pooling. Connection pooling creates persistent connections to the data-
base that can be shared, as needed. If a connection attempt is made and all connections
are currently in use, another connection is added to the pool.

Do not use an ODBC DSN to connect to your data source if a managed
provider or OLE DB provider is available. The latter two options will give you
the best performance.

06 0672323834 Ch05 4/19/02 2:21 PM Page 62

Summary
In this hour, you’ve learned how to use the ADO.NET Connection object to connect to
various types of data sources. You’ve seen all the important elements of a connection
string, and how to build connection strings for both the managed SQL provider and the
OLE DB provider. You also saw several specific examples demonstrating how to connect
to various data sources.

Q&A
Q Is it possible to use the Connection object in ADO.NET to send queries to the

database as you could in ADO?

A Nope. This functionality has been removed, by design. To query the database, you
must create a Command object, which is covered in depth in the next hour.

Q My data source has a managed provider, an OLE DB provider, and ODBC
drivers. Which one should I use?

A Typically, the best option in terms of both speed and reliability is to use the man-
aged provider. Your next best bet is to use the OLE DB provider. If everything else
fails, use the ODBC .NET provider as you saw in this hour.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. Describe the difference between the SqlConnection and OleDbConnection

objects.

2. True or false: If you do not call the Close() method of the Connection object, the
connection to the database will be automatically closed before the object is
destroyed by the garbage collector.

Connecting to a Data Source 63

5

A separate pool is created for each unique connection string. If two connec-
tion strings differ by even a single character, two separate pools are created.

06 0672323834 Ch05 4/19/02 2:21 PM Page 63

Exercise
Practice using the OleDbConnection (and SqlConnection, if you have a SQL Server sys-
tem available to you) to connect to various data types.

64 Hour 5

06 0672323834 Ch05 4/19/02 2:21 PM Page 64

HOUR 6
Retrieving Data from the
Data Source

In the last hour, you saw how to use the Connection object to connect to
several different types of data sources. This hour focuses on using the
Command object to retrieve data from the database, which uses the
Connection object to provide database connectivity.

In this hour, you will learn how to do the following tasks:

• Instantiate and use a Command object to retrieve data from a data source

• Use a DataAdapter object to place the results of a query into a
DataSet

The Command Object
The Command object enables you to execute queries against your data
source. However, in order to retrieve data, you must know the schema of
your database as well as how to build a valid SQL query. In Hour 3, you

07 0672323834 Ch06 4/19/02 2:21 PM Page 65

learned how to build SQL queries to retrieve and modify data. You will now have the
opportunity to apply that knowledge as you use the Command object.

66 Hour 6

Associating Connection Objects with Command Objects
Before creating a Command object, you should create a Connection object. Remember
that a Command object is useless without a Connection object to provide communication
to the database. Recall from Hour 5 that to create an instance of the Connection object,
you use the following code:

Dim myConnection as new SqlConnection(“Connection string”)

or in C#:

SqlConnection myConnection = new SqlConnection(“Connection string”);

Similarly, to create a new Command object, you can simply use the new keyword and pass
no arguments:

Dim myCommand as new SqlCommand()

or in C#:

SqlCommand myCommand = new SqlCommand();

However, there’s one additional step if you use this method to create a new command.
You must associate the newly created Command object with the Connection object. You
can do this by using the Connection property of the Command object. Listing 6.1 shows
how this is done.

The SqlCommand object must be used in conjunction with the
SqlConnection object. If you attempt to attach a SqlCommand to an
OleDbConnection, you will get an error from the compiler. The converse is
also true: OleDbCommands cannot be used with the SqlConnection.

Most of the examples in this hour use the Northwind database. Therefore,
to follow along, simply provide a connection string to the Northwind data-
base in your datasource, if it is present. If you are using SQL Server, your
connection string will be similar to the ones used in the examples of this
hour.

07 0672323834 Ch06 4/19/02 2:21 PM Page 66

LISTING 6.1 Instantiating the Command and Connection Objects

Dim myConnection as new SqlConnection(“Initial Catalog=Northwind;
Server=(local);UID=sa;PWD=”)

Dim myCommand as new SqlCommand()

myCommand.Connection = myConnection
myCommand.CommandText = “SELECT * FROM Employees”

The last line of Listing 6.1 specifies the command text that contains a query to pass to
the database. Note that this line only specifies the query; it does not execute the query.
We’re almost ready to query the database and retrieve some data! But first, you’ll have
an opportunity to optimize the code in Listing 6.1 to make your life easier.

Overloaded Constructors Save Time
Figure 6.1 shows the Microsoft Class Browser entry for the SqlCommand object. Notice
the very first section entitled ‘Constructors.’ This section shows you the various ways
you can instantiate the Command object. Notice that you can specify the command text
and Connection object when you instantiate the new Command object, rather than doing it
line by line later. The code in Listing 6.1 can be reduced to the code in Listing 6.2.

Retrieving Data from the Data Source 67

6

FIGURE 6.1
The .NET Framework
Class Browser entry
for the SqlCommand
object.

07 0672323834 Ch06 4/19/02 2:21 PM Page 67

LISTING 6.2 Using Overloaded Constructors to Reduce Code Size

Dim myConnection as New SqlConnection(“Initial Catalog=Northwind;
Server=(local);UID=sa;PWD=”)

Dim myCommand as New SqlCommand(“SELECT * FROM Employees”, myConnection)

Filling a DataSet with the DataAdapter
The Command object executes a query against a database. Alone, it can’t place the results
into a DataSet. This is where the DataAdapter object comes into the picture. One of the
DataAdapter’s jobs is to fill a DataSet with the results of a query. You can learn more
about the DataAdapter in Hour 8, “Using the DataReader and DataAdapter.”

The DataAdapter object is instantiated in a very similar fashion to the Command object:

Dim myAdapter as New SqlDataAdapter(myCommand)

or in C#:

SqlDataAdapter myAdapter = new SqlDataAdapter(myCommand);

Notice that you pass the existing Command object you’re working with to the new
DataAdapter object you’re creating. This tells the DataAdapter which Command object
will be used to query the database.

DataAdapter Fill() Method
As previously stated, the Fill() method of the DataAdapter takes the results of a data-
base query and pushes them into a DataSet. Therefore, before you call the Fill()
method, you must create a new DataSet to hold the results of the query. Additionally,
you must open your connection to the database before calling the Fill() method. Listing
6.3 shows the complete code required to connect to the database and retrieve the results
of the query into a DataSet.

LISTING 6.3 Retrieving a DataSet Using the DataAdapters Fill Method

SqlConnection conn = new SqlConnection(“Initial Catalog=Northwind;
Server=(local);UID=sa;PWD=;”);

SqlCommand cmd = new SqlCommand(“SELECT * FROM Employees”, conn);

SqlDataAdapter adapt = new SqlDataAdapter(cmd);
DataSet dsEmployees = new DataSet();

conn.Open();
adapt.Fill(dsEmployees, “Employees”);
conn.Close();

68 Hour 6

07 0672323834 Ch06 4/19/02 2:21 PM Page 68

You have several options to verify that the code in Listing 6.3 is actually retrieving data.
You could create a Windows form application that opens the Employee DataTable in the
dsEmployees DataSet and loops through the rows of data and outputs the values of spe-
cific columns. However, the easiest way to test this code is to use a Web form, as you did
in Hour 2, “Working with DataSets and DataTables.”

Place the code in Listing 6.3 into a Web form named hour6.aspx using the techniques at
the end of Hour 2. Then, to view the Web form, you can navigate your browser to
http://localhost/ADO 24Hours/hour6.aspx, if you followed the directions in Hour 2.

LISTING 6.4 Viewing the Contents of a DataSet in C#

<% @Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”C#” runat=”server” >
void Page_Load(Object Source, EventArgs E)
{

SqlConnection conn = new SqlConnection(“Initial Catalog=Northwind;
Server=(local);UID=sa;PWD=;”);

SqlCommand cmd = new SqlCommand(“SELECT * FROM Employees”, conn);

SqlDataAdapter adapt = new SqlDataAdapter(cmd);
DataSet dsEmployees = new DataSet();

conn.Open();
adapt.Fill(dsEmployees, “Employees”);
conn.Close();

employees.DataSource = dsEmployees;
employees.DataBind();

}

Retrieving Data from the Data Source 69

6

The Fill() method of the DataAdapter object cannot be found in the
class browser under either the SqlDataAdapter or OleDbDataAdapter
entries. That is because it is defined in the
System.Data.Common.DbDataAdapter class instead. You can find all of
the overloaded Fill() method definitions there.

07 0672323834 Ch06 4/19/02 2:21 PM Page 69

</script>

</HEAD>
<BODY>

<h1>Creating a DataSet</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”employees” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

LISTING 6.5 Viewing the Contents of a DataSet in VB.NET

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;
Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT * FROM Employees”, conn)

Dim adapt as New SqlDataAdapter(cmd)
Dim dsEmployees as New DataSet()

conn.Open()
adapt.Fill(dsEmployees, “Employees”)
conn.Close()

employees.DataSource = dsEmployees
employees.DataBind()

70 Hour 6

LISTING 6.4 continued

07 0672323834 Ch06 4/19/02 2:21 PM Page 70

End Sub
</script>

</HEAD>
<BODY>

<h1>Creating a DataSet</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”employees” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

Retrieving Data from the Data Source 71

6

LISTING 6.5 continued

The Web form in Listing 6.4 uses a Web control known as the DataGrid to display the
DataSet. The DataGrid object is instantiated in a tag inside the server-side form toward
the end of the listing. The DataGrid generates an HTML table built from the data sent
to it.

Your ADO.NET code is inserted into the Page_Load method, which runs every time the
Web page is loaded. In order to “wire up” the data to the DataGrid, the DataSource
property of the DataGrid is set to dsEmployees. The last step required to display the
DataSet on the page is to call the DataBind() method of the DataGrid control. After the
Web form in Listing 6.4 is loaded, you’ll see results very similar to those in Figure 6.2.

The unformatted DataGrid results aren’t very pretty. However, it is very easy to config-
ure the DataGrid control to display data in a format more pleasing to the eye. For more
information on formatting the DataGrid control, see Hour 12, “Formatting ASP.NET List
Controls.”

The C# and VB.NET code in Listings 6.3 and 6.4 are very similar. In fact,
minor language-specific nuances of syntax aside, the code is identical and
performs exactly the same.

07 0672323834 Ch06 4/19/02 2:21 PM Page 71

Retrieving a Single Value from the Database
Sometimes, you only need to retrieve a single value from the database, instead of a
record or set of records. In this case, though you could use the methods described earlier
in this hour to retrieve the value, the Command object provides a better way. Instead of
using the DataAdapter object to place the results into a DataSet, you can call the
ExecuteScalar() method of the Command object directly. This returns just the single
value that you’ve queried from the database.

The code in Listing 6.5 shows this method of retrieving a single value. There are only
three major changes from the example in Listing 6.4. First, the database query uses the
Count() SQL function to return a count of all the records in the Employees table.
Second, rather than using a SqlDataAdapter to fill a DataSet, the ExecuteScalar()
method of the Command object is used. Lastly, a label is used to display the output instead
of a DataGrid. When the example in Listing 6.5 is loaded, it will look like Figure 6.3.

LISTING 6.6 Retrieving a Single Value from the Database Using ExecuteScalar()

<% @Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>

72 Hour 6

FIGURE 6.2
Binding the results of
a database query to a
DataGrid Web control.

07 0672323834 Ch06 4/19/02 2:21 PM Page 72

<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”C#” runat=”server” >
void Page_Load(Object Source, EventArgs E)
{

int recordCount;

SqlConnection conn = new SqlConnection(“Initial Catalog=Northwind;
➥ Server=(local);UID=sa;PWD=;”);

SqlCommand cmd = new SqlCommand(“SELECT count(*) FROM Employees”,
➥ conn);

SqlDataAdapter adapt = new SqlDataAdapter(cmd);
DataSet dsEmployees = new DataSet();

conn.Open();
recordCount = (int)cmd.ExecuteScalar();
conn.Close();

result.Text = recordCount.ToString();

}
</script>

</HEAD>
<BODY>

<h1>Retrieving a Single Value</h1>
<hr>

<form runat=”server” id=form1 name=form1>
The number of employees in the employee table:

<asp:Label id=result runat=”server”></asp:Label>

</form>
<hr>

</BODY>
</HTML>

Retrieving Data from the Data Source 73

6

LISTING 6.6 continued

07 0672323834 Ch06 4/19/02 2:21 PM Page 73

Summary
In this hour, you’ve seen how to use the ADO.NET Command object to query your data
source and retrieve data. You saw how to associate the Command object with a Connection
object and a DataAdapter object. You used the DataAdapter to fill a DataSet with the
data retrieved from a database query and then display the data. Then you saw how to dis-
play the results in a Web form.

Q&A
Q How do I manually step through the results of a query as I used to do using

the recordset object in ADO?

A There are several options available to do this. First, you could use a DataReader
object, which offers a forward-only, read-only view of the data returned from the
database. The DataReader is covered in much more detail in Hour 8, “Using the
DataReader and DataAdapter.” Additionally, you could also fill a DataSet using
the DataAdapter and then manually step through each row in the Rows collection
outputting whatever column values you want.

Q I’m unable to locate the Fill() method of the SqlDataAdapter object in the
Microsoft Class Browser. What am I doing wrong?

74 Hour 6

FIGURE 6.3
Binding the results of
a database query to a
DataGrid Web control.

07 0672323834 Ch06 4/19/02 2:21 PM Page 74

A The Fill() method can be found in the System.Data.Common namespace in the
DataAdapter class. The specific DataAdapters in each managed provider (such as
the SqlDataAdapter) derive from this base class. To oversimplify a bit, this means
that the specific DataAdapters have access to the properties and methods created in
this base class.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. Which method of the DataAdapter object is used to place the records returned

from a query into a DataSet?

2. What steps must you perform before being able to use a Command object to retrieve
data from a data source?

3. True or False: You should use an OleDbConnection with a SqlCommand in order to
retrieve data from Microsoft SQL Server using OLE DB drivers.

Exercise
Use the Class Browser application to examine the constructors of the DataAdapter
object. See if you can simplify the code in this chapter even more by using different
ways of instantiating the DataAdapter. Hint: If you pass a query as the first argument,
the DataAdapter will implicitly create a Command object. Also practice executing various
queries against your data source and viewing the results in a Web form.

Retrieving Data from the Data Source 75

6

07 0672323834 Ch06 4/19/02 2:21 PM Page 75

07 0672323834 Ch06 4/19/02 2:21 PM Page 76

HOUR 7
Modifying Database
Data

As you saw in the preceding hour, the Command object is used in conjunction
with the DataAdapter object to retrieve records from your data source and
place them into a DataSet, which can then be displayed or manipulated.
However, suppose you want to insert data, delete data, or perform any other
valid action on the database that doesn’t return any records. For this, you
can use the ExecuteNonQuery() method of the Command object.

The ExecuteNonQuery() method executes a SQL statement against your
data source. In this hour you’ll see how to apply the SQL statements from
Hour 3, “Using T-SQL: A Crash Course,” to

• Insert new data into the database

• Delete data from the database

• Modify data in the database

The examples in this hour again use ASP.NET Web forms to provide con-
crete, real-life examples showcasing ADO.NET code. However, the
ADO.NET code works just as easily with Windows forms.

08 0672323834 Ch07 4/19/02 2:21 PM Page 77

Using ExecuteNonQuery()
The ExecuteNonQuery() method of the Command object is used to send a SQL command
to the data source for processing. Any SQL command you want to send to the data
source that will not return any data (or more specifically, any data that you don’t plan to
use) should be sent using the ExecuteNonQuery() method.

In the next several sections, you’ll see how to use the ExecuteNonQuery() method to
insert, delete, and modify data.

Inserting New Data
Recall from Hour 3, “Using T-SQL: A Crash Course,” that inserting new data into your
data source is done using the SQL INSERT statement. One of the easiest ways to add data
to a table in your data source is to build the INSERT statement dynamically and then send
it to the data source using the ExecuteNonQuery() method of the Command object.

Gathering the information to put into the database is highly dependent on your applica-
tion, of course. The example in Listings 7.1 (VB .NET) and 7.2 (C#) use a Web form to
collect the information from the user and send it to some server-side code that builds the
INSERT statement and sends it to the database.

78 Hour 7

Directly connecting to a data source from your presentation layer is referred
to as two-tier development. This is a quick-and-dirty development method
for small applications or quick applications with a short life span that will
require little or no maintenance. Two-tier applications generally do not scale
very well, and because all of the source code for the application is in the
presentation tier, there are some additional security risks. To learn more
about using ADO.NET in more advanced development methods such as N-
tier development, see Hour 21, “Optimizing Data Access Using Tiered
Development,” and Hour 22, “Modifying Data in an N-Tier Application.”

LISTING 7.1 Dynamically Building a SQL Statement Adding Records to a SQL
Database

<% @Page Debug=”true” EnableViewState=”false” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>

08 0672323834 Ch07 4/19/02 2:21 PM Page 78

<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

if IsPostBack and Page.IsValid then

Dim conn as new SqlConnection(_
“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”)

‘Build the SQL string
‘Use StringBuilder object for better performance
Dim strBuilder as new StringBuilder()

strBuilder.Append(“INSERT INTO Employees “)
strBuilder.Append(“(FirstName, LastName, Title, HireDate) VALUES(“)
strBuilder.Append(“‘“ + Request(“txtFirstName”) + “‘,”)
strBuilder.Append(“‘“ + Request(“txtLastName”) + “‘,”)
strBuilder.Append(“‘“ + Request(“txtTitle”) + “‘,”)
strBuilder.Append(“‘“ + Request(“txtDateHired”) + “‘)”)

Dim sSQL as string = strBuilder.ToString()

Dim cmd as SqlCommand = new SqlCommand(sSQL, conn)

conn.Open()
cmd.ExecuteNonQuery()
conn.Close()

txtFirstName.Text = “”
txtLastName.Text = “”
txtTitle.Text = “”
txtDateHired.Text = “”

end if

LoadData()

End Sub

private Sub LoadData()

Dim conn as SqlConnection = new SqlConnection(_
“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”)

Dim cmd as SqlCommand = new SqlCommand(_
“SELECT FirstName, LastName, Title, HireDate FROM Employees”, conn)

Dim adapt as SqlDataAdapter = new SqlDataAdapter(cmd)
Dim dsEmployees as DataSet = new DataSet()

Modifying Database Data 79

7

LISTING 7.1 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 79

conn.Open()
adapt.Fill(dsEmployees, “Employees”)
conn.Close()

employees.DataSource = dsEmployees
employees.DataBind()

End Sub
</script>

</HEAD>
<BODY>

<h1>Adding a Record to the Database</h1>
<hr>
<asp:Label id=msg runat=server />
<form runat=”server” id=form1 name=form1>

<asp:DataGrid id=”employees” runat=”server”></asp:DataGrid>

Add a new record:

<table>
<tr>

<td>First Name: </td>
<td><asp:textbox runat=”server”

id=”txtFirstName” EnableViewState=”false”>
</asp:textbox></td>

<td><asp:RequiredFieldValidator runat=”server”
ControlToValidate=”txtFirstName”
InitialValue=””
ErrorMessage=”You must enter the first name.”/></td>

</tr>
<tr>

<td>Last Name: </td>
<td><asp:textbox runat=”server” id=”txtLastName”></asp:textbox></td>
<td><asp:RequiredFieldValidator runat=”server”

ControlToValidate=”txtLastName”
InitialValue=””
ErrorMessage=”You must enter the last name.”/></td>

</tr>
<tr>

<td>Title: </td>
<td><asp:textbox runat=”server” id=”txtTitle”></asp:textbox></td>

</tr>
<tr>
<td>Date Hired: </td>
<td><asp:textbox runat=”server” id=”txtDateHired”></asp:textbox></td>

</tr>
</table>

80 Hour 7

LISTING 7.1 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 80

<input type=”submit” id=submit1 name=submit1>
</form>
<hr>

</BODY>
</HTML>

LISTING 7.2 C# Code Used to Add Records to a SQL Database

<script language=”C#” runat=”server” >
void Page_Load(Object Source, EventArgs E)
{

if(IsPostBack && Page.IsValid)
{
SqlConnection conn = new SqlConnection(

“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”);

//Build the SQL string
//Use StringBuilder object for better performance
StringBuilder strBuilder = new StringBuilder();

strBuilder.Append(“INSERT INTO Employees “);
strBuilder.Append(“(FirstName, LastName, Title, HireDate) VALUES(“);
strBuilder.Append(“‘“ + Request[“txtFirstName”] + “‘,”);
strBuilder.Append(“‘“ + Request[“txtLastName”] + “‘,”);
strBuilder.Append(“‘“ + Request[“txtTitle”] + “‘,”);
strBuilder.Append(“‘“ + Request[“txtDateHired”] + “‘)”);

string sSQL = strBuilder.ToString();

SqlCommand cmd = new SqlCommand(sSQL, conn);

conn.Open();
cmd.ExecuteNonQuery();
conn.Close();

txtFirstName.Text = “”;
txtLastName.Text = “”;
txtTitle.Text = “”;
txtDateHired.Text = “”;

}

LoadData();
}

private void LoadData()

Modifying Database Data 81

7

LISTING 7.1 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 81

{
SqlConnection conn = new SqlConnection(

“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”);
SqlCommand cmd = new SqlCommand(
“SELECT FirstName, LastName, Title, HireDate FROM Employees”, conn);

SqlDataAdapter adapt = new SqlDataAdapter(cmd);
DataSet dsEmployees = new DataSet();

conn.Open();
adapt.Fill(dsEmployees, “Employees”);
conn.Close();

employees.DataSource = dsEmployees;
employees.DataBind();

}
</script>

Most of the preceding code is provided to give you some context in a realistic usage of
ADO.NET. The ADO.NET code exists inside the <script . . .> </script> tags.
Let’s analyze this code in detail step by step:

Dim conn as new SqlConnection(_
“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”)

1. This code creates a Connection object that will be used to connect to the database
server. In this example, we’re connecting to the standard Northwind database on a
SQL server. For more information about connecting to a database, see Hour 5,
“Connecting to a Data Source.”

‘Build the SQL string
‘Use StringBuilder object for better performance
Dim strBuilder as new StringBuilder()

strBuilder.Append(“INSERT INTO Employees “)
strBuilder.Append(“(FirstName, LastName, Title, HireDate) VALUES(“)
strBuilder.Append(“‘“ + Request(“txtFirstName”) + “‘,”)
strBuilder.Append(“‘“ + Request(“txtLastName”) + “‘,”)
strBuilder.Append(“‘“ + Request(“txtTitle”) + “‘,”)
strBuilder.Append(“‘“ + Request(“txtDateHired”) + “‘)”)

Dim sSQL as string = strBuilder.ToString()

2. This block of code creates a StringBuilder object used to concatenate the SQL
query string that we’re going to send to the database server. We use the
StringBuilder object because it performs string concatenation much more quickly

82 Hour 7

LISTING 7.2 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 82

than applying the “+” operator to strings. The SQL query string can be built using
any technique you prefer, so long as you have a well-formatted SQL query when
you are done.

Dim cmd as SqlCommand = new SqlCommand(sSQL, conn)

3. Then we create a new Command object by passing it the SQL string we’ve just built
and the Connection object from step 1.

conn.Open()
cmd.ExecuteNonQuery()
conn.Close()

4. We open the connection to the database, send the query to the database server
where it will be executed, and then close the connection to the database. Notice
that the connection is opened at the very last possible moment before we need it
and then closed as soon as we’re done. This is done because database connections
are a relatively expensive resource.

txtFirstName.Text = “”
txtLastName.Text = “”
txtTitle.Text = “”
txtDateHired.Text = “”

5. This last set of code just prepares the objects on the Web form to add another
record. The LoadData() method in Listing 7.1 is code you have seen before. It
simply retrieves the set of employees to display on the Web form.

Deleting Data
Deleting data in a two-tier environment is done much the same as in the example in the
preceding section. You build a SQL DELETE string dynamically, based on the item a user
selects. The Web form in Listing 7.3 displays a ListBox Web control loaded with data
from the Northwind Employees table. The C# server-side code is provided in Listing 7.4.
If the user selects an item in the ListBox and clicks the Submit button, the record is
deleted from the database.

LISTING 7.3 Dynamically Building a SQL Statement to Delete Records from a SQL
Database

<% @Page Debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

Modifying Database Data 83

7

08 0672323834 Ch07 4/19/02 2:21 PM Page 83

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadData()

End Sub

Sub cmdDelete_OnClick(Source as Object, E as EventArgs)

Dim selectedEmployee as Int32 = Int32.Parse(Request(“lstEmployees”))

if selectedEmployee > 0 then

Dim conn as SqlConnection = new SqlConnection(_
“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”)

‘Build the SQL string
Dim sSQL as string = (“DELETE FROM Employees “ + _

“WHERE EmployeeID = “ + selectedEmployee.ToString())

Dim cmd as SqlCommand = new SqlCommand(sSQL, conn)

conn.Open()
cmd.ExecuteNonQuery()
conn.Close()

end if

LoadData()

End Sub

Sub LoadData()
Dim conn as SqlConnection = new SqlConnection(_

“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”)
Dim cmd as SqlCommand = new SqlCommand(_
“SELECT FirstName + ‘ ‘ + LastName as Name, EmployeeID” + _
“ FROM Employees”, conn)

Dim adapt as SqlDataAdapter = new SqlDataAdapter(cmd)
Dim dsEmployees as DataSet = new DataSet()

conn.Open()
adapt.Fill(dsEmployees, “Employees”)
conn.Close()

lstEmployees.DataSource = dsEmployees
lstEmployees.DataMember = “Employees”
lstEmployees.DataTextField = “Name”

84 Hour 7

LISTING 7.3 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 84

lstEmployees.DataValueField = “EmployeeID”
lstEmployees.DataBind()

End Sub
</script>

</HEAD>
<BODY>

<h1>Deleting a Record</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:Label id=msg runat=server />

<asp:ListBox id=”lstEmployees” EnableViewState=”true” runat=”server”>
</asp:ListBox>

<asp:Button id=”cmdDelete” OnClick=”cmdDelete_OnClick”

Text=”Delete” runat=server/>
</form>
<hr>

</BODY>
</HTML>

LISTING 7.4 C# Code Without Web Form Used to Delete Records from a SQL
Database

<script language=”C#” runat=”server” >
void Page_Load(Object Source, EventArgs E)
{

LoadData();
}

void cmdDelete_OnClick(Object Source, EventArgs E)
{

int selectedEmployee = Int32.Parse(Request[“lstEmployees”]);

if(selectedEmployee > 0)
{

SqlConnection conn = new SqlConnection(
“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”);

//Build the SQL string
string sSQL = (“DELETE FROM Employees “ +

“WHERE EmployeeID = “ + selectedEmployee.ToString());

SqlCommand cmd = new SqlCommand(sSQL, conn);

Modifying Database Data 85

7

LISTING 7.3 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 85

conn.Open();
cmd.ExecuteNonQuery();
conn.Close();

}

LoadData();
}

private void LoadData()
{

SqlConnection conn = new SqlConnection(
“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”);

SqlCommand cmd = new SqlCommand(
“SELECT FirstName + ‘ ‘ + LastName as Name, EmployeeID” +
“ FROM Employees”, conn);

SqlDataAdapter adapt = new SqlDataAdapter(cmd);
DataSet dsEmployees = new DataSet();

conn.Open();
adapt.Fill(dsEmployees, “Employees”);
conn.Close();

lstEmployees.DataSource = dsEmployees;
lstEmployees.DataMember = “Employees”;
lstEmployees.DataTextField = “Name”;
lstEmployees.DataValueField = “EmployeeID”;
lstEmployees.DataBind();

}
</script>

If you recall from Hour 3, in order to delete a record from the database, you only need to
uniquely identify the record you want to delete in the WHERE portion of your DELETE
query. In this example, the ListBox is populated with the name (which is visible) and
EmployeeID (which is hidden from the user). In this case, and in most cases, the ID field
uniquely identifies the record we want to remove. The EmployeeID value is passed from
the ListBox to the SQL query, which is then applied to the database, removing the
record. The only differences between this example and the one provided in Listings 7.1
and 7.2 are the way the data is displayed and collected on the Web form, and the exact
syntax of the SQL query.

Modifying Data
Modifying data using two-tier methodology is done in much the same way as the other
examples in this chapter. You build an UPDATE SQL string dynamically based on user

86 Hour 7

LISTING 7.4 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 86

selections and then pass the string to the data source where it is executed. However, the
example in this section provides a new twist.

Rather than displaying a Web form to the user, the example in Listing 7.5 (VB .NET)
and Listing 7.6 (C#) exists as an intermediate form. This Web form is called from other
pages that pass information to it along the query string. The Web form accepts the input,
creates an UPDATE string, sends it to the SQL database, and then returns to the calling
page. This is a nice way to segregate functionality needed by more than one Web form in
an application.

Modifying Database Data 87

7

There are a number of different ways to modify data. The two-tier example
in Listing 7.5 is one of the easiest. In Hour 8, “Using the DataReader and
DataAdapter,” you’ll learn how to use the DataAdapter object to automati-
cally apply data changes back to the database.

LISTING 7.5 Dynamically Building a SQL Statement to Update Records in a SQL
Database

<% @Page Debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >

Sub Page_Load(Source as Object, E as EventArgs)

Dim EmployeeID as Int32 = Int32.Parse(Request(“EmployeeID”))

Dim firstName as string = Request(“FirstName”)
Dim lastName as string = Request(“LastName”)
Dim title as string = Request(“Title”)
Dim hireDate as string = Request(“HireDate”)

if EmployeeID > 0 then

Dim conn as SqlConnection = new SqlConnection(_
“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”)

‘Build the SQL string
Dim sSQL as string = “UPDATE Employees “ + _

08 0672323834 Ch07 4/19/02 2:21 PM Page 87

“SET “ + _
“FirstName=’”” + firstName + “‘, “ + _
“LastName=’” + lastName + “‘, “ + _
“Title=’” + title + “‘, “ + _
“HireDate=’” + hireDate + “‘ “ + _
“WHERE EmployeeID = “ + EmployeeID.ToString()

Dim cmd as SqlCommand = new SqlCommand(sSQL, conn)

conn.Open()
cmd.ExecuteNonQuery()
conn.Close()

‘Return to the previous page
Response.Redirect(Request.ServerVariables(“HTTP_REFERER”))

end if

End Sub

</script>

</HEAD>
<BODY>

<h1>Updating Database</h1>
<hr>

<p>
Since this page is designed to process data and then return where
it came fom, this UI should never display unless we’re debugging.</p>

<form runat=”server” id=form1 name=form1>
<asp:Label id=msg runat=server />

</form>
<hr>

</BODY>
</HTML>

LISTING 7.6 C# Code Without Web Form Used to Update Records in a SQL
Database

<script language=”C#” runat=”server” >

void Page_Load(Object Source, EventArgs E)

88 Hour 7

LISTING 7.5 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 88

{
int EmployeeID = Int32.Parse(Request[“EmployeeID”]);

string firstName = Request[“FirstName”];
string lastName = Request[“LastName”];
string title = Request[“Title”];
string hireDate = Request[“HireDate”];

if(EmployeeID > 0)
{

SqlConnection conn = new SqlConnection(
“Initial Catalog=Northwind;Server=(local);UID=sa;PWD=;”);

//Build the SQL string
string sSQL = “UPDATE Employees “ +

“SET “ +
“FirstName=” + “‘“ + firstName + “‘, “ +
“LastName=” + “‘“ + lastName + “‘, “ +
“Title=” + “‘“ + title + “‘, “ +
“HireDate=’” + hireDate + “‘ “ +
“WHERE EmployeeID = “ + EmployeeID.ToString();

SqlCommand cmd = new SqlCommand(sSQL, conn);

conn.Open();
cmd.ExecuteNonQuery();
conn.Close();

//Return to the previous page
Response.Redirect(Request.ServerVariables[“HTTP_REFERER”]);

}
}

</script>

Summary
In this hour, you’ve seen how to use ADO.NET to manipulate data. Specifically, you saw
how to add new records to the database, delete records from the database, and update
existing records using standard two-tier development practices.

Modifying Database Data 89

7

LISTING 7.6 continued

08 0672323834 Ch07 4/19/02 2:21 PM Page 89

Q&A
Q Can the Command object apply any SQL query to the data source?

A Yep! The Command object can be used to send just about any command to your data
source. However, whether or not the command is understood is completely up to
the data source. In other words, you can send an Oracle-specific command to
Microsoft SQL Server, but you’ll most likely receive an exception at runtime.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. What is the purpose of the ExecuteNonQuery() method of the Command object?

2. True or false: Using the ExecuteNonQuery() method to execute a query that
returns data will result in an exception error being thrown from the data layer.

Exercise
Given that the SQL command to create a new table in your data source is

CREATE TABLE TableName
(
Field1 int,
Field2 varchar(50),
Field3 int
)

Using the examples in this hour as a guide, create a Windows form or Web form that will
enable you to create a database table. The table name and field names should be dynami-
cally named based on user input.

90 Hour 7

08 0672323834 Ch07 4/19/02 2:21 PM Page 90

HOUR 8
Using the DataReader
and DataAdapter

In Hour 6, “Retrieving Data from the Data Source,” you saw how to use
ADO.NET to connect to a data source, fetch some records, place them into a
DataSet using the DataAdapter, and display them on a Web form. In this
hour, you’ll see an alternative—and in many instances more efficient—
method of retrieving data. Specifically, in this hour, you’ll learn how to

• Bind the DataReader object to Web controls

• Step through the results of a DataReader object

• Determine when to use a DataAdapter versus a DataReader

DataReader Versus DataAdapter
In Hour 6, you saw how to use the Command object in conjunction with the
DataAdapter object to retrieve records from the database and place them
into a DataSet. The DataSet was then bound to a Web control such as the

09 0672323834 Ch08 4/19/02 2:21 PM Page 91

DataGrid and displayed in a Web form. The code in Listing 8.1 is a review of the
ADO.NET code required to perform these tasks.

LISTING 8.1 Retrieving Records with the DataAdapter

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

Dim conn as New SqlConnection(“Initial “ + _
Catalog=Northwind;Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT * FROM Employees”, conn)

Dim adapt as New SqlDataAdapter(cmd)
Dim dsEmployees as New DataSet()

conn.Open()
adapt.Fill(dsEmployees, “Employees”)
conn.Close()

employees.DataSource = dsEmployees
employees.DataBind()

End Sub
</script>

92 Hour 8

If you are placing the code from Listing 8.1 into a Web form, do not forget
to import the System.Data and System.Data.SqlClient namespaces at the
top of your Web form.

To use the DataAdapter, you must create a DataSet, as shown in line 7 of Listing 8.1.
The DataSet is then passed to the DataAdapter in line 10, where it is filled with records
from the database. In lines 13 and 14, the DataSet is then bound to a Web control in
order to display the data as shown in Figure 8.1.

There is one problem with this method of retrieving data: The DataSet object exists in
memory and contains all rows returned by your query. Suppose that you are retrieving a
large number of records from the data source. For the brief amount of time it takes to
bind the data to your form and send it to the user, you have a potentially large amount of
memory consumed by the DataSet.

If you are only retrieving small DataSets on a low-traffic site, this probably won’t be of
much concern. However, as the number of concurrent users of your application
increases, the more important this issue becomes.

09 0672323834 Ch08 4/19/02 2:21 PM Page 92

Like the DataAdapter, the DataReader object is designed to retrieve records from the
data source. However, unlike the DataAdapter, the DataReader never has more than a
single database record in memory at any given time. It does this by opening a forward-
only, read-only stream of data from your data source.

If you think of your data source as a water reservoir, you could envision the
DataAdapter method of returning records as a man running back and forth between the
source and destination with buckets (albeit very quickly). The DataReader is more like a
firehose.

Instantiating the DataReader
The DataReader is very easy to use. To get an instance of the DataReader object, you
call the ExecuteReader() of the Command object, rather than using the DataAdapter. The
ExecuteReader() returns a new instance of a DataReader object ready to display data
starting at the first record returned. The code in Listing 8.2 (VB .NET) and in Listing 8.3
(C#) shows how to get a DataReader object.

LISTING 8.2 Getting an Instance of the DataReader in Visual Basic .NET

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Using the DataReader and DataAdapter 93

8
FIGURE 8.1
The appearance of a
Web form with bound
Web controls.

09 0672323834 Ch08 4/19/02 2:21 PM Page 93

Dim cmd as New SqlCommand(“SELECT * FROM Employees”, conn)

Dim reader as SqlDataReader

conn.Open()
reader = cmd.ExecuteReader()

LISTING 8.3 Getting an Instance of the DataReader in C#

SqlConnection conn = new SqlConnection(“Initial Catalog=Northwind;” +
“Server=(local);UID=sa;PWD=;”);

SqlCommand cmd = new SqlCommand(“SELECT * FROM Employees”, conn);

SqlDataReader reader;

conn.Open();
reader = cmd.ExecuteReader();

In Listings 8.2 and 8.3, line 1 instantiates a new connection object. Line 3 creates a new
object of type SqlDataReader. The connection is then opened and a new SqlDataReader
object is created using the ExecuteReader() method.

This is significantly easier than retrieving a DataSet! Now that you know how to get a
DataReader, it’s time to see what the DataReader can do. In the next few sections, you’ll
see how to use the DataReader to step through database records and bind to Web con-
trols.

Binding DataReader Results to a Web Control
The most common use for the DataReader is to bind it to Web controls, much in the
same way as you’d bind a DataSet. Other than the fact that you’ve eliminated overhead
by not creating a DataSet, binding to a DataReader is almost exactly the same as bind-
ing to a DataSet. The code in Listing 8.4 demonstrates how to bind the DataReader.
When run, this Web form will appear identical to the one in Figure 8.1. Notice that in
line 22, the DataReader object is passed directly to the DataSource of the DataGrid Web
control.

LISTING 8.4 Data Binding the DataReader Object to a Web Control

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>

94 Hour 8

LISTING 8.2 continued

09 0672323834 Ch08 4/19/02 2:21 PM Page 94

<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT * FROM Employees”, conn)

Dim reader as SqlDataReader

conn.Open()
reader = cmd.ExecuteReader()

employees.DataSource = reader
employees.DataBind()

conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Creating a DataReader</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”employees” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

Using the DataReader and DataAdapter 95

8
LISTING 8.4 continued

Just as with the DataAdapter method of retrieving data, you should close
your connection to the database as soon as you can. Because the DataReader
requires an active connection to the database while it is data binding, you
should close the connection to the database just after the data-binding

09 0672323834 Ch08 4/19/02 2:21 PM Page 95

Because the DataReader supports the IEnumerable interface, it can be bound directly to
the DataSource property of a Web control or any other control that supports data
binding.

Stepping Through Data with the DataReader
The DataReader offers more granular control of database records than just data binding,
however. By using the Read() method of the DataReader object, you can step through
each record of the resultset individually. This is akin to the old days of stepping through
each record in a recordset using ADO. This gives you the ability to process each record
with as much precision as you need.

Listing 8.5 demonstrates how to use a DataReader to pull back data and retrieve individ-
ual fields. This example uses some interesting DataReader methods, such as
GetOrdinal(), to facilitate the retrieval of the information. When run, the example in
Listing 8.5 (VB .NET) and Listing 8.6 (C#) will look like Figure 8.2.

LISTING 8.5 Retrieving Database Fields Using the DataReader in Visual Basic .NET

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

Dim conn as SqlConnection
conn = New SqlConnection(“Initial Catalog=Northwind;” + _

“Server=(local);UID=sa;PWD=;”)
Dim cmd as SqlCommand

96 Hour 8

statements. In addition, when you are done reading records from the
DataReader, you should call the Close() method of the DataReader to save
system resources.

09 0672323834 Ch08 4/19/02 2:21 PM Page 96

cmd = New SqlCommand(“SELECT EmployeeID, FirstName, “ + _
“LastName, HireDate FROM Employees”, conn)

Dim reader as SqlDataReader

conn.Open()
reader = cmd.ExecuteReader()

Dim strBuilder as StringBuilder = New StringBuilder()

Dim First_Name__Ordinal as Int32 = reader.GetOrdinal(“FirstName”)
Dim Last_Name__Ordinal as Int32 = reader.GetOrdinal(“LastName”)
Dim Hire_Date__Ordinal as Int32 = reader.GetOrdinal(“HireDate”)
Dim EmployeeID__Ordinal as Int32 = reader.GetOrdinal(“EmployeeID”)

while (reader.Read())
strBuilder.Append(_

reader.GetInt32(EmployeeID__Ordinal).ToString() + “ “ + _
reader.GetString(First_Name__Ordinal) + “ “ + _
reader.GetString(Last_Name__Ordinal) + “ “ + _
reader.GetDateTime(Hire_Date__Ordinal).ToString() + _
“
”)

end while

output.Text = strBuilder.ToString()

reader.Close()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Stepping through records with the DataReader</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:Label id=”output” runat=”server”></asp:Label>

</form>
<hr>

</BODY>
</HTML>

Using the DataReader and DataAdapter 97

8
LISTING 8.5 continued

09 0672323834 Ch08 4/19/02 2:21 PM Page 97

LISTING 8.6 Retrieving Database Fields Using the DataReader in C#

<% @Page Language=”C#” Debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”C#” runat=”server” >
void Page_Load(Object Source, EventArgs E)
{

SqlConnection conn = new SqlConnection(“Initial Catalog=Northwind;” +
“Server=(local);UID=sa;PWD=;”);

SqlCommand cmd = new SqlCommand(“SELECT EmployeeID, FirstName, “ +
“LastName, HireDate FROM Employees”, conn);

SqlDataReader reader;

conn.Open();
reader = cmd.ExecuteReader();

StringBuilder strBuilder = new StringBuilder();

int First_Name__Ordinal = reader.GetOrdinal(“FirstName”);
int Last_Name__Ordinal = reader.GetOrdinal(“LastName”);
int Hire_Date__Ordinal = reader.GetOrdinal(“HireDate”);
int EmployeeID__Ordinal = reader.GetOrdinal(“EmployeeID”);

while (reader.Read())
{

strBuilder.Append(
reader.GetInt32(EmployeeID__Ordinal).ToString() + “ “ +
reader.GetString(First_Name__Ordinal) + “ “ +
reader.GetString(Last_Name__Ordinal) + “ “ +
reader.GetDateTime(Hire_Date__Ordinal).ToString() +
“
”);

}

output.Text = strBuilder.ToString();

reader.Close();
conn.Close();

}
</script>

</HEAD>

98 Hour 8

09 0672323834 Ch08 4/19/02 2:21 PM Page 98

<BODY>

<h1>Stepping through records with the DataReader</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:Label id=”output” runat=”server”></asp:Label>

</form>
<hr>

</BODY>
</HTML>

In the example in Listing 8.5, the standard ADO.NET objects are created and initialized
with the database query in lines 12–23. Then, in line 24, a new StringBuilder object is
created that will be used to build the SQL query string. Lines 26–29 use the
GetOrdinal() method of the DataReader to locate the ordinal of the various fields in the
resultset retrieved from the database. It’s faster to retrieve the ordinal values once than to
force ASP.NET to locate the values each time they’re needed. Line 31 uses the Read()
method to load the first record in the resultset and begin a loop. Lines 32–37 use the
appropriate data retrieval methods to build a string to display in the Web form. Figure 8.2
shows how this example looks when loaded in a Web browser.

Using the DataReader and DataAdapter 99

8
LISTING 8.6 continued

FIGURE 8.2
The appearance of the
Web form in Listing
8.5 when loaded.

09 0672323834 Ch08 4/19/02 2:21 PM Page 99

The SqlDataReader contains a number of methods for retrieving values from the fields
in the data source. In fact, each different field data type has its own method for extracting
data. The most common data retrieval functions for the SqlDataReader are listed in
Table 8.1.

These methods all accept the integer ordinal of the location of the field within the record.
Because the ordinal could change, or might be difficult to locate, the example in Listing
8.5 uses the GetOrdinal() method of the DataReader object. By passing the field name
to the GetOrdinal() method, you can return its ordinal location within the array. By
placing that value into a variable, you can simplify your code quite a bit.

TABLE 8.1 Data Retrieval Methods of the DataReader Object

Method Field Type

GetBoolean() Bool

GetByte() Byte

GetChar() Char

GetDateTime() DateTime

GetDecimal() Decimal

GetDouble() Double

GetFloat() Float

GetGuid() Guid

GetInt16() Int16

GetInt32() Int32

GetInt64() Int64

GetString() String

The records in the example in Listing 8.5 are enumerated using a WHILE loop in conjunc-
tion with the Read() method of the DataReader object. The Read()method advances the
DataReader to the next record and returns true or false, depending on whether or not
there are more records.

Limitations of the DataReader
Though the DataReader is faster and carries less overhead than binding to a DataSet,
there are some limitations associated with using it. For instance, if you plan to use the
paging features of Web controls, such as the DataGrid, you’ll need to handle the data
paging yourself. For more information, please see Hour 12, “Formatting ASP.NET List

100 Hour 8

09 0672323834 Ch08 4/19/02 2:21 PM Page 100

Controls.” Additionally, it’s not possible to sort, filter, or manipulate the data while using
a DataReader, since it is read-only and forward-only.

Summary
In this hour, you’ve seen a comparison of the DataAdapter and DataReader objects. You
saw how the DataReader object opens a fast, read-only, forward-only view of the data
from your data source. The DataReader object’s methods were explained in detail.
Lastly, you saw some of the pitfalls associated with the DataReader.

Q&A
Q If I have to update data changed by the end user, is it better to use a

DataReader and apply the changes myself, or should I use the DataAdapter and
the associated hit in performance?

A This is a close call and depends very much on the requirements of your applica-
tion. If you need to squeeze out every last bit of performance, you’ll want to use
the DataReader and perform manual updates. Otherwise, the benefits gained by
using the DataAdapter object to automatically reconcile changes to the data will
far outweigh the performance gains of the DataReader object.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. True or false: There is little overhead associated with the DataReader object.

2. What is the key difference between the DataReader and DataAdapter?

Exercise
Create either a Web form or Windows form that steps through a resultset of all customers
in the Northwind database. Place the customers with last names beginning with A–M in
one column and place the remaining N–Z in another.

Using the DataReader and DataAdapter 101

8

09 0672323834 Ch08 4/19/02 2:21 PM Page 101

09 0672323834 Ch08 4/19/02 2:21 PM Page 102

HOUR 9
Binding Data to List
Controls

The focus of this chapter will be on the requirements, from the ADO.NET
perspective, for binding data to various controls such as ListControls and
DataGrids. Data binding is necessary to link the Web or Windows form’s UI
controls to the data that is retrieved from a data source. When the control is
activated or initiated, an underlying manager goes about initiating whatever
was bound to the control (for example, a data retrieval using a
SqlDataAdapter that fills a DataSet that is bound to a DataGrid). The
whole binding mechanism does all of the heavy lifting of mapping the con-
trol to the data (like a DataSet, DataTable, and so on). What you will see is
that if you know how to bind data to a ListBox control, you will also know
how to bind data to a ComboBox control, and so on. The Web applications
you develop will tend to use read-only list controls with rare update situa-
tions. The Windows Forms applications you develop, on the other hand, will
be more DataSet-oriented and usually have much more update logic. The
basic data binding approach is the same whether you are doing list controls
for a Web server or Windows form.

10 0672323834 Ch09 4/19/02 2:27 PM Page 103

In this hour, you will learn the following topics:

• What is meant by binding data to controls

• How to bind data to TextBox controls

• How to bind data to ListBoxes and DataGrids

• An example of a Master/Detail(parent/child) data binding requirement

Binding Data to Controls
List controls are components that provide certain UI capabilities such as a data list or
data grid. There are two base classes for controls. These are
System.Windows.Forms.Control (client-side Windows Forms controls) and
System.Web.UI.Control (ASP.NET server controls). All controls in the .NET
Framework class library derive directly or indirectly from these two classes.

Remember, these controls provide UI capabilities, but they do not populate data from a
data source. This is done by binding data from a data source to a list control. In
ADO.NET, you can bind not just to traditional data sources, but to almost any structure
that contains data. You still have to create connections and data adapters to populate the
data structures you choose to work with (datasets, arrays, and so on). Using data binding
far outweighs having to code the retrieval and mapping of data to a control manually (the
way we had to do in the olden days).

Simple Data Binding
When you only need to have a control display a single value, like that of a TextBox con-
trol, this limited usage is referred to as “simple data binding.” Simple data binding is the
ability to bind a control to a single data element (such as a value in a column in a
DataSet table). There are tons of simple data bindings going on in applications—by far
the most common data binding you will see.

Complex Data Binding
When you need to display and manipulate more than one data element at a time, like that
in ListBoxes and DataGrids, this extended usage is referred to as “complex data bind-
ing.” Complex data binding is the ability to bind a control to more than one data element
and more than one record in a database.

BindingContext and CurrencyManager Objects
Any data source—whether it is an array, a collection, or a data table that you bind a con-
trol to—will have an associated CurrencyManager object that will keep track of the

104 Hour 9

10 0672323834 Ch09 4/19/02 2:27 PM Page 104

position and other bindings to that data source. So, you might have one
CurrencyManager object keeping track of several text boxes because they are all bound
to the same data table. This means that the data in each of the text boxes that are bound
to the same data source will show the right data at the right time (the data that belongs
together).

Of course, there will be multiple CurrencyManager objects if there are multiple data
sources. Then there is a BindingContext object that sits on top of all the
CurrencyManagers. It is this BindingContext object that manages all of the
CurrencyManager objects for a Windows form that you are developing.

Data Binding Scenarios
Virtually every application you develop will be a candidate for using data binding if the
applications must access some type of data source for information or have to manipulate
data from a data source. Typical scenarios might be

1. Any report or printed document that must be generated from a data source and for-
matted into columns of lists.

2. Data entry forms that use text boxes, drop-down lists, and so on.

3. Parent and child data relationship of any kind such as you would find with cus-
tomers and their orders, orders and their order details, parts and related accessories,
and so on. These types of data fit nicely into DataGrid representations.

Binding Data to List Controls 105

9

Class Hierarchies Relevant to Data Binding
Text box controls—Used to display, or accept as input, a single line of text. Can also sup-
port multilines.

• System.Windows.Forms.TextBox class

• System.Windows.Forms.DataGridTextBox subclass

•System.Web.UI.WebControls.Textbox class

List controls—Enable you to display a list of items to the user that the user can select by
clicking.

• System.Windows.Forms.ListControl class

• System.Windows.Forms.ComboBox subclass

• System.Windows.Forms.ListBox subclass

10 0672323834 Ch09 4/19/02 2:27 PM Page 105

Simple Data Binding in Windows Forms
Let’s quickly step through an example that will display a Customer ID, Company Name,
and Contact Name from the Customer table in the Northwind database supplied in
Microsoft SQL Server. More specifically, you will be creating a few TextBox controls on
a form and binding the Text property on these TextBox controls to the Customers data
source. Then, you will create a button that will activate the data retrieval and display the
data to the form. This is simple binding.

Create a New Project in VS .NET
1. Create a new project in VS .NET by choosing File, New, and then choosing the

Project option.

2. When the New Project dialog box appears, choose Visual Basic Projects (or Visual
C# Projects) and Windows Applications. Name this project
“ADO.NET24hoursDB.” This creates a default form for you to start from.

Add the Data Connection, Data Adapter, and DataSet
We will be accessing the Customers table in SQL Server’s Northwind database. So, first
we will need to create a data connection and a data adapter to Microsoft SQL Server.

1. From the Data tab of the Toolbox, drag a SQLDataAdapter object into your form as
shown in Figure 9.1 (or OleDBDataAdapter if you want).

This will automatically invoke the Data Adapter Configuration Wizard. Both the
data connection and the data adapter can be fully configured here.

a. The wizard starts with the Choose Your Data Connection dialog box. If you
already have a connection defined in your project, it will be placed in the

106 Hour 9

• System.Web.UI.WebControls.ListControls class

• System.Web.UI.WebControls.CheckBoxList subclass

• System.Web.UI.WebControls.DropDownList subclass

• System.Web.UI.WebControls.ListBox subclass

• System.Web.UI.WebControls.RadioButtonList subclass

DataGrid controls—Used to display data in a scrollable, tabular grid.

• System.Windows.Forms.DataGrid class

• System.Web.UI.WebControls.DataGrid class

10 0672323834 Ch09 4/19/02 2:27 PM Page 106

dialog box. Otherwise, choose to create a new connection and specify the
appropriate connection information (test the connection as well).

Binding Data to List Controls 107

9

FIGURE 9.1
Visual Studio .NET
Form with Data
Toolbox
SqlDataAdapter

object selected.

b. You will then have to decide to supply SQL statements, build a new stored
procedure, or give the name of an existing stored procedure for the data
access. In our example we will use the Use SQL Statements option.

c. You will be presented with a Generate the SQL Statements dialog box where
you will simply type in a valid SQL statement, or you can use the Query
Builder option to formulate the SQL query. For our example, just type in the
following query:

SELECT * FROM Customers

d. The wizard will show you the tasks that it has done and indicate whether the
SqlDataAdapter has been configured successfully.

2. After the SqlDataAdapter and DataConnection objects have been configured and
added to the form, you must generate a DataSet and then add an instance of this
DataSet to the form. We will be binding our TextBox properties to the columns in
the DataSet.

a. Simply right-click on the SqlDataAdapter (SqlDataAdapter1) that is on
your form and choose the Generate Dataset menu option as seen in
Figure 9.2.

b. Now, just choose to create a new DataSet using the default name that it pro-
vides (DataSet1). Make sure you have checked the Customers table and
checked the box for it to be added to the designer.

10 0672323834 Ch09 4/19/02 2:27 PM Page 107

c. When the process finishes, a DataSet instance named DataSet11 will be on
the form and a dataset schema will be in the Solutions Explorer (named
DataSet1.xsd).

Create Text Boxes, Labels, and Buttons
The next step is to complete the form example to include a few text boxes and a control
button. From the Windows Forms tab of the Toolbox, add the following (drag and drop
on the form):

• Textbox—With a name of txtCustomerID and text is blank.

• Textbox—With a name of txtCompanyName and text is blank.

• Textbox—With a name of txtContactName and text is blank.

• Button—With a name of btnGetCustomer and text of “Get Customer”.

Go ahead and add labels in front of each text box so that it looks like the form in
Figure 9.3.

Add Code to Populate the DataSet
Now we are ready to complete the application by adding the code to fill the DataSet.

Just double-click on the Get Customer button to create a method for the Click event. You
will have to add code to make a call to the DataSet’s Clear method to clear the DataSet
out between iterations, and make a call to the data adapter’s Fill method to get data
from the database (as you can see in Figure 9.4). The following code is added:

Customers1.Clear()
SqlDataAdapter1.Fill(Customers1)

108 Hour 9

FIGURE 9.2
Generate a new
dataset for the form.

10 0672323834 Ch09 4/19/02 2:27 PM Page 108

Bind the Text Boxes to the DataSet
Nothing is left to do other than bind (simple binding) the text boxes to the columns in the
DataSet and run the application.

1. From the Forms Designer, select the txtCustomerID text box and press F4. This
will position you to the properties window for this text box.

2. Expand the (DataBindings) node in the properties list and its text property.

3. Within the text property, expand DataSet1 and Customers nodes and select the
CustomerID column from the list (look back at Figure 9.3 in the lower right corner
to see the (DataBinding) property).

Binding Data to List Controls 109

9

FIGURE 9.3
Add text boxes, button,
and labels to the form.

FIGURE 9.4
Adding code for the
Button method.

10 0672323834 Ch09 4/19/02 2:27 PM Page 109

4. Now, from the Forms Designer, select the txtCompanyName text box and press F4.

5. Expand the (DataBindings) node in the properties list and its text property.

6. Within the text property, expand the DataSet1 and Customers nodes and select
the CompanyName column from the list.

7. Finally, from the Forms Designer, select the txtContactName text box and press
F4.

8. Expand the (DataBindings) node in the properties list and its text property.

9. Within the text property, expand the DataSet1 and Customers nodes and select
the ContactName column from the list.

Test It!
That’s it! Now just hit the F5 key and test your application by clicking on the Get
Customer button. It will put the first customer’s information (CustomerID,
CompanyName, and ContactName) that it finds in the DataSet into the appropriate text
boxes. In Figure 9.5, you can see the form displaying a customer’s information success-
fully.

110 Hour 9

FIGURE 9.5
The Get Customer
Forms application,
showing simple bind-
ing.

The following snippet of code is from the forms1.vb program for this example and
shows the explicit data binding for each text box. When you are using the Forms
Designer, much of this code is generated for you (as you specify the data binding proper-
ties):

Me.txtCustomerID.DataBindings.Add(New System.Windows.Forms.Binding
(“Text”, Me.DataSet11, “Customers.CustomerID”))
Me.txtCompanyName.DataBindings.Add(New System.Windows.Forms.Binding
(“Text”, Me.DataSet11, “Customers.CompanyName”))
Me.txtContactName.DataBindings.Add(New System.Windows.Forms.Binding
(“Text”, Me.DataSet11, “Customers.ContactName”))

10 0672323834 Ch09 4/19/02 2:27 PM Page 110

Complex Data Binding in Windows Forms
In the next example, you will build a quick-and-dirty Windows Form that will display all
customers in a bound ListBox and the customer’s associated Orders in a bound
DataGrid. A more complex DataSet will be needed that provides the relationship path to
traverse from customers to orders using the primary key of Customers (CustomerID) to
foreign key in Orders (CustomerID). You will have to do data bindings for both the
ListBox control and the DataGrid control. This example is one of the classic data bind-
ing scenarios described earlier.

Create a New Project in VS .NET
1. Create a new project in VS .NET by choosing File, New, and then choosing the

Project option. Or, you can just modify the “ADO.NET24hoursDB” that we just
created for simple binding. If you choose to modify this one, delete all of the
Forms objects, methods, and so on that we added so that you start from a clean
slate. This will include deleting the DataSet schema that is shown in the Solution
Explorer.

2. When the New Project dialog box appears, choose Visual Basic Projects (or Visual
C# Projects) and Windows Applications. Name this project “ADO.NET24hoursE”.
This creates a default form for you to start from.

Binding Data to List Controls 111

9

List Controls and DataGrid Controls
These are the key properties for list controls and DataGrid controls:

• DataSource—An object that must implement the Ilist interface such as a
DataSet or an array

•IList inherits from

• Icollection—A set of objects of similar type

• Ienumerable—Provides an enumerator, which allows you to traverse a
collection one item at a time (via the MoveNext() method).

• DisplayMember/DataMember—allows you to specify a table or elements
within a table.

Note: The classes and interfaces in the System.Web.UI.WebControls namespace are simi-
lar and equivalent.

10 0672323834 Ch09 4/19/02 2:27 PM Page 111

Add the Data Connection and Two Data Adapters
You will need to access both the Customers table and the Orders table, so two data
adapters will be created, each populating different controls but using one database con-
nection.

1. From the Data tab of the Toolbox, drag a SQLDataAdapter object into your form.
This will automatically invoke the Data Adapter Configuration Wizard. Both the
data connection and the data adapter can be fully configured here.

a. The wizard starts with the Choose Your Data Connection dialog box. If you
already have a connection defined in your project, it will be placed in the
dialog box; otherwise, choose to create a new connection and specify the
appropriate connection information (test the connection as well).

b. Choose the Use SQL Statements option.

c. You will be presented with a Generate the SQL Statements dialog box where
you will simply type in a valid SQL statement, or you can use the Query
Builder option to formulate the SQL query. For our example, just type in the
following query:

SELECT CustomerID, CompanyName FROM Customers

d. Finally, the wizard will show you the tasks that it has done and indicate
whether the SqlDataAdapter has been configured successfully (it should be
named SqlDataAdapter1 along with a SqlConnection name
SqlConnection1.

2. Okay, we need one more data adapter for access to the Orders table. Drag another
SqlDataAdapter object onto the form.

a. Again, the wizard starts with the Choose Your Data Connection dialog box.

b. Choose the Use SQL Statements option.

c. You will be presented with a Generate the SQL Statements dialog box where
you will type the following query:

SELECT OrderID, CustomerID, OrderDate, ShipVia, Freight, ShipName
FROM Orders

3. And lastly, the wizard will show you the tasks that it has done and indicate whether
the SqlDataAdapter has been configured successfully (it should be named
SqlDataAdapter2).

112 Hour 9

10 0672323834 Ch09 4/19/02 2:27 PM Page 112

Generate a DataSet
Now that the SqlDataAdapter and DataConnection objects have been configured and
added to the form, you must generate a DataSet and then add an instance of this
DataSet to the form.

1. From the Data menu in Visual Studio, simply choose the Generate Dataset option.
The resulting dialog box can be seen in Figure 9.6.

Binding Data to List Controls 113

9
FIGURE 9.6
Generating a new
dataset for the form.

2. Now, just choose to create a new dataset using the name “CustOrdDS” (as also
seen in Figure 9.6) that it provides (DataSet1). Make sure you have checked the
Customers table, Orders table, and checked the Add Dataset to Designer box.
Click OK.

3. When the process finishes, a DataSet instance named CustOrdDS1 will be on the
form and a dataset schema will be in the Solutions Explorer (named
CustOrdDS.xsd).

4. You’re not quite done yet. There must also be a way for the schema to know that
there is a parent/child relationship between Customers and Orders. You do this by
adding a Relation object onto the Orders table in the schema. First, double-click
on the CustOrdDS.xsd schema file in the Solutions Explorer. This takes you imme-
diately into the XML Schema editor. Figure 9.7 shows the two tables that are part
of the CustOrdDS.xsd schema.

5. Next, drag a Relation object onto the Orders table (this is the child side of the
parent/child relationship). You are immediately put into the Edit Relation dialog
box.

6. Verify that the name of the Relation defaults to CustomersOrders, the Parent ele-
ment is Customers, the Child element is Orders, and the Key Fields and Foreign

10 0672323834 Ch09 4/19/02 2:27 PM Page 113

Key Fields both are CustomerID. Nothing else should be checked at this point.
Figure 9.8 shows the values in the Edit Relation dialog box. Click OK when you
are satisfied that all is correct.

114 Hour 9

FIGURE 9.7
XML Schema editor—
CustOrdDS.xsd
schema file.

FIGURE 9.8
The Edit Relation dia-
log box for the
CustomersOrders rela-
tion.

7. The XML Schema editor should now show a one-to-many relationship line
between the Customers and Orders table as seen in Figure 9.9. The following code
is the content of the CustOrdDS.xsd XML Schema file that now reflects the new
relationship:

<?xml version=”1.0” standalone=”yes” ?>
<xs:schema id=”CustOrdDS” targetNamespace=

“http://www.tempuri.org/CustOrdDS.xsd”

10 0672323834 Ch09 4/19/02 2:27 PM Page 114

xmlns:mstns=”http://www.tempuri.org/CustOrdDS.xsd” xmlns=
“http://www.tempuri.org/CustOrdDS.xsd”

xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:msdata=
“urn:schemas-microsoft-com:xml-msdata”

attributeFormDefault=”qualified” elementFormDefault=”qualified”>
<xs:element name=”CustOrdDS” msdata:IsDataSet=”true”>
<xs:complexType>
<xs:choice maxOccurs=”unbounded”>
<xs:element name=”Customers”>
<xs:complexType>
<xs:sequence>

<xs:element name=”CustomerID” type=”xs:string” />
<xs:element name=”CompanyName” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”Orders”>
<xs:complexType>
<xs:sequence>
<xs:element name=”OrderID” msdata:ReadOnly=”true”
msdata:AutoIncrement=”true”

type=”xs:int” />
<xs:element name=”CustomerID” type=”xs:string” minOccurs=”0” />
<xs:element name=”OrderDate” type=”xs:dateTime” minOccurs=”0” />
<xs:element name=”ShipVia” type=”xs:int” minOccurs=”0” />
<xs:element name=”Freight” type=”xs:decimal” minOccurs=”0” />
<xs:element name=”ShipName” type=”xs:string” minOccurs=”0” />
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>
</xs:complexType>

<xs:unique name=”Constraint1” msdata:PrimaryKey=”true”>
<xs:selector xpath=”.//mstns:Customers” />
<xs:field xpath=”mstns:CustomerID” />

</xs:unique>
<xs:unique name=”Orders_Constraint1” msdata:ConstraintName=”Constraint1”

msdata:PrimaryKey=”true”>
<xs:selector xpath=”.//mstns:Orders” />
<xs:field xpath=”mstns:OrderID” />

</xs:unique>
<xs:keyref name=”CustomersOrders” refer=”mstns:Constraint1”>
<xs:selector xpath=”.//mstns:Orders” />
<xs:field xpath=”mstns:CustomerID” />

</xs:keyref>
</xs:element>
</xs :schema>

Binding Data to List Controls 115

9

10 0672323834 Ch09 4/19/02 2:27 PM Page 115

Adding the ListBox and DataGrid Controls
The next step is to add the ListBox control to display the Company Names and the
DataGrid control to display the Order information associated with these companies.

1. First, let’s create the ListBox to display all of the Company Names from the
Customers table.

a. Drag a ListBox object from the Windows Forms tab of the Toolbox onto the
Form.

b. Press F4 to go right to the properties of this ListBox.

c. For the DataSource property, you will need to select the CustOrdDS1 data
source.

d. For the DisplayMember property, you will select Customers, expand this
node, and select CustomerName. Figure 9.10 shows the complete ListBox
property specifications for this example.

2. Now, let’s create the DataGrid control to display all of the Orders that are associ-
ated with a particular Company that is selected. As the form is running, whenever
you move from one CompanyName to another, the form’s data binding framework
queries the data relation object so it can provide the correct Orders (for that com-
pany).

a. Drag a DataGrid object from the Windows Forms tab of the toolbox onto the
Form.

b. Press F4 to go right to the properties of this DataGrid.

116 Hour 9

FIGURE 9.9
The XML Schema edi-
tor, showing the new
relationship between
Customers and
Orders.

10 0672323834 Ch09 4/19/02 2:27 PM Page 116

c. For the DataSource property, you will need to select the CustOrdDS1 data
source.

d. And, for the DisplayMember property, you will select and expand Customers,
and then select CustomersOrders. This is actually the data relation (and the
Orders table). So, we are binding to the data relation object! Figure 9.11
shows the DataMember property specifications.

3. Go ahead and add labels on the top of the ListBox and the DataGrid if you want.
Figure 9.11 also shows this completed form with labels.

Binding Data to List Controls 117

9

FIGURE 9.10
ListBox property
specifications.

FIGURE 9.11
Completed ListBox,
DataGrid, and labels
within VS .NET.

Properties or Methods Binding
For ListBox controls, you can bind the control to a DataSet class using the DataSource
and DisplayMember properties as you have seen in our Windows Forms example:

Me.ListBox1.DataSource = Me.CustOrdDS1
Me.ListBox1.DisplayMember = “Customers.CompanyName”

10 0672323834 Ch09 4/19/02 2:27 PM Page 117

Add Code to Populate the DataSet
Now we are ready to complete the application by adding the code to fill the DataSet. We
have determined that the best time to fill the DataSet is when the form is brought up (at
form load time).

Just double-click on the form to create a handler for the form’s Load event. You will need
to clear the DataSet first, and then fill each data adapter that we defined.

CustOrdDS1.Clear()
SqlDataAdapter1.Fill(CustOrdDS1)
SqlDataAdapter2.Fill(CustOrdDS1)

Test It!
That’s it! Now just hit the F5 key and test your application. When the form comes up, it
should already display Company Names in the ListBox. When you select one of these
(with orders), the DataGrid will display all related orders for that company.

In Figure 9.12, you can see the form displaying a valid customer’s information
successfully.

118 Hour 9

Or, you can use the DataBinding method programmatically to achieve the same results.

Me.ListBox1.DataBindings.Add(New System.Windows.Forms.Binding
(“SelectedItem”, Me.CustOrdDS1, “Customers.CompanyName”))

For DataGrid controls, you bind the control to a DataSet class using the DataSource and
DataMember properties:

Me.DataGrid1.DataMember = “Customers.CustomersOrders”
Me.DataGrid1.DataSource = Me.CustOrdDS1

Or, use the SetDataBinding method programmatically to achieve the same results:

Me.DataGrid1.SetDataBinding(CustOrdDS1,”Customers.CustomersOrders”)

10 0672323834 Ch09 4/19/02 2:27 PM Page 118

Summary
In this hour, you’ve been introduced to both simple data binding and complex data bind-
ing principles. Hopefully the brief discussion of different data binding scenarios has pro-
vided you with enough direction on what type to use based on the requirements that you
are facing. Keep in mind that there are many subtleties between what you would code
when developing Windows Forms control classes and what you would code for WEB.UI
control classes. And, you have also seen the different properties and methods that must
be used depending on whether you are doing TextBox controls, ListBox controls, or
DataGrid controls. The good news is that they all follow nearly the same approach; just
vary the method names or property names a bit. The two coding examples were chosen
because they reflect typical coding problems that you will see over and over in the real
world. There are many more things to discuss within the subject of data bindings related
to some WEB.UI controls like Repeater classes and others, but they are a bit advanced
for the one-hour lesson this chapter should provide.

Q&A
Q When using Visual Studio, must I use the properties approach to data binding

for all my code?

A No; this chapter provided you with examples where either approach would work.
All of the code contained in this chapter was also coded both ways.

Binding Data to List Controls 119

9

FIGURE 9.12
The Get Customer
Forms application,
showing complex
DataGrid binding.

10 0672323834 Ch09 4/19/02 2:27 PM Page 119

Q Why don’t you bind the Orders table in the DataGrid in the complex data
binding example in this chapter?

A It was necessary to bind to the data relation in order to traverse the primary key to
foreign key relationship within the DataSet (customer to orders). You want these to
be coordinated in your display (the right orders for each customer). If you had
bound to the Orders only, you would have a disconnected orders list. The code
would run, but the results would be meaningless.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. What are the properties that are used to bind for list boxes and combo boxes?

a. The DataMember and DataSource properties

b. The DataSet and DataSource properties

c. The DisplayMember and DataSource properties

2. True or false: A CurrencyManager object sits on top of all the BindingContexts
for a form.

3. True or false: The Master/Detail single DataSet (with a relation) data-binding
approach could have been coded using two separate bound DataSets.

4. For TextBox controls, which (databinding) property is set to bind a column to the
control?

a. (databinding).(Advanced)

b. (databinding).Tag

c. (databinding).Text

5. True or false: You can bind to both traditional data sources as well as almost any
structure that contains data.

6. Windows Forms support binding data to:

a. DataSet controls

b. Array controls

c. ArrayLists controls

120 Hour 9

10 0672323834 Ch09 4/19/02 2:27 PM Page 120

Exercise
Go back to the complex data binding example and replace the data bindings properties
code with explicit data binding methods code. You will have to undo the DataMember,
DataSource, DisplayMember, and DataSource properties.

Remember, use the DataBinding method for ListBox controls and SetDataBinding

method for DataGrid controls.

Binding Data to List Controls 121

9

10 0672323834 Ch09 4/19/02 2:27 PM Page 121

10 0672323834 Ch09 4/19/02 2:27 PM Page 122

HOUR 10
Working with XML

In recent years, XML has become one of the most well-known and impor-
tant technologies for representing data. Regarded by many as the key to
interoperability and flexibility across applications and platforms, XML is
sure to become as prevalent as HTML some time in the not-so-distant
future. It’s fortunate, then, that XML support is embedded deeply into the
Microsoft .NET Framework, and especially into ADO.NET.

In this hour, you will see how to:

• Read XML into a DataSet

• Write a DataSet to a file as XML

• Retrieve XML directly from SQL Server 2000

What Is XML?
Like HTML, XML is a markup language that can be used to represent com-
plicated data in a hierarchical format. Because XML tags are user-defined,
there’s no limit to the kind of information you can embed into an XML doc-
ument. Listing 10.1 shows a sample XML document.

11 0672323834 Ch10 4/19/02 2:22 PM Page 123

LISTING 10.1 A Sample XML Document

<?xml version=”1.0”>
<customer type=”web”>
<firstName>Ian</firstName>
<lastName>Young</lastName>
<address>555 Downtown Ln</address>
<city>Cincinnati</city>
<zip>45023</zip>

</customer>

In this case, the XML document in Listing 10.1 describes a customer of a fictitious Web
site. The data and attributes were made up, yet if you were to run an XML parser on
Listing 10.1, it would correctly identify each attribute and piece of data.

124 Hour 10

XML Parser
An XML parser is a program that reads an XML document and extracts the data and data
descriptions from the XML data. An XML parser enables you to programmatically work
with an XML document without having to manually parse the file.

XML is important because it lays the foundation for applications to share information,
by providing an agreed-upon data transfer format.

Reading XML
Because XML is simply text, it can be read from a file, string, or stream using any data
access method you’re familiar with. To make life easier, the DataSet object can work
with XML data directly, saving you the trouble of writing the code necessary to read
from the XML text file or stream manually.

Creating a DataSet from an XML File
Internally, a DataSet is represented by XML. This enables a DataSet to accurately mir-
ror data returned by any data source. In fact, this is one of the reasons the DataSet
object in ADO.NET is so much more powerful than the recordset object in ADO 2.7.
Not only does the DataSet store data, but it also stores data about the schema that was
used to store the data. Because DataSets are essentially XML entities, moving data from
a DataSet to XML and from XML into a DataSet is a painless and straightforward
process.

11 0672323834 Ch10 4/19/02 2:22 PM Page 124

The DataSet object has an overloaded method named ReadXml() that enables you to
read XML data from a string, stream, or file. The example in Listing 10.2 demonstrates
how to transfer the data and the data’s schema from a file located in the root of the C
drive.

LISTING 10.2 Creating a DataSet from an XML Document

<%@ Import Namespace=”System.Data” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

Dim dsCustomers as DataSet = new DataSet()
dsCustomers.ReadXml(“C:\Customers.xml”, XmlReadMode.InferSchema)

employees.DataSource = dsCustomers.Tables(0)
employees.DataBind()

End Sub
</script>

</HEAD>
<BODY>

<h1>Creating a DataSet from an XML File</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”employees” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

In line 10 of Listing 10.2, a new DataSet is created. Then, in the next line, the
ReadXml() method of the DataSet is used to load the data and schema present in an
XML file on the hard disk. Lines 13–14 bind the DataSet to a DataGrid for display on
the page. Incidentally, the Customers.xml file used to load the DataSet in Listing 10.2
was created using the WriteXml() method of the DataSet, covered in detail later in this
hour in the section “Writing a DataSet to an XML File.”

Working with XML 125

10

11 0672323834 Ch10 4/19/02 2:22 PM Page 125

After the example in Listing 10.2 is run, you should see a screen much like the one in
Figure 10.1. The customer data located in the XML document is loaded into the DataSet
and then bound to a DataGrid Web control in order to display on a Web form.

126 Hour 10

FIGURE 10.1
A DataGrid Web con-
trol bound to XML
data retrieved from a
file.

As mentioned, the ReadXml() method of the DataSet object performs the magic of locat-
ing and loading the XML file. It’s a very robust method, with a few different ways to use
it. Depending on what objects you pass ReadXml(), it will perform different actions:

• ReadXml(XmlReader reader, XmlReadMode mode)—By passing an XmlReader
as the first argument, ReadXml() will read data from an XmlReader object. To learn
more about the XmlReader object, see the last section of this hour.

• ReadXml(Stream stream, XmlReadMode Mode)—By passing a stream as the
first argument, ReadXml() will read data from a stream.

• ReadXml(String fileName, XmlReadMode Mode)—As you saw in Listing 10.2,
by passing a filename to ReadXml(), it will retrieve XML from a file.

Notice that the second argument of the ReadXml() method is of type XmlReadMode. This
class exists in the System.Data namespace. The different values and explanations of
those values can be found in Table 10.1. If the XmlReadMode argument is omitted from
the ReadXml() method call, it automatically defaults to “Auto,” as seen in the first entry
in Table 10.1.

11 0672323834 Ch10 4/19/02 2:22 PM Page 126

TABLE 10.1 XmlReadMode Options for Retrieving XML

Code Symbol

Auto ReadXml()automatically chooses XmlReadMode by examining the XML docu-
ment.

ReadSchema ReadXml()reads XML schema and loads both data and schema into DataSet.

IgnoreSchema ReadXml()completely ignores XML schema and attempts to load data into
DataSet using existing DataSet schema.

InferSchema ReadXml()ignores explicit schema information in the XML using the structure
of the XML data as the schema.

DiffGram ReadXml()will read the XML as a DiffGram, appending and merging rows as
needed.

Fragment ReadXml()will read the document as partial XML and import the data match-
ing the DataSet schema and ignore the rest.

Working with XML 127

10

Serialization
Serialization is defined as “a way of saving the state of an object.” In Microsoft .NET, seri-
alization usually refers to the conversion of an object’s values into XML. Deserialization
normally refers to the reverse process of building an object based on saved values in an
XML document.

Serializing DataSets to XML
As mentioned in the preceding section, DataSets are represented internally by XML.
Therefore, it is particularly easy to transfer a DataSet to an XML document and also to
reverse the process.

Viewing the Contents of a DataSet
The example in Listing 10.3 uses the GetXml() method of the DataSet object to return
the DataSet’s contents in XML form as a string. First, a table of information is retrieved
from the Customers table in the Northwind database. Then it is placed into a label Web
control in a Web form in order to display it.

LISTING 10.3 Viewing the Contents of a DataSet

<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

11 0672323834 Ch10 4/19/02 2:22 PM Page 127

<HTML>
<HEAD>
<script language=”VB” runat=”server” >

Sub Page_Load(Source as Object, E as EventArgs)
Dim conn as SqlConnection = new SqlConnection(“Initial “ + _

“Catalog=Northwind;Server=(local);UID=sa;PWD=;”)
Dim cmd as SqlCommand = new SqlCommand(“SELECT * FROM Customers”, conn)

Dim adapt as SqlDataAdapter = new SqlDataAdapter(cmd)
Dim dsCustomers as DataSet = new DataSet()

conn.Open()
adapt.Fill(dsCustomers, “Customers”)
conn.Close()

lblOutput.Text = dsCustomers.GetXml()
End Sub

</script>
</HEAD>

<body>
<form runat=”server”>

XML Output:

<asp:label id=”lblOutput” runat=”server”/>

</form>
</body>

</html>

In the example in Listing 10.3, the XML representation of a DataSet is displayed on a
Web form. To do this, lines 8–17 retrieve a DataSet, using methods you’ve already seen.
Then, line 19 uses the GetXml() method of the DataSet object to create a new string
containing the DataSet’s XML. This is then displayed in a label Web control in the Web
form.

Writing a DataSet to an XML File
Though you could manually store the string returned from the GetXml() method in
Listing 10.3 into a file, the DataSet object provides yet another method for working with
XML: WriteXml(). Listing 10.4 fills a DataSet with customer information and then
writes it to a file using this method.

128 Hour 10

LISTING 10.3 continued

11 0672323834 Ch10 4/19/02 2:22 PM Page 128

LISTING 10.4 Serializing a DataSet to an XML File in Visual Basic .NET

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

Dim conn as SqlConnection = new SqlConnection(“Initial “ + _
“Catalog=Northwind;Server=(local);UID=sa;PWD=;”)

Dim cmd as SqlCommand = new SqlCommand(“SELECT * FROM Customers”, conn)

Dim adapt as SqlDataAdapter = new SqlDataAdapter(cmd)
Dim dsCustomers as DataSet = new DataSet()

conn.Open()
adapt.Fill(dsCustomers, “Customers”)
conn.Close()

dsCustomers.WriteXml(“c:\Customers.xml”, XmlWriteMode.IgnoreSchema)
End Sub

</script>

Much like the ReadXml() method of the DataSet object, the WriteXml() method uses the
XmlWriteMode object to define exactly how the data is handled as it is placed in the file.
Table 10.2 gives descriptions of the three modes.

TABLE 10.2 Three Different XmlWriteModes

Code Symbol

IgnoreSchema Writes the DataSet as XML without any additional schema information.

WriteSchema Writes the DataSet as XML with additional schema information included as
inline XSD schema.

DiffGram Writes the DataSet as a DiffGram.

Working with XML 129

10

DiffGram
A DiffGram is an XML document that stores original and current values for the data in a
DataSet. This is fairly important because, as you’ll see in later hours, the DataSet can
automatically apply changes back to the data source by keeping track of which values
changed. By serializing a DataSet using this mode, you can ensure that those changes
aren’t lost.

Using XmlReader
In Hour 8, “Using the DataReader and DataAdapter,” you learned how to use the
DataReader object to handle a stream of data returned from Microsoft SQL Server. The

11 0672323834 Ch10 4/19/02 2:22 PM Page 129

130 Hour 10

XmlReader object is a close cousin of the DataReader object and is used in much the
same way, with XML. In the next few sections, you’ll learn about some new features of
Microsoft SQL Server 2000 and the XmlReader object.

Using XmlReader with SQL Server 2000
Microsoft SQL Server 2000 ships with numerous improvements and features not present
in previous versions of SQL Server. One of my favorite new additions found in SQL
Server 2000 is the ability to retrieve data in native XML format. If you add the keywords
“FOR XML” to the end of your database query, the server will automatically send the
results of your query in XML form. By being able to speak directly in XML, SQL Server
2000 is much better at cross-platform operations.

The example in Listing 10.5 demonstrates how to retrieve the results of a database query
in XML form and then write that XML information to a file. However, as you’ve learned
in this hour, that XML data could be bound to a Web control, saved to a file, or even
transmitted to a remote client using Web Services.

There are three modes you can use to retrieve the XML information from SQL Server
2000:

• FOR XML AUTO—The query returns nested XML elements. The elements are orga-
nized based on the order of the fields and tables specified in your query.

• FOR XML EXPLICIT—The query enables you to shape the XML tree that is returned
in detail. This is by far the most complex of the three modes.

• FOR XML RAW—The query returns XML elements surrounded by the “row” prefix.
Table columns are represented as attributes.

LISTING 10.5 Retrieving XML Directly from a Microsoft SQL Server 2000 Database
in C#

<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”C#” runat=”server” >
void Page_Load(Object Source, EventArgs E)
{

SqlConnection conn = new SqlConnection(“Initial “ +
“Catalog=Northwind;Server=(local);UID=sa;PWD=;”);

11 0672323834 Ch10 4/19/02 2:22 PM Page 130

SqlCommand cmd = new SqlCommand(“SELECT * FROM Customers “ +
“FOR XML AUTO”, conn);

DataSet dsCustomers = new DataSet();

conn.Open();
System.Xml.XmlReader xmlReader = cmd.ExecuteXmlReader();
conn.Close();

StringBuilder strBuilder = new StringBuilder();

while(xmlReader.Read())
{

while(xmlReader.MoveToNextAttribute())
{

strBuilder.Append(xmlReader.ReadString() + “

”);
}

}

lblOutput.Text = strBuilder.ToString();
}

</script>
</HEAD>

<body>
<form runat=”server”>

XML Output:

<asp:label id=”lblOutput” runat=”server”/>

</form>
</body>

</html>

The example in Listing 10.5 uses the FOR XML clause at the end of the database query to
retrieve XML data instead of a standard resultset. The XML stream returned from SQL
Server is placed into the XmlReader object using the ExecuteXmlReader() method of the
Command object. Then, the XmlReader is used to return pieces of the XML data using its
MoveToNextAttribute() and ReadString()methods.

Summary
In this hour, you’ve seen how to use ADO.NET to work with XML. You learned how the
DataSet object easily serializes to XML and deserializes back, as well. You saw how to
use ADO.NET to work with XML documents and Microsoft SQL Server 2000 and also
how to use the XmlReader object.

Working with XML 131

10

LISTING 10.5 continued

11 0672323834 Ch10 4/19/02 2:22 PM Page 131

Q&A
Q What else can I do with XML? Where can I learn more?

A XML is extremely versatile and the development world is only now cutting through
the hype to realize solid benefits from using XML. The most up-to-date site on the
status of XML along with technical specifications can be found at the World Wide
Web consortium at http://www.w3.org/XML/. In addition, “XML for ASP.NET
Developers” (Sams Publishing) is a great resource for learning to use XML using
ASP.NET.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. Which method of the DataSet object can be used to view the DataSet in XML

format?

2. What is a DiffGram?

Exercise
Create either a Web form or Windows form that loads only schema information from an
XML file and display it on screen. Hint: An easy way to generate an XML file is to load
a DataSet from a data source and then write it to disk.

132 Hour 10

11 0672323834 Ch10 4/19/02 2:22 PM Page 132

HOUR 11
Using the Built-In
ASP.NET List Controls

ADO.NET, a revolutionary step forward in accessing and manipulating data,
and its set of supporting display controls, called list controls, are both
incredible. For those of you who ever used ADO in conjunction with ASP to
dynamically create HTML, you will quickly realize the power and simplicity
of list controls. However, don’t worry if you’ve never used ADO; the con-
cepts in this chapter do not require ADO as a prerequisite.

In Hour 9, you learned how to use data list controls with Windows forms in
Visual Studio .NET. Throughout the book, you’ve seen data bound to the
DataGrid control. In this hour, you’ll see how to use the built-in ASP.NET
list controls to display data retrieved from your data source. Specifically, in
this hour you’ll learn how to

• Use the Repeater Web control to display a simple menu

• Use the DataGrid to work with orders

• Use the DataList to work with products

12 0672323834 Ch11 4/19/02 2:22 PM Page 133

Some General Notes About List Controls
List controls are standard Web controls that serve a single purpose: to display collections
of data, such as the results of a database query, on a Windows form or Web form. In ASP,
after filling a recordset (comparable to a DataTable object, roughly) with data, you
would manually loop through each record in the resultset and build HTML dynamically.
Although this is a very powerful and flexible way of building data-driven pages, often
you ended up spending quite a bit of time tweaking the output. Rarely was the code
reusable, so it had to be created by hand for each new page.

List controls solve these problems by wrapping up the aforementioned functionality into
a single control that can be manipulated as one entity. This makes it much easier to work
with and reuse list controls across various pages in your application.

Before looking at individual list controls, it makes sense to briefly discuss what they
have in common:

1. List controls can bind to any object supporting the IEnumerable interface. For
more information on interfaces, see the Coffee Break in this section.

2. Each list control is geared to display a particular type of data. DataGrids most eas-
ily display data that looks good when displayed horizontally in a table. A DataList
best displays groupings of data either horizontally or vertically on the page. If
you’re confused, don’t worry—each of these controls is covered in depth later in
this chapter.

3. List controls can all be manipulated as a single entity server-side.

134 Hour 11

Interfaces? IEnumerable?
Typically in the Microsoft programming world, when you see a program-
ming term with a capital “I” as the first character, it refers to an interface. A
complete discussion of interfaces is beyond the scope of this book. However,
list controls can be much more easily understood by knowing a few things
about implementing interfaces.

An “interface” defines a set of properties and methods that an object must
support in order to say it “implements” the interface. The IEnumerable
interface defines the methods that an object must support in order for
ASP.NET to generate the final HTML.

If you had built your own custom server control that contains data that you
would like to use to bind directly to a list control, you would implement the
IEnumerable interface. This amounts to implementing a single public

12 0672323834 Ch11 4/19/02 2:22 PM Page 134

Working with the Repeater
The Repeater is the most basic of the built-in list control objects, yet offers a great deal
of flexibility. To format the data it displays, the Repeater uses templates. Templates are
blocks of HTML mixed with server logic that define how each row in the data collection
will appear when sent to the client. Templates are defined within the body of the control
instantiated within the Web form.

There are a number of different types of templates. The ItemTemplate, as seen in Listing
11.1, is responsible for formatting each record in the collection. The
AlternatingItemTemplate lets you define a special appearance for every other item in
the collection. A typical use of this would be to define a slightly different color for alter-
nating items, to make the records displayed easier to read. The Repeater also supports
templates that enable you to define a header and footer as well as a separator that is
inserted between each item displayed.

Listing 11.1 shows how to use the Repeater list control to display a list of categories
from the database. The server-side code should look familiar. ADO.NET calls a stored
procedure named Categories_Get (seen in Listing 11.2), which returns a resultset con-
taining the CategoryID and CategoryName for each item in the Categories table of the
Northwind database. During data binding, the Repeater uses the ItemTemplate to format
the data being returned from the database. In this case, the data returned is used to create
a set of hyperlinks for the categories. Figure 11.1 shows how the example in Listing 11.1
appears when viewed in a Web browser.

Inside the ItemTemplate, notice that to insert fields from the resultset, you use the
DataBinder.Eval() method. The template will insert the value of the field from the data
source where this tag is placed.

Using the Built-In ASP.NET List Controls 135

11

method named GetEnumerator that returns an object that can iterate
through the collection of items in your control.

When attempting to bind data, the list controls try to call the GetEnumerator
method of the object they are attempting to bind. If successful, the list con-
trols use the enumerator object returned to loop through all the items in
the object getting the data. If the GetEnumerator method isn’t present, an
exception is returned.

Think of an interface as a set of rules an object must follow by implement-
ing the interface. For more details on implementing IEnumerable or any of
the thousands of other interfaces in the Microsoft .NET Framework or COM,
please see the Microsoft documentation.

12 0672323834 Ch11 4/19/02 2:22 PM Page 135

LISTING 11.1 Generating a List of Categories Using the Repeater List Control

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadGridData(categories)

End Sub

Private Sub LoadGridData(_
myDataList as System.Web.UI.WebControls.Repeater)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“Exec Categories_Get “, conn)

conn.Open()
myDataList.DataSource = cmd.ExecuteReader()
myDataList.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Category Listing</h1>
<hr>

<form runat=”server” id=form1 name=form1>

136 Hour 11

The category links generated in Listing 11.1 reference a page named
Products.aspx. Because this page does not exist in our application, the link
will generate an error. However, it’s rather easy to create a page that
accepts the selected category ID and returns a list of products for that cate-
gory.

12 0672323834 Ch11 4/19/02 2:22 PM Page 136

<asp:repeater id=”categories” runat=”server”>
<ItemTemplate>

<a href=’products.aspx?CategoryID=<%# DataBinder.Eval(Container.DataItem,
➥ “CategoryID”) %>’>

<%# DataBinder.Eval(Container.DataItem, “CategoryName”) %>

</ItemTemplate>
</asp:repeater>

</form>
<hr>

</BODY>
</HTML>

As mentioned, Listing 11.1 generates a list of categories using the Repeater Web control.
Lines 11–29 query the database, retreive a resultset, and then bind the data to the
Repeater. In this example, the actual loading and binding of data has been moved into a
separate method named LoadGridData(). This convention will be used more often for the
remainder of the hours in this book, because many examples retrieve data from multiple
sources, and this helps to make the code more readable. As you’ll notice in line 24, we’re
using a stored procedure to generate the resultset. This resultset is no different than one
you’d get by manually building the SELECT SQL query manually. For more information
on using stored procedures, see Hour 15, “Working With Stored Procedures.”

A Repeater is placed on the Web form in lines 40–47. Until now, you’ve only seen data
displayed using a DataGrid or a label Web control. The Repeater is similar to the
DataGrid, in that it is used to display and format data returned from the data source.
Lines 4–46 define the ItemTemplate for the Repeater. The ItemTemplate contains the
HTML that is generated for each row in the resultset returned from the data source. In
this case, it builds a hyperlink for each category. The DataBinder.Eval() method is used
to insert the value of the field from the resultset into the HTML output.

LISTING 11.2 The Stored Procedure Used to Return Data for the Example in
Listing 11.1

CREATE PROCEDURE Categories_Get
AS

SELECT
CategoryID,

Using the Built-In ASP.NET List Controls 137

11

LISTING 11.1 continued

12 0672323834 Ch11 4/19/02 2:22 PM Page 137

CategoryName
FROM

Categories

Listing 11.2 contains the SQL query you can use to create the Categories_Get stored pro-
cedure used in Listing 11.1. You can think of this stored procedure as a method that
exists in the database that is optimized for returning the data in this query. You can add
the stored procedure in Listing 11.2 to your Northwind database by placing Listing 11.2
into the Query Analyzer and running the query against the Northwind database.

138 Hour 11

LISTING 11.2 continued

FIGURE 11.1
The appearance of the
repeater control from
Listing 11.1.

The Repeater is a generic list control best suited for generic uses. However, the
DataGrid and the DataList are a bit more specialized, as you’ll see in the next few sec-
tions.

Working with the DataGrid
The DataGrid Web control displays data in a grid, where each record is displayed hori-
zontally. To see a DataGrid in action, see Figure 11.2 at the end of this section. The
DataGrid generates an HTML table with the columns of data matching the columns of
data returned from the data source.

12 0672323834 Ch11 4/19/02 2:22 PM Page 138

Because the DataGrid requires only a simple tag to display a potentially complicated
DataTable, it’s perfect for quick examples such as Listing 11.3. The example in Listing
11.3 returns a list of orders from the Northwind database and displays them on the page,
as you can see in Figure 11.2.

LISTING 11.3 A Simple DataGrid Example

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadDataGrid(orders)

End Sub

Private Sub LoadDataGrid(_
myDataGrid as System.Web.UI.WebControls.DataGrid)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT OrderID, “ + _
“CustomerID, “ + _
“OrderDate, “ + _
“ShipName “ + _
“FROM Orders”, conn)

conn.Open()
myDataGrid.DataSource = cmd.ExecuteReader()
myDataGrid.DataBind()
conn.Close()

Using the Built-In ASP.NET List Controls 139

11

You’ve seen the DataGrid used quite a bit in this book thus far mainly
because the DataGrid can automatically generate columns without configu-
ration. This makes it invaluable when you’d like to display data quickly on a
Web form for debug purposes or to display a database resultset without
obscuring the data access code.

12 0672323834 Ch11 4/19/02 2:22 PM Page 139

End Sub
</script>

</HEAD>
<BODY>

<h1>A Simple DataGrid Example</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”orders” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

If you’ve been following along with the examples in this book thus far, Listing 11.3
should seem very familiar. The Page_Load() method in lines 11–15 passes the name of
the DataGrid to the LoadDataGrid() method. The LoadDataGrid() method in lines
17–33 builds a SQL query, retrieves some orders from the Northwind database, and then
binds them to the DataGrid Web control created on line 43, as you’ve seen many times
before.

140 Hour 11

LISTING 11.3 continued

FIGURE 11.2
The appearance of the
DataGrid control from
Listing 11.3.

12 0672323834 Ch11 4/19/02 2:22 PM Page 140

Though automatically generating columns is good for debugging/demonstration pur-
poses, it is rarely useful for displaying data to a user in an application. Luckily, the
DataGrid has several options for formatting the appearance of individual columns.

You can define the appearance of individual columns in a DataGrid by using the
BoundColumn control. You can see an example of this in Listing 11.4. Note that most of
the code is the same as the example in Listing 11.3. However, the DataGrid tag on the
Web form itself has a new <columns> section. Within that section are several
BoundColumn controls. Intuitively enough, the HeaderText refers to the text displayed at
the top of that column. The DataField property refers to the name of the database field
being bound to that column.

A DataFormatString property can be specified for the column as well. This enables you
to format the appearance of the column data itself. The format codes here are the same
ones used by the String.Format() method. A complete listing of these codes can be
found in the Microsoft .NET Framework documentation. However, some very common
strings are “{0:d}”, which formats the string as a date, and “{0:c}”, which formats the
data as currency (using the user’s localized monetary appearance).

LISTING 11.4 Showing a List of Database Orders Using the DataGrid

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadDataGrid(orders)

End Sub

Private Sub LoadDataGrid(_
myDataGrid as System.Web.UI.WebControls.DataGrid)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT OrderID, “ + _
“CustomerID, “ + _
“OrderDate, “ + _
“ShipName “ + _

Using the Built-In ASP.NET List Controls 141

11

12 0672323834 Ch11 4/19/02 2:22 PM Page 141

“FROM Orders”, conn)

conn.Open()
myDataGrid.DataSource = cmd.ExecuteReader()
myDataGrid.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Order Administration - List</h1>
<hr>

<form runat=”server”>
<asp:DataGrid id=”orders” width=”90%”

GridLines=”Vertical” cellpadding=”4” cellspacing=”0”
Font-Name=”Verdana” Font-Size=”8pt” ShowFooter=”true”
BorderColor=”SaddleBrown” BackColor=”PapayaWhip”
AutoGenerateColumns=”false” runat=”server”>

<Columns>
<asp:BoundColumn HeaderText=”Order ID” DataField=”OrderID” />
<asp:BoundColumn HeaderText=”Customer ID” DataField=”CustomerID” />
<asp:BoundColumn HeaderText=”ShipTo Name” DataField=”ShipName” />
<asp:BoundColumn HeaderText=”Order Date” DataField=”OrderDate”

➥ DataFormatString=”{0:d}” />
<asp:HyperLinkColumn Text=”Show Order Details”

DataNavigateUrlField=”OrderID”
DataNavigateUrlFormatString=”orderdetails.aspx?OrderID={0}” />

</Columns>
</asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

Notice the last of the bound columns in Listing 11.4. It’s a special type of bound column
called a HyperLinkColumn. As you might guess, this generates a column of hyperlinks.
This is used primarily to wire up a list screen to a detail screen. For instance, Listing
11.4 displays a list of orders, as you can see from Figure 11.3. Each order can consist of

142 Hour 11

LISTING 11.4 continued

12 0672323834 Ch11 4/19/02 2:22 PM Page 142

Listing 11.5 displays the code necessary to display the details of each order. At the
beginning of the Page_Load event, the OrderID is accepted and then passed to a method
that calls a stored procedure that returns all details for a particular OrderID. The stored
procedure is provided for you in Listing 11.6.

LISTING 11.5 Showing Order Details Using the DataGrid Control

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

Using the Built-In ASP.NET List Controls 143

11

FIGURE 11.3
The appearance of the
DataGrid control from
Listing 11.3.

several items purchased. Notice how each item in the HyperLinkColumn specifies a URL
that links to a Web form called orderdetails.aspx, and passes the OrderID. This gives the
next screen all the information it needs to display details for the order.

12 0672323834 Ch11 4/19/02 2:22 PM Page 143

‘Get OrderID
Dim OrderID As Integer = Int32.Parse(Request.Params(“OrderID”))

LoadGridData(OrderID, orderdetails)

End Sub

Private Sub LoadGridData(orderID as Int32, _
myDataGrid as System.Web.UI.WebControls.DataGrid)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“Exec Order_GetDetails “ + _
orderID.ToString(), conn)

conn.Open()
myDataGrid.DataSource = cmd.ExecuteReader()
myDataGrid.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Order Administration - Details</h1>
<hr>

<form runat=”server”>

<asp:DataGrid id=”orderdetails” width=”90%” BorderColor=”SaddleBrown”
BackColor=”PapayaWhip” GridLines=”Vertical” cellpadding=”4”
cellspacing=”0” Font-Name=”Verdana” Font-Size=”8pt”
ShowFooter=”true” AutoGenerateColumns=”false”
runat=”server”>

<Columns>
<asp:BoundColumn HeaderText=”Order ID” DataField=”OrderID” />
<asp:BoundColumn HeaderText=”Product Name” DataField=”ProductName” />
<asp:BoundColumn HeaderText=”Unit Price” DataField=”UnitPrice”

DataFormatString=”{0:c}” />
<asp:BoundColumn HeaderText=”Quantity” DataField=”Quantity” />
<asp:BoundColumn HeaderText=”Discount Received” DataField=”Discount” />
</Columns>

</asp:DataGrid>

144 Hour 11

LISTING 11.5 continued

12 0672323834 Ch11 4/19/02 2:22 PM Page 144

</form>
<hr>

</BODY>
</HTML>

LISTING 11.6 Stored Procedure for Showing Order Details

CREATE PROCEDURE Order_GetDetails
(

@OrderID int
)
AS

SELECT
OrderID,
Products.ProductName,
[Order Details].UnitPrice,
Quantity,
Discount

FROM
[Order Details]
INNER JOIN Products on
[Order Details].ProductID = Products.ProductID

WHERE
OrderID = @OrderID

Using the Built-In ASP.NET List Controls 145

11

LISTING 11.5 continued

The query in Listing 11.5 uses an INNER JOIN. As you recall from Hour 4, this
is necessary because only the ProductID is stored in the Order Details table.
To get the product name, we have to join the Products table and then access
the ProductName field.

When run, the Web form in Listing 11.5 will look much like the one in Figure 11.4.
Notice that the Order Details table stores each product ordered as a different record.
Therefore, by using the stored procedure from Listing 11.6, we can easily create an
itemized list of all products in a particular order.

12 0672323834 Ch11 4/19/02 2:22 PM Page 145

Working with the DataList
Much like the DataGrid, the DataList is geared toward displaying data in a particular
format. Whereas the DataGrid is best at organizing data into horizontal rows in a table,
the DataList is best at grouping data into chunks, as you can see in Figure 11.5. Notice
how the information about each product is closely grouped in its own section. Though it
can be used to display data horizontally, the DataList is primarily used to display a set
of information grouped together.

Unlike the DataGrid, however, the DataList will not automatically generate a default
appearance for your data. You must define a template, just as you did earlier for the
repeater. To implement a screen like the one in Figure 11.5, you must define an
ItemTemplate. In the ItemTemplate, you place the code necessary to display a single
product. Then, for each product returned from the data source, an instance of the
ItemTemplate is placed on the page.

An implementation of a product list screen is shown in Listing 11.6. Much like the other
examples in this hour, product information is retrieved from the data source and then
bound to the DataList control. The DataList control has an ItemTemplate defined that
builds a separate HTML table for each record. When run, the Web form looks much like
the one in Figure 11.6.

146 Hour 11

FIGURE 11.4
Listing order details
using the DataGrid
control from Listing
11.5.

12 0672323834 Ch11 4/19/02 2:22 PM Page 146

LISTING 11.6 Showing Order Details Using the DataGrid Control

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadGridData(products)

End Sub

Private Sub LoadGridData(_
myDataList as System.Web.UI.WebControls.DataList)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“Exec Products_GetAll “, conn)

Using the Built-In ASP.NET List Controls 147

11

FIGURE 11.5
The IBuySpy Product
List page.

12 0672323834 Ch11 4/19/02 2:22 PM Page 147

conn.Open()
myDataList.DataSource = cmd.ExecuteReader()
myDataList.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Product List</h1>
<hr>

<form runat=”server” id=form1 name=form1>

<asp:DataList id=”products” RepeatColumns=”2” runat=”server”>
<ItemTemplate>

<table border=”0” width=”300”>
<tr>

<td width=”25”>

</td>
<td width=”100” valign=”middle” align=”right”>
<a href=’productdetails.aspx?productID=

➥<%# DataBinder.Eval(Container.DataItem, “ProductID”) %>’>
<img src=’/ADO24HOURS<%# DataBinder.Eval

➥ (Container.DataItem, “ImagePath”) %>’ width=”72” height=”72” border=”0”>

</td>
<td width=”200” valign=”middle”>
<a href=’ProductDetails.aspx?productID=

➥<%# trim(DataBinder.Eval(Container.DataItem, “ProductID”)) %>’>
<%# DataBinder.Eval(Container.DataItem,

➥ “ProductName”) %>

Price:

<%# DataBinder.Eval(Container.DataItem,
➥”UnitPrice”, “{0:c}”) %>

Units In Stock:
<%# DataBinder.Eval(Container.DataItem,

➥”UnitsInStock”) %>

</td>
</tr>

</table>
</ItemTemplate>

</asp:DataList>

148 Hour 11

LISTING 11.6 continuedl

12 0672323834 Ch11 4/19/02 2:22 PM Page 148

</form>
<hr>

</BODY>
</HTML>

Using the Built-In ASP.NET List Controls 149

11

LISTING 11.6 continuedl

FIGURE 11.6
The Product List
page implemented in
Listing 11.6.

Note that the product hyperlinks generated in Listing 11.6 reference a page named pro-
ductdetails.aspx, and pass to it the ProductID of the selected item. The code for that
screen is not provided in this hour. However, it can be downloaded online at
http://www.sams.com.

Summary
In this hour, you’ve seen quite a bit of information on list controls. You saw how to use
the Repeater to display a set of product category hyperlinks. Then you saw how to use a
DataGrid to work with order list and order detail screens. Then you saw how to use the
DataList to display a list of products. However, this only scratches the surface of possi-
ble uses for these controls. Indeed, there are many more ways to configure and use these
controls than are provided here. In the next chapter, you’ll see some of the various ways
to format the appearances of these controls.

12 0672323834 Ch11 4/19/02 2:22 PM Page 149

Q&A
Q Where can I find more information on using list controls?

A Pure ASP.NET, also from Sams Publishing, provides an excellent reference on list
controls including much more information on using templates, bound columns, and
formatting techniques.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. Which list control is primarily used to display content horizontally, in a single

table?

2. Which list control is used to group information about a single entity?

3. True or false: List controls can bind to any object implementing the IEnumerable
interface.

4. True or false: List controls are Web controls.

Exercise
Using the examples in this hour as a guide, create a Web form that displays a list of
employees from the Employees table of the Northwind database. Make sure to include a
column (or field if you choose to use a DataList) that will enable a user to link to more
information about the selected employee.

150 Hour 11

12 0672323834 Ch11 4/19/02 2:22 PM Page 150

HOUR 12
Formatting ASP.NET List
Controls

In the preceding hour, you saw some of the numerous presentation tech-
niques made possible through the use of list controls in ASP.NET. In this
hour, you’ll learn much more about formatting the appearance of list con-
trols and their data. You’ll see the basics of working with CSS (Cascading
Style Sheets). You’ll also learn some additional formatting techniques,
including:

• Using CSS to control the appearance of list controls

• Additional formatting and layout options for the Repeater, DataList,
and DataGrid

• Data paging with the DataGrid

A Quick Overview of CSS
A cascading style sheet (referred to as just a style sheet from now on)
enables you to control formatting options for a limitless number of HTML

13 0672323834 Ch12 4/19/02 2:23 PM Page 151

elements in a single place. The style sheet exists as a file in your Web project that typi-
cally has a .css extension. In this file, you place formatting information for HTML tags,
as well as any custom types (called classes) that you want. If you include this file into
any of your existing Web forms, the Web forms will automatically pick up the formatting
from the CSS file. These concepts are best grasped by looking at some examples.
Consider the simple DataGrid example from the preceding hour shown again in Listing
12.1. There are only a few differences between this listing and the one in the preceding
hour. First, inside the <head></head> tags, there is the following entry:

<LINK rel=”stylesheet” type=”text/css” href=”ADO24HRS.css”>

This includes an external style sheet into the existing Web form. By modifying the con-
tents of the ADO24HRS.css file in the same directory, you can control the appearance of
almost any element in the DataGrid example in Listing 12.1. Most of the examples in
this book so far have used the Main.css style sheet. This hour uses a style sheet named
ADO24HRS.css with some additional formatting.

LISTING 12.1 A Simple DataGrid Example

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”ADO24HRS.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadDataGrid(orders)

End Sub

Private Sub LoadDataGrid(_
myDataGrid as System.Web.UI.WebControls.DataGrid)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT OrderID, “ + _
“CustomerID, “ + _
“OrderDate, “ + _
“ShipName “ + _
“FROM Orders”, conn)

152 Hour 12

13 0672323834 Ch12 4/19/02 2:23 PM Page 152

conn.Open()
myDataGrid.DataSource = cmd.ExecuteReader()
myDataGrid.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1 class=”MainHeader”>A Simple DataGrid Example</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”orders” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

Before you make any modifications, take a look at the Web form as it currently exists.
Figure 12.1 shows the appearance of the Web form with no modifications made through
the style sheet. It’s bland, which makes the data difficult to read. Luckily, we can easily
spice things up a bit.

Formatting ASP.NET List Controls 153

12

LISTING 12.1 continued

FIGURE 12.1
The default appear-
ance of the Web form
in Listing 12.1 before
any CSS modifica-
tions are made.

13 0672323834 Ch12 4/19/02 2:23 PM Page 153

By just adding the lines in Listing 12.2 to the ADO24HRS.css file, you can drastically
change the appearance of the Web form in Listing 12.1 without directly editing that file.
Examining the code in Listing 12.2, you can see that we’re modifying the appearance of
the <TD> and <TABLE> HTML tags. Specifically, we’re adding a border, changing the
font, padding the content inside the table cells, and changing the background color of the
table. Figure 12.2 shows the appearance of the example in Listing 12.1 with the new
style sheet applied.

LISTING 12.2 A Simple Stylesheet

TD
{

border-color: black;
font-family: sans-serif;
border-width: thin
border-bottom: black;
border-left-width: 0;
border-right-width: 0;
padding: 5px;

}

TABLE
{

background-color: gold;
border-color: black;

}

154 Hour 12

FIGURE 12.2
The appearance of the
Web form in Listing
12.1 with a basic style
sheet applied.

13 0672323834 Ch12 4/19/02 2:23 PM Page 154

Any Web form that includes this style sheet will have its tables modified in the same
way, however. This might sound desirable, but because tables are an extremely popular
HTML formatting device, you probably wouldn’t want this appearance given to standard
text tables. You could include multiple style sheets based on the type of page, but this
introduces a lot of overhead and opportunity for error. The easiest solution is to use a
CSS class.

Listing 12.3 contains a new class to add to the ADO24HRS.css file. It contains a class
called MainHeader that is applied to the H1 HTML tag only. By omitting the H1. before
the MainHeader class name, you can apply the class to any HTML element that supports
the properties.

LISTING 12.3 Adding a CSS Class

H1.MainHeader
{

font-size: 30px;
font-weight: bold;
font-family: sans-serif;
text-decoration: overline;

}

This changes the appearance of the header, as you can see in Figure 12.3.

This section on style sheets has covered the bare minimum necessary to explain how to
use these concepts to format list controls. The sheer number of changes you can make to
the user interface using style sheets is staggering. For a terrific list of tutorials, refer-
ences, and online books on the subject of CSS, visit the official home page at
http://www.w3.org/Style/CSS/.

Formatting ASP.NET List Controls 155

12

Certain style sheet properties are not supported by all browsers. For
instance, version 4 of Netscape does not support the border-left and border-
right properties used in Listing 12.2. A quick search of the World Wide Web
turns up a number of reference guides to developing cross-platform style
sheets. One particularly good reference is located at http://
www.webreview.com/style/index.shtml.

By using the same style sheet for all of the pages in your application, you
can control the appearance of all pages from a single location. This is an

13 0672323834 Ch12 4/19/02 2:23 PM Page 155

Formatting the Repeater
Most of the formatting that can be performed by the Repeater list control is done within
the various templates supported by the control. In other words, the formatted output of
the Repeater is only as good as your skills in HTML, because you design and imple-
ment these templates yourself. Nonetheless, by using the provided template types along
with some smart CSS, you can achieve some good-looking results easily.

In the preceding hour, we took a look at formatting the Repeater output using the
ItemTemplate. As you recall, this enabled us to insert data fields returned from our data
source into some static HTML content. In addition to the ItemTemplate, the Repeater
also supports a HeaderTemplate, FooterTemplate, AlternatingItemTemplate, and a
SeparatorTemplate. Most of these template types are self-explanatory.

Listing 12.4 shows an example using all the provided templates. The
AlternatingItemTemplate applies a grey background to every other item bound. The
HeaderTemplate and FooterTemplate add headers and footers to the control, and the
SeparatorTemplate ensures that there is a new line after each item is bound. Figure 12.4
shows how the Repeater example in Listing 12.4 appears when run.

156 Hour 12

extremely powerful tool that lets you customize the appearance of your
entire application by making changes in one place.

FIGURE 12.3
The appearance of the
header in Listing 12.1
with a CSS class
applied.

13 0672323834 Ch12 4/19/02 2:23 PM Page 156

LISTING 12.4 Using the Various Repeater Templates

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadGridData(categories)

End Sub

Private Sub LoadGridData(_
myDataList as System.Web.UI.WebControls.Repeater)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“Exec Categories_Get “, conn)

conn.Open()
myDataList.DataSource = cmd.ExecuteReader()
myDataList.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<form runat=”server”>

<asp:repeater id=”categories” runat=”server”>
<HeaderTemplate>

<h1>Product Categories!</h1>
</HeaderTemplate>
<ItemTemplate>

<a href=’products.aspx?CategoryID=

➥<%# DataBinder.Eval(Container.DataItem, “CategoryID”) %>’>
<%# DataBinder.Eval(Container.DataItem, “CategoryName”) %>

</ItemTemplate>

Formatting ASP.NET List Controls 157

12

13 0672323834 Ch12 4/19/02 2:23 PM Page 157

<SeparatorTemplate>

</SeparatorTemplate>
<AlternatingItemTemplate>

<a href=’products.aspx?CategoryID=

➥<%# DataBinder.Eval(Container.DataItem, “CategoryID”) %>’>
<%# DataBinder.Eval(Container.DataItem, “CategoryName”) %>

</AlternatingItemTemplate>
<FooterTemplate>

Copyright 2002 Your Company

</FooterTemplate>
</asp:repeater>

</form>
<hr>

</BODY>
</HTML>

158 Hour 12

LISTING 12.4 continued

FIGURE 12.4
The appearance of
the example in

Listing 12.4.

Formatting the DataList
Each of the list controls can be formatted easily using a set of built-in style properties. A
complete list of these properties can be found in the documentation for the Microsoft
.NET Framework. Additionally, you can see these properties by looking up the list

13 0672323834 Ch12 4/19/02 2:23 PM Page 158

control in the Microsoft Classbrowser sample application provided with the .NET
Framework SDK (list controls are located in the System.Web.UI.WebControls name-
space). However, Listing 12.5 shows a few of the properties available.

LISTING 12.5 Formatting the DataList Control

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadGridData(products)

End Sub

Private Sub LoadGridData(_
myDataList as System.Web.UI.WebControls.DataList)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“Exec Products_GetAll “, conn)

conn.Open()
myDataList.DataSource = cmd.ExecuteReader()
myDataList.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Product List</h1>
<hr>

<form runat=”server” id=form1 name=form1>

<asp:DataList id=”products” RepeatColumns=”3”
AlternatingItemStyle-backcolor=”#DDDDDD”
runat=”server”>

<ItemTemplate>

Formatting ASP.NET List Controls 159

12

13 0672323834 Ch12 4/19/02 2:23 PM Page 159

<table border=”0” width=”300”>
<tr>

<td width=”25”>

</td>
<td width=”72” valign=”middle” align=”right”>
<a href=’productdetails.aspx?productID=

➥<%# DataBinder.Eval(Container.DataItem, “ProductID”) %>’>
<img src=’/ADO24HOURS<%# DataBinder.Eval(

➥Container.DataItem, “ImagePath”) %>’ width=”72” height=”72” border=”0”>

</td>
<td width=”150” valign=”middle”>
<a href=’ProductDetails.aspx?productID=

➥<%# trim(DataBinder.Eval(Container.DataItem, “ProductID”)) %>’>
<%# DataBinder.Eval(Container.DataItem,

➥”ProductName”) %>

Price:

<%# DataBinder.Eval(Container.DataItem,
➥”UnitPrice”, “{0:c}”) %>

Units In Stock:
<%# DataBinder.Eval(Container.DataItem,

➥”UnitsInStock”) %>

</td>
</tr>

</table>
</ItemTemplate>

</asp:DataList>

</form>
<hr>

</BODY>
</HTML>

Generally speaking, the property names are built from the template name and then the
actual property you are specifying. From Listing 12.5, you can see that
AlternatingItemStyle-backcolor is set to grey. For every other row in the DataList,
the background color will be set to grey, improving the readability of your content in
many cases. This is a very useful way to make changes to alternate rows without having
to specify an entirely new AlternatingItemTemplate that only differs from the
ItemTemplate by the background color.

160 Hour 12

LISTING 12.5 continued

13 0672323834 Ch12 4/19/02 2:23 PM Page 160

The DataList control also has a property called RepeatColumns. This value determines
the number of columns the DataList will output to the page. As you can see in Figure
12.4, the number of RepeatColumns has been set to 3 in the code in Listing 12.5.

The DataList control provides all templates provided by the Repeater control plus one
additional one: the SelectedItemTemplate. It’s possible to set a particular look and feel
for a selected item within the DataList. You can create a brand new template for the
selected item, giving you complete control over its appearance, or you can just use the
aforementioned style properties.

Only two additional changes are necessary to the code in Listing 12.5 to change the
appearance of the selected item. Within the DataList control, specify the SelectedIndex
property to whichever item should be selected (as determined by a user click or program-
matically). Then, specify a style for the selected item. In the case in Figure 12.6, the
background color has been set to blue as follows:

SelectedItemStyle-backcolor=”cadetblue”

In Figure 12.4, you can see that this has changed the background of the Aniseed Syrup
product listing.

Formatting ASP.NET List Controls 161

12

FIGURE 12.5
The appearance of the
code in Listing 12.5
when the Web form is
loaded.

13 0672323834 Ch12 4/19/02 2:23 PM Page 161

Formatting the DataGrid
The DataGrid control can be formatted using many of the techniques mentioned already
in this hour. All of the built-in style properties discussed for the DataList are still acces-
sible with the DataGrid with one addition: Because it is possible to edit content directly
in the DataGrid, the DataGrid also has a style named EditItemStyle. You can use this
to change the appearance of the row currently being modified by a user.

In addition to this type of formatting, you can also tell the DataGrid control to not gener-
ate columns automatically and work with the columns directly. This is normally a wise
choice; though the automatically generated columns are handy, they will rarely, if ever,
be a good choice for a production application. Simply set the AutoGenerateColumns
property of the DataGrid to false to turn off automatic generation of columns.

After that is done, you’ll need to set up the columns manually using any of the different
column types present. Several different kinds of columns are available for different pur-
poses. You saw the BoundColumn at the end of the preceding hour. This is primarily used
to add a typical data column to the DataGrid.

However, there’s also a TemplateColumn that provides complete control over the appear-
ance of a column in the same way that the ItemTemplate provides complete customiza-
tion for a DataList. Data fields are added to the HTML in the template through the use
of the DataBinder.Eval() method, covered in the preceding hour. One additional col-
umn type you can use is the HyperLinkColumn, which enables you to create a hyperlink
column, which is normally used to link to a detail screen for the record selected. There is
also a ButtonColumn that is very similar to the HyperLinkColumn, except that it generates
a button instead of a hyperlink, as you might have guessed.

162 Hour 12

FIGURE 12.6
The appearance of the
code in Listing 12.5
when the Web form is
loaded.

13 0672323834 Ch12 4/19/02 2:23 PM Page 162

In addition to these formatting methods, the DataGrid enables you to set up paging for
large sources of data. Rather than display 300 items on the screen at once, overwhelming
the user, you can display 20 at a time. The code in Listing 12.6 shows how to set up pag-
ing for the DataGrid.

Formatting ASP.NET List Controls 163

12

You can’t use DataGrid paging when binding to a DataReader object. If you
need to page through a set of records from a database, use the DataAdapter
object instead.

LISTING 12.6 Paging with the DataGrid

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadDataGrid(orders)

End Sub

Private Sub LoadDataGrid(_
myDataGrid as System.Web.UI.WebControls.DataGrid)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT OrderID, “ + _
“CustomerID, “ + _
“OrderDate, “ + _
“ShipName “ + _
“FROM Orders”, conn)

Dim adapter as New SqlDataAdapter(cmd)
dim dsOrders as New DataSet()

adapter.Fill(dsOrders)

conn.Open()
myDataGrid.DataSource = dsOrders

13 0672323834 Ch12 4/19/02 2:23 PM Page 163

myDataGrid.DataBind()
conn.Close()

End Sub

Private Sub GetPage(src as Object, e as DataGridPageChangedEventArgs)

src.CurrentPageIndex = e.NewPageIndex
LoadDataGrid(src)

End Sub
</script>

</HEAD>
<BODY>

<h1>Paging With the DataGrid</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”orders” width=”90%”

BorderColor=”SaddleBrown” BackColor=”PapayaWhip”
GridLines=”Vertical” cellpadding=”4” cellspacing=”0”
Font-Name=”Verdana” Font-Size=”8pt” ShowFooter=”true”
AutoGenerateColumns=”false”
AllowPaging=”true”
PagerStyle-Mode=”NextPrev”
PagerStyle-PrevPageText=”::Previous Page”
PagerStyle-NextPageText=”Next Page::”
PagerStyle-Visible=”true”
PageSize=”10”
OnPageIndexChanged=”GetPage”
runat=”server”>

<Columns>
<asp:BoundColumn HeaderText=”Order ID” DataField=”OrderID” />
<asp:BoundColumn HeaderText=”Customer ID” DataField=”CustomerID” />
<asp:BoundColumn HeaderText=”ShipTo Name” DataField=”ShipName” />
<asp:BoundColumn HeaderText=”Order Date”

DataField=”OrderDate” DataFormatString=”{0:d}” />
<asp:HyperLinkColumn Text=”Show Order Details”

DataNavigateUrlField=”OrderID”
DataNavigateUrlFormatString=”orderdetails.aspx?OrderID={0}” />

</Columns>
</asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

164 Hour 12

LISTING 12.6 continued

13 0672323834 Ch12 4/19/02 2:23 PM Page 164

As you can see in Listing 12.6, to set up paging for the DataGrid, you first need to spec-
ify AllowPaging=”true”. Then you can set a number of configurable properties control-
ling the appearance and location of the paging hyperlinks. Lastly, you must define a
method to handle the work of grabbing the next page of data. In this example, a method
named GetPage was created to handle this. The new page number is sent to the method
through the DataGridPageChangedEventArgs object. Figure 12.7 shows the appearance
of a DataGrid when in paging mode.

Formatting ASP.NET List Controls 165

12

FIGURE 12.7
Paging through a
DataTable with the
DataGrid.

Summary
In this hour, you’ve seen several different ways of formatting the appearance of data and
the built-in ASP.NET list controls, including the Repeater, DataList, and DataGrid
controls. A short section was provided on how to use cascading style sheets. Then those
style sheets were applied to each of the list controls. You then saw how to use some
additional templates and columns for the DataList and DataGrid controls. Lastly, you
saw how to page through the results of a database query automatically using the
DataGrid.

Q&A
Q Where can I find more information about style sheets?

A The Cascading Style Sheet home page is located at
http://www.w3.org/Style/CSS/. There, you’ll find links to CSS tutorials, user
communities, and software designed to make style sheet creation easier.

13 0672323834 Ch12 4/19/02 2:23 PM Page 165

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. True or false: You can use templates to format the content of the Repeater control.

2. Name the property of the DataList that is used to specify the number of columns
generated.

3. True or false: You can use the Repeater object to automatically page through a
large quantity of data.

Exercise
Create a Web form that creates the main page for a storefront of a fictitious company.
Make sure that the page contains a category menu on the left side that can be used for
navigation. You can utilize the examples in this chapter and the last as the basis for this
exercise. If you like, feel free to create your own database structure as you see fit, or just
use the schema provided for you in the Northwind database.

166 Hour 12

13 0672323834 Ch12 4/19/02 2:23 PM Page 166

HOUR 13
Handling ADO.NET
Errors

The Microsoft .NET Framework provides a rich set of approaches, mecha-
nisms, and events to handle the myriad of runtime code error situations that
are possible for any type of application you will be writing—whether it is
Web or Windows forms. One significant addition for .NET involves being
able to add error messages to each row of data in a DataSet. This enables
you to zoom in on issues on a row-by-row basis. In addition, these row
errors persist with the DataSet even when being transferred using XML or
XML Web services. This chapter deals with the errors that directly relate to
ADO.NET and identifies the typical error scenarios you need to be aware of
along with presenting several basic principles of how to handle ADO.NET-
related errors. We will not cover them all, just the ones you need to survive
with.

In this hour, you will learn about the following topics:

• Formal error handling for ADO.NET

• The most common errors that you must deal with

• A sample application with many of the basics

14 0672323834 Ch13 4/19/02 2:23 PM Page 167

Using Formal Error Handling (Ready,
“Catch”!)

An exception occurs when an error condition is encountered. Whether you want to han-
dle it depends on the requirements that you are trying to meet. Certain error conditions
might be tolerable but others are not. Typical error conditions would be things like data-
base connection denied or lost, unsuccessful update operations, or even divide-by-zero
errors. .NET refers to these conditions as “exceptions” and provides several features to
the developer to devise the appropriate response (or lack of response). The primary error-
handling constructs we will be using are either the Try/Catch/Finally structure or the
On Error construct. But, before discussing these constructs, let’s look at an overall error-
handling strategy.

Design Considerations
When designing an application, the developer needs to consider the possible exceptions
and to design an overall strategy on how to handle them. If this analysis and design are
postponed until the end of the development cycle, a steeper price will be paid in code
reconstruction and testing delays. Among the issues that the developer needs to consider
are which errors to report and how to report them to the different audiences of the appli-
cation. For instance, a user needs to get feedback about whether an operation was suc-
cessful, and if not successful, what the next step might be. If the condition is a serious
error, a log might need to be generated for the system administrator that describes the
issue along with where and when it happened so that the problem can be traced and then
possibly fixed by other means. Errors such as database corruption and other data
resource integrity issues are good candidates for formal error handling as well. If the
application doesn’t handle an exception, it bubbles up the stack until the application
crashes and system messages are displayed to the user. In most scenarios, this is not a
desirable outcome.

If an application handles every possible error scenario, the application is said to be
“robust.” However, being robust is just a relative term—most applications and operating
systems are more or less robust. But, having too much error handling comes at a price in
terms of extra code that needs to be written, tested, and later maintained.

The moral of the story is that the application developer should consider the general pro-
cessing requirements from the beginning so that he or she can strike a balance between
costs and benefits for the specific application. So, on the one hand, an Internet stock bro-
kerage application needs to be extremely robust; it must account for all different types of
error conditions, handle them nicely, and provide automatic recovery. An in-house small

168 Hour 13

14 0672323834 Ch13 4/19/02 2:23 PM Page 168

intranet application can probably get by with general error trapping and a request for the
user to retry things, or even settle for a system-generated error (unhandled error).

How the Exception Mechanism Works
At runtime, applications use a stack of method calls. Normally, at the bottom of the stack
is the Main method, which then calls other methods, which then call other methods. The
system uses the program stack to keep track of where to return after a method finishes. A
stack might look like this:

HowTo.ADONET24.Samples.TryCatch.Run()
HowTo.ADONET24.Samples.TryCatch.Main()

When an error occurs, the system checks whether the code was executed within a
Try/Catch/Finally structure or an On Error handler has been enabled. Control is
changed to the appropriate place and the current stack location is part of the error infor-
mation.

If an exception occurs, and the developer didn’t include a Try/Block/Finally structure
or enable an On Error handler, the system stops executing at the current stack level. The
system then removes the current level from the stack, and transfers controls to the previ-
ous stack level, where the system continues to move back up the stack. The system
repeats the process of stopping, removing, and transferring to the previous stack level,
until a Try/Catch/Finally structure is found or until the last level is reached, at which
time the system aborts execution. This is called crashing an application, and should be
avoided. In other words, catch it somewhere before it hits the end user.

As an alternative to the Try/Catch/Finally structure, .NET provides an On Error han-
dler structure as well. Either structure can be used for error handling.

The Try/Catch/Finally Structure
The .NET Common Language Runtime (or CLR) provides the Try/Catch/Finally
structure from which areas of code that encounter exceptions can be handled. When an
exception does occur to code that is part of the Try block, the .NET CLR stops the nor-
mal logic flow and transfers control from the Try block to the Catch block where the
developer can take a course of action (such as notifying the user or some recovery
action). Regardless of whether an exception occurred, the Finally block will be exe-
cuted (if one is provided).

If errors occur that the developer has not handled, the VS .NET application simply pro-
vides its normal error messages to the user. This isn’t always handled very gracefully, so
we encourage you to handle the errors and provide the appropriate correction or recovery
logic.

Handling ADO.NET Errors 169

13

14 0672323834 Ch13 4/19/02 2:23 PM Page 169

The short piece of code in Listing 13.1 illustrates the Try/Catch/Finally error-handling
structure. The program has two sections of code. The first section will use the
Try/Catch/Finally structure and handle a simple error (divide by zero), and the second
code section will create the same error but without any type of error-handling structure.
Note the differences when you execute the code.

LISTING 13.1 The Try/Catch/Finally Structure (13TryCatch.vb)

Imports System
namespace HowTo.ADONET24.Samples
public class TryCatch
public shared sub Main()
Dim myTryCatch as TryCatch
myTryCatch = new TryCatch()
myTryCatch.Run()

end sub
public sub Run()
Dim a As Integer = 100
Dim b As Integer = 0
try
Console.WriteLine(“*** TRY BLOCK - WE WILL DO A DIVISION BY ZERO ***”)
a /= b ‘ Divide by zero... arithmetic error

Catch e As Exception When b = 0
Console.WriteLine(“*** CATCH BLOCK - ERROR - WE
WILL HANDLE THIS OURSELVES ***”)

170 Hour 13

The Try/Catch/Finally Statement
The Try block contains the code where an error can occur. The Catch block contains the
code to handle the error when it occurs. When an error does occur, program control is
passed to the appropriate catch statement for evaluation. The exception argument is an
instance of the Exception class and contains information about the error, the error num-
ber, and the error message. The When expression can be used when looking for a specific
error and should evaluate to true. After the normal execution or after the Catch block,
the system executes the Finally block, which is typically used for clean-up operations.
The following pseudocode shows the structure of the Try/Catch/Finally block:

Try
[try statements]

[Catch [exception [As type] [When expression]
[catch statements]]

[Exit Try]
[additional Catch blocks, if desired ...]
[Finally

[Finally statements]]
End Try

14 0672323834 Ch13 4/19/02 2:23 PM Page 170

Console.WriteLine(e.ToString())
Finally
Console.WriteLine(“*** FINALLY BLOCK - ALWAYS EXECUTED ***”)

end try
Console.WriteLine()
Console.WriteLine(“*** NOW, DO A DIVISION BY ZERO

AGAIN WITHOUT HANDLING IT ***”)
a /= b ‘ Divide by zero... arithmetic error

end sub
end class

Let’s compile and execute this to show the logic flow of this Try/Catch/Finally struc-
ture as follows:

C:\ADOSAMPLES> vbc.exe 13TryCatch.vb /r:System.dll

You should see the following .NET VB compiler messages:

Microsoft (R) Visual Basic .NET Compiler version 7.00.9447
for Microsoft (R) .NET Framework version 1.00.3617
Copyright (C) Microsoft Corporation 1987-2001. All rights reserved.

This message is followed by the DOS command prompt again (if it is a successful com-
pile). Otherwise, you will be getting compile errors of one kind or another. Now, to exe-
cute, just specify the sample name at the DOS command prompt and press Enter.

C:\ADOSAMPLES> 13TryCatch.exe <press enter>
*** TRY BLOCK - WE WILL DO A DIVISION BY ZERO ***
*** CATCH BLOCK - ERROR - WE WILL HANDLE THIS OURSELVES ***
System.OverflowException: Arithmetic operation resulted in an overflow.

at HowTo.ADONET24.Samples.TryCatch.Run()
*** FINALLY BLOCK - ALWAYS EXECUTED ***
*** NOW, DO A DIVISION BY ZERO AGAIN WITHOUT HANDLING IT ***
Unhandled Exception: System.OverflowException: Arithmetic operation resulted in
an overflow.

at HowTo.ADONET24.Samples.TryCatch.Run()
at HowTo.ADONET24.Samples.TryCatch.Main()

The On Error Construct
As an alternative to Try/Catch/Finally, you can use the On Error construct. This
approach enables an error-handling routine and specifies the location of the routine
within a procedure. The On Error routine takes the following form:

On Error { GoTo [line | 0 | -1] | Resume Next }

Handling ADO.NET Errors 171

13

LISTING 13.1 continued

14 0672323834 Ch13 4/19/02 2:23 PM Page 171

You first have to enable the On Error handler before it can be utilized. The GoTo pro-
vides the branch to an enabled handler. The Resume Next directs the control of flow to
go to the statement immediately following the statement where the error occurred, and
execution continues from that point. The code example in Listing 13.2 illustrates the On

Error construct.

LISTING 13.2 The On Error Construct (13OnError.vb)

Imports System
Imports Microsoft.VisualBasic
namespace HowTo.ADONET24.Samples
public class OnErrorT
public shared sub Main()
Dim myOnErrorT as OnErrorT
myOnErrorT = new OnErrorT()
myOnErrorT.Run()

end sub
public sub Run()
Dim a As Integer = 100
Dim b As Integer = 0
Console.WriteLine(“>>> Enable the error handler <<<”)
On Error Goto EHandler
Err.Clear
Console.WriteLine(“*** WE WILL DO A DIVISION BY ZERO ***”)
a /= b ‘ Divide by zero... arithmetic error
Console.WriteLine(“*** Recovered from error, ending ***”)
Exit Sub
EHandler:

Console.WriteLine(“ *** ERROR HANDLER ***”)
Select Case Err.Number
Case 6

Console.Writeline(“ *** you have divided by zero ***”)
Case Else

Console.Writeline(“ *** other error encountered ***”)
End Select
Resume Next

end sub
end class
end namespace

Let’s compile and execute this one as well to show the logic flow of the On Error con-
struct:

C:\ADOSAMPLES> vbc.exe 13OnError.vb /r:System.dll

172 Hour 13

14 0672323834 Ch13 4/19/02 2:23 PM Page 172

This is followed by the DOS command prompt again (if it is a successful compile).
Otherwise, you will be getting compile errors of one kind or another. Now, to execute,
just specify the sample name at the DOS command prompt and press Enter.

C:\ADOSAMPLES> 13OnError.exe <press enter>
>>> Enable the error handler <<<
*** WE WILL DO A DIVISION BY ZERO ***

*** ERROR HANDLER ***
*** you have divided by zero ***

*** Recovered from error, ending ***

Throw It If You Know It
You can also utilize the Throw statement in either Try/Catch/Finally or On Error con-
structs. The Throw statement raises an exception that is represented by an instance of a
type derived from the System.Exception class.

Here’s a Throw statement with the On Error construct:

On Error Goto Ehandler
Throw New DivideByZeroException()
Ehandler:

If (typeof Err.GetException() Is DivideByZeroException) Then
Console.writeline(“using throw exception setting”)

End If

Or, with the Try/Catch/Finally construct:

Try
a /= b ‘ Divide by zero... arithmetic error

Catch e As Exception When b = 0
Throw New DivideByZeroException()

Typical Errors to Handle
When using the ADO.NET capabilities, much of what you will encounter centers on get-
ting to data sources, pulling data out of data sources and into datasets, manipulation of
the data within your datasets, and pushing that data back out to the data sources. The
errors that you will see the most can be categorized as:

• Connection errors—Failure to connect, stay connected, disconnect, or other con-
nection-related failures

• Data retrieval errors—Failure to get data, fill errors, and so on

• Dataset manipulation errors—Update, delete, or insert issues in your cached
dataset

• Data source manipulation errors—Failures of deletes, inserts, or updates such as
optimistic concurrency violations or primary key constraint violations, and so on

Handling ADO.NET Errors 173

13

14 0672323834 Ch13 4/19/02 2:23 PM Page 173

We will now build up a quick Windows Forms application that will use a
Try/Catch/Finally structure as part of its data refresh operation to handle errors when
connecting to the data source (in this case, the SQL Server Northwind database).

1. Create a new project in VS .NET by choosing File, New, and then choosing the
Project option.

2. When the New Project dialog box appears, choose Visual Basic Projects (or Visual
C# Projects) and Windows Applications. Name this project ADO.NET24hoursERROR.
This creates a default form for you to start from.

3. You will need to access the Customers table. From the Data tab of the Toolbox,
drag a SQLDataAdapter object into your form. This will automatically invoke the
Data Adapter Configuration Wizard. Both the data connection and the data adapter
can be fully configured here.

a. The wizard starts with the Choose Your Data Connection dialog box. If you
already have a connection defined in your project, it will be placed in the
dialog box; otherwise, choose to create a new connection and specify the
appropriate connection information (test the connection as well).

b. Choose the Use SQL Statements option.

c. You will be presented with a Generate the SQL Statements dialog box where
you will simply type in a valid SQL statement, or you can use the Query
Builder option to formulate the SQL query. For this example, just type in the
following query:
SELECT CustomerID, CompanyName, ContactName, ContactTitle, phone
FROM Customers

d. Last, the wizard will show you the tasks that it has done and indicate whether
the SqlDataAdapter has been configured successfully (it should be named
SqlDataAdapter1 along with a SqlConnection named SqlConnection1).

4. Now that the SqlDataAdapter and DataConnection objects have been configured
and added to the form, you must generate a dataset and then add an instance of this
dataset to the form.

a. From the Data menu in Visual Studio, simply choose the Generate Dataset
option. Figure 13.1 shows this option.

b. Now, just choose to create a new dataset using the name CustomerDS. Make
sure you have checked the Customers table and have indicated that the
dataset is to be added to the Designer. Click OK.

c. When this process finishes, a DataSet instance named CustomerDS1 will be
on the form and a DataSet schema will be in the Solutions Explorer (named
CustomerDS.xsd).

174 Hour 13

14 0672323834 Ch13 4/19/02 2:23 PM Page 174

5. The next step is to add the DataGrid control to display the Customer information.

a. Drag a DataGrid object from the Windows Forms tab of the Toolbox onto
the form.

b. Press F4 to go right to the properties of this DataGrid.

c. For the DataSource property, you will need to select the CustomerDS1 data
source.

c. And, for the DisplayMember property, you will select Customers.

d. Go ahead and add a label to the top of the DataGrid entitled “Customer
Inquiry”. And change the form name (text property) if you want.

6. Now we are ready to complete the application by adding the code to fill the
DataSet and refresh the data with a button. We have determined that the best time
to fill the dataset is when the form is brought up (at form load time).

a. Just double-click on the form to create a handler for the form’s Load event.
You will need to clear the dataset first, and then fill the dataset using the
DataAdapter that we defined.
Me.CustOrdDS1.Clear()
Me.SqlDataAdapter1.Fill(Me.CustomerDS1)

b. Next we add a button so that we can refresh the dataset’s data anytime we
want to. Start by dragging a Button object from the Windows Forms Toolbox
onto the form.

c. Press F4 to take you directly to the properties of this button. Change the
name of the button to btnRefresh and the text of the button to Refresh.

Handling ADO.NET Errors 175

13

FIGURE 13.1
Generate a new
dataset for the form.

14 0672323834 Ch13 4/19/02 2:23 PM Page 175

d. Now, double-click the Button object on the form so that you can add the
Try/Catch structure logic. Then you add the following to first clear the
dataset, refill the dataset (which used the SqlDataAdapter and the
SqlConnection), and make sure that no connection error has occurred. If an
error has occurred, display a message box to the user:

Try
Me.CustomerDS1.Clear()
Me.SqlDataAdapter1.Fill(Me.CustomerDS1)

Catch ee As System.Data.SqlClient.SqlException
MessageBox.Show(“Refresh Failed. Check With DBA.”)

End Try

Test It!
That’s it. Now just hit the F5 key and test your application. When the form comes up, it
should already display all the Customer information in the DataGrid. Now, do the fol-
lowing:

1. Click on the Refresh button to make sure it works properly.

2. Bring up the Microsoft SQL Server Service Manager and “pause” the SQL Server
you are using (assuming that no one else is using it right now). What you are doing
is creating an error situation for the Try/Catch in the Refresh button logic.

3. Now, click on the Refresh button again. You should see the message box appear
indicating that an exception has occurred.

In Figure 13.2 you can see the original form displaying a valid DataGrid of Customer
information, the SQL Server Service Manager and the Pause option, and the form
encountering the “Refresh Failed” error that we coded for.

176 Hour 13

FIGURE 13.2
Customer Inquiry form
successful execution,
SQL Server Service
Manager, and
Customer Inquiry form
with Refresh Failed
exception displayed.

14 0672323834 Ch13 4/19/02 2:23 PM Page 176

Now, let’s change the Try/Catch logic to provide the exact error message number and
description that is being returned by the SqlDataAdapter. From the Windows Form
designer, double-click on the Refresh button object we built, and change the logic as fol-
lows:

Try
Me.CustomerDS1.Clear()
Me.SqlDataAdapter1.Fill(Me.CustomerDS1)

Catch ee As System.Data.SqlClient.SqlException
Dim j As Integer
For j = 0 To ee.Errors.Count - 1

MessageBox.Show(“Error # “ & j & ControlChars.Cr & _
“Error: “ & ee.Errors(j).ToString() &
ControlChars.Cr)

Next j
End Try

Now, once again, hit F5 and test your application as follows:

1. Click on the Refresh button to make sure it works properly.

2. Bring up the Microsoft SQL Server Service Manager and “pause” the SQL Server
you are using (assuming that no one else is using it right now). What you are doing
is creating an error situation for the Try/Catch in the Refresh button logic.

3. Now, click on the Refresh button again. You should now see the message box
appear indicating that an exception has occurred.

In Figure 13.3 you can see the original form displaying a valid DataGrid of Customer
information and the form encountering the Refresh error. This time, we see the full SQL
error information in the message box.

Handling ADO.NET Errors 177

13

FIGURE 13.3
Customer Inquiry form
successful execution
and Customer Inquiry
form with SQL error
message displayed.

14 0672323834 Ch13 4/19/02 2:23 PM Page 177

Using RowError of the DataSet
To be much more efficient in responding to individual row error conditions, you can add
error information to the row itself (even at the column level). The DataRow object allows
you to do this by providing a RowError property for each row in the DataSet. As data
rows are processed (for example, when updating them), you can set the RowError prop-
erty for a row to indicate that it has an error. Then, simply use the HasErrors property to
determine whether any error information has been added to any of the rows in the
dataset. You can use the GetErrors method to return and examine only the rows with
errors. It’s all very slick.

Listing 13.3 is a short piece of code that adds a RowError condition to a particular row in
the Customers DataSet (the first row), testing to see if any rows in the DataSet have
errors, and then displaying the company name and error text of any row with an error.

LISTING 13.3 Adding a RowError condition to a Row (13ADOErrors.vb)

. . .
CustomerDS.Tables(“Customers”).Rows(0).RowError = “Invalid Customer row - Error”
if CustomerDS.Tables(“Customers”).HasErrors then

Dim ErrDataRows as DataRow()
ErrDataRows = CustomerDS.Tables(“Customers”).GetErrors()
Console.WriteLine(“DataTable {0} has {1} Error(s)”,

CustomerDS.Tables(“Customers”).TableName, ErrDataRows.Length.ToString())
Dim i as integer
for i = 0 to ErrDataRows.Length -1
Console.WriteLine(“Row Error for {0} **

{1}”,ErrDataRows(i)(“CompanyName”).ToString(),ErrDataRows(i).RowError)
next

else
Console.WriteLine(“DataTable {0} Has no errors”,

CustomerDS.Tables(“Customers”).TableName)
end if

When executed, the preceding code yields:

C:\ADOSAMPLES> 13ADOErrors.exe <press enter>
DataTable Customers has 1 Error(s)
Row Error for ABCDE Company ** Invalid Customer row - Error

And lastly, we can go back and enhance our Customer Inquiry form application to
include a significant validation error-handling improvement that we invoke with a new
Validate button.

1. From the Windows Forms Designer, drag another Button object from the Windows
Forms Toolbox onto the form.

178 Hour 13

14 0672323834 Ch13 4/19/02 2:23 PM Page 178

2. Press F4 to take you directly to the properties of this button. Change the name of
the button to btnValidate and the text of the button to Validate.

3. Now, double-click the Validate button object on the form so that you can add the
following For Each row logic. The logic will check each row to see if the
ContactTitle is “Owner”, and if it finds one, it sets an error for that row and also
sets a specific error for the column of the row. This will have a dramatic effect on
what is displayed in the DataGrid for any data row that has this error condition.

Dim CustomersTable As DataTable
CustomersTable = Me.CustomerDS1.Tables(“Customers”)
Dim row As DataRow
For Each row In CustomersTable.Rows

If (row(“ContactTitle”) = “Owner”) Then
row.RowError = “No Owners Please”
row.SetColumnError(“ContactTitle”,

“Contact cannot be Owners”)
End If

Next row

Now, once again, hit F5 and test your application by just clicking on the Validate button.
You should now see red error indications for each row that has this validate error, and the
ContactTitle column should also have this indication. To clear this validation indication,
just click the Refresh button. Figure 13.4 shows the initial form with all customers and
then the same form after the validation button was clicked.

Handling ADO.NET Errors 179

13

FIGURE 13.4
Customer Inquiry form
successful execution
and Customer Inquiry
form with validate
exceptions displayed.

DataAdapter Events
The ADO.NET DataAdapter exposes three events that you can use to respond to
changes made to data at the data source. These are the RowUpdating event,
RowUpated event, and FillError event. You will typically use the status property to

14 0672323834 Ch13 4/19/02 2:23 PM Page 179

determine what to do about any error that has occurred during the execution of the
DataAdapter.

• RowUpdating event—This event is raised before any update, insert, or delete on a
row has been pushed to the data source. It has only been done at the dataset.

• RowUpdated event—This event is raised after any update, insert, or delete has been
completed to the data source.

• FillError event—This event is raised when an error occurs during a Fill opera-
tion.

By far, the RowUpdated event yields the most value, especially because most coding you
will do must support the optimistic concurrency model and using the RowUpdated method
to handle this condition is very straightforward. The following piece of code implements
the optimistic concurrency approach for an update that utilizes the RowUpdated method
for its handler.

You first have to set up a shared subroutine that will look at whether the UPDATE
statement returned any rows. If it returns a row, the update was successful. If
recordsaffected is 0, the WHERE comparison in the UPDATE statement failed, and this is
an optimistic concurrency violation.

Private Shared Sub OnRowUpdated(sender As Object, updevent
As SqlRowUpdatedEventArgs)

If updevent.RecordsAffected = 0
updevent.Row.RowError = “Optimistic Concurrency Violation”
updevent.Status = UpdateStatus.SkipCurrentRow

End If
End Sub

Then in the main code, you add the handler, fill the dataset, make your updates, and issue
the update back to the data source. The handler will do the rest.

AddHandler CustomerAdapter.RowUpdated, New SqlRowUpdatedEventHandler
(AddressOf OnRowUpdated)

Dim CustomerDataSet As DataSet = New DataSet()
CustomerAdapter.Fill(CustomerDataSet, “Customers”)
CustomerAdapter.Update(CustomerDataSet, “Customers”)
Dim CustRow As DataRow
For Each CustRow In CustomerDataSet.Tables(“Customers”).Rows
If CustRow.HasErrors Then Console.WriteLine(CustRow(0) &

vbCrLf & CustRow.RowError)
if not CustRow.HasErrors then Console.Writeline

(“No optimistic concurrency error found”)
Next

180 Hour 13

14 0672323834 Ch13 4/19/02 2:23 PM Page 180

XML Persisted Row Errors
As mentioned earlier, row errors can also be persisted in the XML structure that is to be
passed to other consumers of XML. The following illustrates the additional XML struc-
ture as provided by the DiffGram XML option. DiffGram is great for dealing with issues
such as optimistic concurrency violations.

Basically, a DiffGram is divided into three sections (blocks). The first one contains the
current data (the current DataSet values block), the second is the original data block
(<diffgr:before> the data as it was read in from the data source before it was modi-
fied), and the third is the error block (<diffgr:errors>) for noting whether any errors
(like optimistic concurrency) have occurred as you processed (updated) the data.

For a more complete explanation, take a look at Hour 14, “Managing ADO.NET
Concurrency.” A full example is described in that hour.

Summary
In this hour, you’ve seen the two major error-handling constructs of Try/Catch/Finally
and On Error in action. These constructs along with the general design considerations
should help you in your error-handling code. The general rule of thumb is to overhandle
errors during development and trim back the excess when you near implementation. In
addition, you’ve had a chance to build up a Windows Forms application that utilized a
few of the typical error-handling situations that you will face day in and day out. These
techniques, coupled with the data updating error conditions, will cover most of what you
need for ADO.NET.

Q&A
Q What is the best construct for handling errors?

A The Try/Catch/Finally structure is becoming the most common error-handling
construct. It has significant advantages over On Error.

Q How will I know what errors to test for?

A You test for error conditions that are right for the application you are building. See
the earlier discussion on design considerations.

Handling ADO.NET Errors 181

13

14 0672323834 Ch13 4/19/02 2:23 PM Page 181

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. What is the Catch block used for?

a. Processing error conditions

b. Else processing

c. Common processing

2. True or false: ADO.NET cannot tell you if you have any errors indicated in a
DataSet.

3. True or false: Always close a connection in the Finally block.

4. You can set errors in a DataSet at what level?

a. DataTable level

b. DataRow level

c. Column level

d. Data type level

5. True or false: There is no way to pass DataRow error indications to other XML con-
sumers or Web services.

6. What is the most commonly used DataAdapter event?

a. FillError event

b. DataUpdated event

c. RowUpdated event

d. RowUpdating event

Exercise
For the Windows Forms application that we developed in this chapter, add a new button
to the form that will perform a validation for any NULL phone number columns. Name
the button “NO PHONE”. It’s best to go back and follow the same type of addition that
we did for the Validate button with ContactTitles.

182 Hour 13

14 0672323834 Ch13 4/19/02 2:23 PM Page 182

HOUR 14
Managing ADO.NET
Concurrency

Concurrency is critical in any multiuser environment where data is to be
updated. Concurrency, as you can see in Figure 14.1, is best thought of as
“multiple users vying to update data without affecting each other as they
update it.” In this illustration, each client application (Client A, Web Client
B, and Web Client C) has read the same Customer data values at approxi-
mately the same time. They all see the same Customer data, and some will
choose to update this data and expect their updates to be successful. The
type of concurrency model you utilize will directly determine how these data
resources are treated (held/locked/enqueued), what type of performance to
expect, and how scalable your application will be.

In the classic client/server architectures, most programming languages and
database servers support multiple types of concurrency models such as opti-
mistic, pessimistic, and everything in between (different isolation levels). In
the multitiered .NET architecture, the focus is on utilizing a “disconnected”
mode of data retrieval to minimize data concurrency issues and to increase
scalability. This correlates well with using the optimistic concurrency
approach.

15 0672323834 Ch14 4/19/02 2:23 PM Page 183

In this hour, you will learn about the following topics:

• An overview of optimistic versus pessimistic concurrency

• What’s happening at the data provider level

• How to use data in the DataSet to compare against what’s in the database before
updates are done

• Utilizing a timestamp approach if available

• Using the DataAdapter.RowUpdated event in conjunction with some of these
approaches

• How DiffGrams and XML handle optimistic concurrency

Optimistic Versus Pessimistic Concurrency
An old adage says: “If I can get something but it is tainted, it does me no good to get it
in the first place.”

Well, that’s what managing concurrency is all about—making sure you can update data
along with the guarantee that what you are updating hasn’t changed because someone
else came along and updated it right out from under you. Let’s first look at optimistic
concurrency because it is the preferred approach in most .NET programming.

184 Hour 14

FIGURE 14.1
A typical multiuser
data access in a .NET
architecture of
Customer data stored
in Microsoft SQL
Server 2000.

Microsoft

Customers

ContactName
ContactTitle
Address
City
Region
PostalCode
Country
Phone

CustomerID
CompanyName

CustomerID
ABC
ALFKI
ANTON
BERTU
BLAUS

ContactName
Peach
Maria Anders
Antonio Moreno
Vilay Bertucci
Hanna Moos

CompanyName
ABC Company
Alfreds Futterkiste
Antonio Moreno Taqueria
Bertucci Pizza
Blauer See Delikatessen

Data/Resource
Tier

Business
Tier

Presentation
Tier

SQL Server
2000

Client A Web Client B

Web Client C

15 0672323834 Ch14 4/19/02 2:23 PM Page 184

Optimistic concurrency allows for multiple users to read the same data row at the same
time without having to lock it (for update). Then any one of the users can change
(update) the data values at this point. An optimistic concurrency violation will occur
when a user tries to update the previously read data, but another user has already updated
it since the last time the first user read it. That can really be a disaster if not understood
well or not handled properly.

What is so significant here is that by not locking the data resource (the data row) for
update, the whole level of performance of your system is improved due to the major
reduction of additional server resources needed to lock data. And, for an application to
hold a lock on a data resource, it must also maintain a persistent connection to the data-
base server that houses the data. Because this is not happening in optimistic concurrency
(no persistent connection is needed and no data lock is being used), connections to the
database server are available to handle many more clients in less time. This directly
achieves the scalability and performance goals we mentioned earlier.

Looking back at Figure 14.1, let’s describe optimistic concurrency in a multiuser situa-
tion with Client A and Web Client B:

1. Client A reads the Customer data row for customerID = ‘ABC’ at 9:14:32 AM. The
data values are as follows:

CustomerID CompanyName ContactName

ABC ABC Company Peach

2. Web Client B reads the same Customer data row at 9:14:34 AM. The data values
are as follows:

CustomerID CompanyName ContactName

ABC ABC Company Peach

3. Web Client B updates the ContactName value from “Peach” to “Donald Renato” at
9:14:40 AM. These updates are committed to the database in a single short transac-
tion and Web Client B is finished. This update succeeds because the values in the
database at the time of the update match the originally read values exactly. The
data values in the database are now as follows:

CustomerID CompanyName ContactName

ABC ABC Company Donald Renato

4. Meanwhile, Client A updates the ContactName value from “Peach” (as they see it
in their locally cached DataSet) to the value of “Peter Johnson” at 9:14:42 AM.
They then try to commit this change back to the database but have now

Managing ADO.NET Concurrency 185

14

15 0672323834 Ch14 4/19/02 2:23 PM Page 185

encountered an optimistic concurrency violation. In other words, the values in the
database no longer match the original values that Client A was expecting (or was
working with). Client A must now decide whether they should make their update
(overriding what Web Client B did) or cancel their current update.

In general, the optimistic concurrency approach is highly successful when the applica-
tion’s data has minimal contention situations (when the application’s users rarely work
on the same data at the same time) and when there are many, many users.

In contrast, pessimistic concurrency must lock rows at the data source to prevent other
users from updating that data from under them. The lock must be held for the duration of
their update intent time and will be released when they either (1) update the data and
commit the changes or (2) just release the update intent. The issues here are enlisting the
data source’s lock manager to hold a lock on the intended data, keeping a persistent con-
nection maintained during the entire intent and update time, and the extra coding that
must establish explicit transactions and commit points. If we look at the same sequence
of events described earlier, but utilizing a pessimistic concurrency approach, our example
now changes:

1. Client A reads the Customer data row for customerID = ‘ABC’ at 9:14:32 AM.
Must also “lock” this data for the length of time of their update intent. In addition,
a persistent connection must be maintained with the data source in order to hold
the lock for this user. The data values are as follows:

CustomerID CompanyName ContactName

ABC ABC Company Peach

2. Web Client B reads the same Customer data row at 9:14:34 AM. The data can be
read by others but not updated because of the lock being held on it. The data values
are as follows:

CustomerID CompanyName ContactName

ABC ABC Company Peach

3. Web Client B updates the ContactName value from “Peach” to “Donald Renato” at
9:14:40 AM. This update fails because the data is being locked by Client A. No
changes are made to the data source. The data values in the database are still

CustomerID CompanyName ContactName

ABC ABC Company Peach

4. Meanwhile, Client A updates the ContactName value from “Peach” to the value of
“Peter Johnson” at 9:14:42 AM. They then try to commit this change back to the

186 Hour 14

15 0672323834 Ch14 4/19/02 2:23 PM Page 186

database and succeed (and their locks are released). The data values in the data-
base are now

CustomerID CompanyName ContactName

ABC ABC Company Peter Johnson

Very different results from that of optimistic concurrency!

For the pessimistic concurrency approach, the cost of holding those locks, maintaining
the persistent connections, and doing the extra coding needed is huge. The results may be
what was desired, but at what price to scalability and performance? Using the pessimistic
concurrency approach is much better suited for systems that have heavy contention for
data, fewer users, and where the cost of protecting that data with locks is less than the
cost of rolling back transactions if concurrency conflicts occur.

Managing ADO.NET Concurrency 187

14

Remember, you are always at the mercy of the underlying database man-
agement system’s locking granularity (row-level, page-level, table-level, key-
range, and so forth). If the DBMS is using page-level (default) locking and if
there are many data rows in a single page of a table that you are updating,
you may be holding up others from updating their data even though you
are not updating the same data. Their update will eventually succeed, but
you have inadvertently slowed up that process. Good database design along
with using the optimistic concurrency approach will usually minimize this sit-
uation.

Coding for Optimistic Concurrency
In general, there are two basic coding techniques you can use to implement the opti-
mistic concurrency approach within ADO.NET. The default approach is to compare each
column of data in the database (or other data provider data source) table to the original
data values you read into your DataSet (cached copy) as part of your UPDATE statement
(WHERE clause). This will detect any optimistic concurrency violations. If any of the data-
base data values have changed since you last read the data row, your UPDATE statement
will fail (as you would probably want it to). At a minimum, this would force you to
reread the data values from the database, see what they are, and see if you wanted to
again update some data value further.

Another, quicker technique of doing the same thing is to utilize a timestamp column that
may be available in the data table you are working with (as is available in MS SQL
Server tables that have defined one). This technique allows you to read a timestamp

15 0672323834 Ch14 4/19/02 2:23 PM Page 187

value that is part of the database data row and then compare timestamps at the time you
want to update the data back to the database. If the timestamp value has changed since
the last time you read the data values, your UPDATE statement will fail (again, as you
would want it to do).

Comparing DataSet Values Against the
Database for Optimistic Concurrency

To do optimistic concurrency correctly (with 100% data integrity), you really should
compare all the original data column’s data values against what is in the database for
your update to be considered valid (not violating optimistic concurrency). Perhaps
another user has updated another column’s data values for a particular data row (like the
ContactName column’s data value) and, at the same time, you have updated some other
column’s data values (like the ContactTitle column’s data value). The resulting data row
(after both of the updates) will have potentially mismatched data values for this particu-
lar data row (the ContactName data value doesn’t correspond to the ContactTitle data
value any longer). This can potentially cause a difficult data integrity anomaly. It would
look like this:

1. Client A reads the ContactName value from the database for CustomerID = ‘ABC’
at 9:14:42 AM. The data values in the database are now:

CustomerID ContactName ContactTitle

ABC Peach Owner

2. Client B reads the ContactTitle value from the database for the same CustomerID =
‘ABC’ at 9:14:43 AM. The data values in the database are still:

CustomerID ContactName ContactTitle

ABC Peach Owner

3. Client A updates the ContactName value from “Peach” to the value of “Peter
Johnson” at 9:14:55 AM. Client A’s application only compared the original
ContactName value (that they read into cache) with what is on the database at the
time of their update. These matched, so they committed their update. The data val-
ues in the database are now:

CustomerID ContactName ContactTitle

ABC Peter Johnson Owner

188 Hour 14

15 0672323834 Ch14 4/19/02 2:23 PM Page 188

4. Client B updates the ContactTitle value from “Owner” to the value of “Assistant
buyer” at 9:15:05 AM. Client B’s application only compared the original
ContactTitle value (that they read into cache) with what is on the database at the
time of their update. These matched, so they committed their update. The data val-
ues in the database are now:

CustomerID ContactName ContactTitle

ABC Peter Johnson Assistant buyer

Unfortunately, the data for CustomerID = ‘ABC’ is now all messed up. Peter Johnson is
the owner, not the assistant buyer of the ABC company. The application just wasn’t com-
pletely implementing optimistic concurrency correctly.

Listing 14.1 is a short piece of Visual Basic code that you can execute as practice for
learning more on this subject. This example uses the ADO.NET DataSet fill and update
approach from the Customers table in the Northwind database (that comes with
Microsoft SQL Server).

CustomerAdapter.Fill(CustomerDataSet, “Customers”)
CustomerAdapter.Update(CustomerDataSet, “Customers”)

It will also save the original data row values as they were originally read from the data-
base.

OldParms = CustomerAdapter.UpdateCommand.Parameters.Add(“@oldCustomerID”,
SqlDbType.NChar, 5, “CustomerID”)

OldParms.SourceVersion = DataRowVersion.Original

These will be used in a comparison (WHERE clause) that will be part of the UPDATE state-
ment.

CustomerAdapter.UpdateCommand = New SqlCommand(
“UPDATE Customers (CustomerID, CompanyName, ContactName) “ &
“VALUES(@CustomerID, @CompanyName, @ContactName) “ & _
“WHERE CustomerID = @oldCustomerID AND CompanyName = @oldCompanyName “ &
“ AND ContactName = @oldContactName”, nwindConn)

By doing this comparison of the original data values read from the database with what’s
in the database at the time the update is issued, you will be guaranteeing yourself that no
other user has slipped in and updated something before you. This is optimistic
concurrency.

LISTING 14.1 Comparing Original Data Values to Current Data Values (File
14OptCon.vb)

Imports System
Imports System.Data

Managing ADO.NET Concurrency 189

14

15 0672323834 Ch14 4/19/02 2:23 PM Page 189

Imports System.Data.SqlClient
Imports Microsoft.VisualBasic
namespace HowTo.ADONET24.Samples
Public Class OptConSample
Public Shared Sub Main()
Dim nwindConn As SqlConnection = New SqlConnection

(“Data Source=localhost;Integrated Security=SSPI;Initial
➥Catalog=northwind”)

Dim CustomerAdapter As SqlDataAdapter = New SqlDataAdapter
(“SELECT CustomerID, CompanyName, ContactName “ &
“ FROM Customers ORDER BY CustomerID”, nwindConn)

CustomerAdapter.UpdateCommand = New SqlCommand
(“UPDATE Customers (CustomerID, CompanyName, ContactName) “ &
“VALUES(@CustomerID, @CompanyName, @ContactName) “ & _
“WHERE CustomerID = @oldCustomerID AND CompanyName = @oldCompanyName “ &
“ AND ContactName = @oldContactName”, nwindConn)

CustomerAdapter.UpdateCommand.Parameters.Add
(“@CustomerID”, SqlDbType.NChar, 5, “CustomerID”)

CustomerAdapter.UpdateCommand.Parameters.Add
(“@CompanyName”, SqlDbType.NVarChar, 40, “CompanyName”)

CustomerAdapter.UpdateCommand.Parameters.Add
(“@ContactName”, SqlDbType.NVarChar, 30, “ContactName”)

‘Set up OldParms to hold the rows original values
‘These are then used in the WHERE clause for the
‘optimistic concurrency comparison
Dim OldParms As SqlParameter
OldParms = CustomerAdapter.UpdateCommand.Parameters.Add

(“@oldCustomerID”, SqlDbType.NChar, 5, “CustomerID”)
OldParms.SourceVersion = DataRowVersion.Original
OldParms = CustomerAdapter.UpdateCommand.Parameters.Add

(“@oldCompanyName”, SqlDbType.NVarChar, 40, “CompanyName”)
OldParms.SourceVersion = DataRowVersion.Original
OldParms = CustomerAdapter.UpdateCommand.Parameters.Add

(“@oldContactName”, SqlDbType.NVarChar, 30, “ContactName”)
OldParms.SourceVersion = DataRowVersion.Original
Dim CustomerDataSet As DataSet = New DataSet()
Console.Writeline (“Go get some customer data - Fill”)
CustomerAdapter.Fill(CustomerDataSet, “Customers”)
Console.Writeline (“Update the rows”)
CustomerAdapter.Update(CustomerDataSet, “Customers”)
Dim CustRow As DataRow
Console.Writeline (“Look for optimistic concurrency violations”)
For Each CustRow In CustomerDataSet.Tables(“Customers”).Rows
Console.Writeline (“Looking for errors for row with CustomerID of “ &

CustRow(0))
If CustRow.HasErrors Then Console.WriteLine(CustRow(0) &

vbCrLf & CustRow.RowError)
if not CustRow.HasErrors then Console.Writeline

(“No optimistic concurrency error found”)

190 Hour 14

LISTING 14.1 continued)

15 0672323834 Ch14 4/19/02 2:23 PM Page 190

Next
Console.Writeline (“Show contents of DataSet”)
For each CustRow in CustomerDataSet.Tables(“Customers”).Rows

Console.Writeline(“Customer Contacts Selected: “
+ CustRow(“ContactName”).ToString())

Next
End Sub
End Class
End namespace

To execute this code, you must first quickly compile it from a DOS command prompt.
Change directories to the location of the VB source code that contains this example
(14optcon.vb). You might need to change the data source statement in the
SQLConnection string (Data Source=localhost) to point to a specific MS SQL Server
instance if it can’t resolve “localhost”. Then just compile the code as follows:

C:\ADOSAMPLES> vbc.exe 14optcon.vb /r:System.dll /r:System.Data.dll
/r:System.Xml.dll

You should see the following .NET VB compiler messages:

Microsoft (R) Visual Basic .NET Compiler version 7.00.9447
for Microsoft (R) .NET Framework version 1.00.3617
Copyright (C) Microsoft Corporation 1987-2001. All rights reserved.

This will be followed by the DOS command prompt again (if it is a successful compile).
Otherwise, you will be getting compile errors of one kind or another.

After the code has compiled successfully, you will need to make sure that you have
Microsoft SQL Server up and running and the Northwind database has been installed
(usually by default). To execute this sample, just specify the sample name at the DOS
command prompt and press Enter.

C:\ADOSAMPLES> 14OptCon.exe <press enter>
Go get some customer data - Fill
Update the rows
Look for optimistic concurrency violations
Looking for errors for row with CustomerID of ABC
No optimistic concurrency error found
Looking for errors for row with CustomerID of ALFKI
No optimistic concurrency error found
. . .
Looking for errors for row with CustomerID of WOLZA
No optimistic concurrency error found
Show contents of DataSet
Customer Contacts Selected: Peach

Managing ADO.NET Concurrency 191

14

LISTING 14.1 continued)

15 0672323834 Ch14 4/19/02 2:23 PM Page 191

Customer Contacts Selected: Maria Anders
Customer Contacts Selected: Ana Trujillo
. . .
Customer Contacts Selected: Zbyszek Piestrzeniewicz

Great! To make things a bit more robust, you can add in an OnRowUpdated subroutine as
follows:

Private Shared Sub OnRowUpdated(sender As Object, updevent As
SqlRowUpdatedEventArgs)

If updevent.RecordsAffected = 0
updevent.Row.RowError = “Optimistic Concurrency Violation”
updevent.Status = UpdateStatus.SkipCurrentRow

End If
End Sub

The test for ZERO records affected will be true if the UPDATE statement comparisons fail
(indicating that some original data did not match what is now in the database—thus an
optimistic concurrency violation).

Then you add the SqlRowUpdatedEventHandler handler to the main subroutine as fol-
lows:

AddHandler CustomerAdapter.RowUpdated,
New SqlRowUpdatedEventHandler(AddressOf OnRowUpdated)

Now each row that violates optimistic concurrency will be marked as having this error.
This also makes it much easier to narrow in on the rows that have only this error. Then
you can decide what you want to do with this update situation.

192 Hour 14

Timestamps in ANSI SQL-92 and Higher
In ANSI-SQL 92 and higher, the timestamp column is just a datetime column.
In SQL Server 2000, you can also use a rowversion data type that is equiva-
lent to the old SQL Server timestamp column. If you specify the timestamp
column in SQL Server 2000, it will behave as it always has. The real trick
comes when you are looking at other data providers’ interpretations of
timestamp. Don’t get these mixed up! SQL storage is Varbinary 8 (null), or
binary 8 (not null) for the timestamp column.

Using a Timestamp for Optimistic
Concurrency

If you are using a data source (table) on a DBMS such as Microsoft SQL Server 2000
that allows for a timestamp column to be defined in a table, the coding for optimistic

15 0672323834 Ch14 4/19/02 2:23 PM Page 192

concurrency can be made much simpler. You must remember, though, that the code you
write for DBMS-specific nuances (like that of timestamp) must only be used with that
DBMS.

The timestamp column, if present in a table, will be updated automatically each time the
data row is changed. This provides a single table column that can be used for comparison
in the UPDATE statement rather than having to compare all the data columns. However,
you must first have a timestamp column in the table that you are using.

Listing 14.2 is the Customers table (renamed CustomersTS for TimeStamp) with a time-
stamp column (as supported by MS SQL Server 2000).

LISTING 14.2 The Customer Table with a Timestamp Column (File
14OptConTS.sql)

CREATE TABLE [dbo].[CustomersTS] (
[CustomerID] [nchar] (5) NOT NULL ,
[CompanyName] [nvarchar] (40) NOT NULL ,
[ContactName] [nvarchar] (30) NULL ,
[ContactTitle] [nvarchar] (30) NULL ,
[Address] [nvarchar] (60) NULL ,
[City] [nvarchar] (15) NULL ,
[Region] [nvarchar] (15) NULL ,
[PostalCode] [nvarchar] (10) NULL ,
[Country] [nvarchar] (15) NULL ,
[Phone] [nvarchar] (24) NULL ,
[Fax] [nvarchar] (24) NULL ,
timestamp

)

Taking advantage of the timestamp column is very similar to what we did before except
that we only need to save this one column for comparison: the timestamp column (other
than the column(s) that are needed to locate the row itself—such as CustomerID).

This time, we will read the rows and the timestamp column.

Dim CustomerAdapter As SqlDataAdapter = New SqlDataAdapter
(“SELECT CustomerID, ContactName, timestamp “ &
“FROM CustomersTS ORDER BY CustomerID”, nwindConn)

We then must save the original timestamp values for use in our comparison later.

OldParms = CustomerAdapter.UpdateCommand.Parameters.Add
(“@oldTimestamp”, SqlDbType.Varbinary, 8, “timestamp”)

OldParms.SourceVersion = DataRowVersion.Original

Managing ADO.NET Concurrency 193

14

15 0672323834 Ch14 4/19/02 2:23 PM Page 193

And then we will only need to supply this additional one column in the UPDATE state-
ment.

CustomerAdapter.UpdateCommand = New SqlCommand
(“UPDATE CustomersTS (CustomerID, ContactName, timestamp) “ &
“VALUES(@CustomerID, @ContactName, null) “ & _

“WHERE CustomerID = @oldCustomerID AND timestamp = @oldTimestamp”, nwindConn)

Again, if any other user has updated the data row before your update is executed, the
timestamp value would have changed and your update will fail (optimistic concurrency
violation).

There is also another comparison syntax for issuing an update in Microsoft SQL Server
(up through SQL Server 2000) when using timestamp. It is called the TSEQUAL update
syntax. When you use this syntax, it yields a true or false result when the TSEQUAL por-
tion is executed. It is as follows:

CustomerAdapter.UpdateCommand = New SqlCommand
(“UPDATE CustomersTS (CustomerID, ContactName, timestamp) “ &
“VALUES(@CustomerID, @ContactName, null) “ & _
“WHERE CustomerID = @oldCustomerID AND TSEQUAL “ &
“(timestamp, @oldTimestamp) “, nwindConn)

This is basically the same thing as before, but just specified slightly differently. The data
row is located by using the CustomerID comparison, and TSEQUAL yields true or false
depending on the results of the timestamp comparison.

XML and Optimistic Concurrency
An XML format can also be used to identify the current and original data values (data
elements) along with row error information and row order. This is referred to as the
DiffGram XML format. The DiffGram XML format is what is usually used in the .NET
Framework to send and receive information by the applications. It is what is serialized
for transport across a network connection to other applications or services and is the per-
sistent DataSet representation. You load up the contents of the DataSet from XML with
the ReadXml method and write the contents of this DataSet to XML using the WriteXml
method. One of the options you have is to specify that the contents be read or written in
a DiffGram XML format. This is mentioned here because you can use the DiffGram
XML format to update data in tables in a Microsoft SQL Server 2000 database environ-
ment. Also, the DiffGram format is pretty much already set up to handle your optimistic
concurrency needs.

Basically, a DiffGram is divided into three sections (blocks). The first one contains the
current data (the current DataSet values block), the second is the original data block

194 Hour 14

15 0672323834 Ch14 4/19/02 2:23 PM Page 194

(<diffgr:before> the data as it was read in from the data source before it was modi-
fied), and the third is the error block (<diffgr:errors>) for noting whether any errors
(such as optimistic concurrency) have occurred as you processed (updated) the data.

As you can see from the following DiffGram example, the data row with DiffGram ID of
“Customers1” has been modified (diffgr:hasChanges=”modified”), and there is a cor-
responding <diffgr:before> entry that contains the original values as they were read
from the database. These will be used in checking for optimistic concurrency violations.

In addition, the data row DiffGram ID of “Customers2” shows that an error was encoun-
tered when it was updated (diffgr:hasErrors=”true”). Also, there is a corresponding
entry in the diffgr:errors block that shows that the error is an “Optimistic
Concurrency Violation.”

<diffgr:diffgram xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”
xmlns:diffgr=”urn:schemas-microsoft-com:xml-diffgram-v1”>

<CustomerDataSet>
<Customers diffgr:id=”Customers1” msdata:rowOrder=”0”

diffgr:hasChanges=”modified”>
<CustomerID>ABC </CustomerID>
<ContactName>Peter Johnson</ContactName>
</Customers>
<Customers diffgr:id=”Customers2” msdata:rowOrder=”1” diffgr:hasErrors=”true”>

<CustomerID>ALFKI</CustomerID>
<ContactName>Maria Anders</ContactName>

</Customers>
<diffgr:before>
<Customers diffgr:id=”Customers1” msdata:rowOrder=”0”>

<CustomerID>ABC </CustomerID>
<ContactName>Peach</ContactName>

</Customers>
</diffgr:before>
<diffgr:errors>

<Customers diffgr:id=”Customers2”
diffgr:Error=”Optimistic Concurrency Violation.”/>

</diffgr:errors>
</CustomerDataSet>
</diffgr:diffgram>

Summary
In this hour, you became familiar with the differences between pessimistic and optimistic
concurrency models along with a few techniques of implementing optimistic concurrency
for .NET. The XML format of the DiffGram was also described so that you can easily
consume XML into any type of .NET application and still be able to implement

Managing ADO.NET Concurrency 195

14

15 0672323834 Ch14 4/19/02 2:23 PM Page 195

optimistic concurrency from what it contains. If you use this approach, your applications
are positioned to be high-performing and scalable from the start.

Q&A
Q Is it wrong to create an explicit transaction (Begin Trans/Commit Trans) in

.NET?

A No, not at all. This is pessimistic concurrency and it just won’t scale as well as
optimistic concurrency. However, it might be what your .NET application requires.

Q What type of applications should I be using optimistic concurrency with?

A Using an optimistic concurrency approach is highly successful when the applica-
tion’s data has minimal contention situations (when the application’s users rarely
work on the same data at the same time) and when there is a high volume of
users—very optimal for Web applications.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. What must be maintained when using the pessimistic concurrency approach?

a. Locks on data resources

b. Database connections

c. Events

2. In general, how is optimistic concurrency implemented?

a. Compare original values to current values in the data source

b. Identify key changes, then commit updates

c. Delete old values, then insert new values

3. True or false: Pessimistic concurrency is designed for fast, scalable applications in
.NET.

4. What should be used when using the optimistic concurrency approach and XML?

a. Blocks

b. Tags

c. DiffGrams

196 Hour 14

15 0672323834 Ch14 4/19/02 2:23 PM Page 196

Exercise
From the optimistic concurrency code samples, modify 14optcon.vb to utilize the
DataAdapter.RowUpdated handler. When completed, this can serve as a template for all
of your coding.

Managing ADO.NET Concurrency 197

14

15 0672323834 Ch14 4/19/02 2:23 PM Page 197

15 0672323834 Ch14 4/19/02 2:23 PM Page 198

HOUR 15
Working with Stored
Procedures

In the preceding hour, you saw various techniques for managing concur-
rency issues and eliminating points of contention for data in your applica-
tion. In this hour, you’ll learn how to work with stored procedures, which
offer a superior way to access and modify the data in a database. Although
stored procedures are offered on several different platforms, including
Oracle, this hour concentrates on using stored procedures with Microsoft
SQL Server.

In this hour, you’ll learn how to

• Use SQL Server Enterprise Manager to create and edit stored proce-
dures

• Use SQL Query Analyzer to test your stored procedures

• Call a stored procedure from ADO.NET and retrieve the results of a
query

• Call a stored procedure and pass arguments to achieve dynamic func-
tionality

16 0672323834 Ch15 4/19/02 2:24 PM Page 199

What Are Stored Procedures?
In the Microsoft SQL Server documentation, a stored procedure is defined as “a precom-
piled collection of SQL statements and optional control-of-flow statements stored under
a name and processed as a unit.” Put more simply, a stored procedure is like a method or
function—it performs a set of actions on the data in your database. They normally encap-
sulate an area of functionality, such as adding a new record to a table, or returning a spe-
cific set of information.

Stored procedures offer a number of benefits. First, because they are precompiled, they
generally perform better than a straight SQL call directly from your application.
Additionally, by channeling all data access in your application through a set of stored
procedures, you can more easily debug and manage your code. Also, keep in mind that
changes made in a stored procedure do not directly require you to recompile your appli-
cation.

To add a new stored procedure to the Northwind Microsoft SQL database, perform these
steps:

1. Load SQL Server Enterprise Manager, found in the Microsoft SQL Server program
group.

2. Expand the tree “Microsoft SQL Servers,” “SQL Server Group,” and locate your
database server. With SQL installed locally, the default server will be (LOCAL) as
seen in Figure 15.1.

3. Locate and expand the Northwind database. Select Stored Procedures. On the right
side of the screen, you’ll see any default stored procedures included with the
Northwind database.

4. Right-click anywhere on the right pane of the Enterprise Manager and select New
Stored Procedure. As shown in Figure 15.2, this brings up a very basic text editor
that will enable you to input your stored procedure.

5. Erase the default text in the stored procedure window and input the code from
Listing 15.1. After you select OK, a very simple stored procedure is created that
will perform a query and return the resultset.

LISTING 15.1 A Simple Stored Procedure

CREATE PROCEDURE [Customers_Get] AS

SELECT
CustomerID,
CompanyName,

200 Hour 15

16 0672323834 Ch15 4/19/02 2:24 PM Page 200

ContactName,
Address,
City,
Phone

FROM
Customers

Working with Stored Procedures 201

15
LISTING 15.1 continued

FIGURE 15.1
The Northwind data-
base seen in the
Microsoft SQL
Enterprise Manager.

There are several ways to test the stored procedure. Probably the simplest way to test is
to load up another of SQL Server’s management tools called the Query Analyzer. It can
be found in the same program group as the Enterprise Manager. After loading the Query
Analyzer, enter (local) as your servername if SQL Server is running locally. Otherwise,
enter the name of your server. After the Query Analyzer is loaded, your screen will look
like Figure 15.3.

Before you can test the stored procedure, you first must select the Northwind database
from the database drop-down list. Now, the Query Analyzer is ready to process SQL
statements against Northwind. You can run any type of SQL statement against the data-
base from this window. To run a stored procedure, you can simply type the following:

exec stored_procedure_name

16 0672323834 Ch15 4/19/02 2:24 PM Page 201

FIGURE 15.3
The SQL Query
Analyzer also enables
you to create stored
procedures.

202 Hour 15

FIGURE 15.2
Creating a new stored
procedure using
Microsoft SQL
Enterprise Manager.

If your stored procedure accepts any arguments, you can add them after the stored proce-
dure’s name, separated by commas. If the stored procedure returns results, they will be
displayed in the bottom half of the screen of the Query Analyzer, as seen in Figure 15.4.

16 0672323834 Ch15 4/19/02 2:24 PM Page 202

In addition to returning a resultset, it’s possible to pass specific values into and out of the
stored procedure, just like method arguments. Stored procedure arguments, called para-
meters, are defined just after the stored procedure name, as you can see in Listing 15.2.
Stored procedure variables always have the “@” symbol prepended to their name.
Following the parameter declaration, the data type and length of the parameter is
declared, as well. The stored procedure in Listing 15.2 takes a CustomerID as a parame-
ter. The parameter is used in the WHERE portion of the query. Only customers with the
CustomerID you pass in will be returned by the query.

LISTING 15.2 A Stored Procedure with an Input Parameter

CREATE PROCEDURE Customer_GetByID
(

@CustomerID nchar(5)

Working with Stored Procedures 203

15
FIGURE 15.4
The SQL Query
Analyzer displays the
results of a query.

This section only scratches the surface of what the Query Analyzer is capable
of. You can actually use the Query Analyzer to optimize table indexes and to
display SQL Server’s execution plan for your query, along with the time it
takes to perform each step. This is an invaluable tool in optimizing your
queries. For more information, consult Microsoft SQL Server Books Online,
found in the Microsoft SQL Server program group.

16 0672323834 Ch15 4/19/02 2:24 PM Page 203

)
AS
SELECT

ContactTitle,
ContactName,
CompanyName,
Address,
City,
Region,
PostalCode,
Phone

FROM
Customers

WHERE
CustomerID = @CustomerID

It’s also possible to create a parameter used to return extra information. These are called
output parameters. By simply placing the OUTPUT keyword after the parameters’ type dec-
laration, you can use the parameter to store specific information to return.

Now that you’ve seen how to create and test stored procedures, it’s time to see how to
work with stored procedures using ADO.NET.

Executing a Stored Procedure
There are a few different ways to execute stored procedures within ADO.NET. The first
section following uses methods you’ve already seen. Then, you’ll see the generally
accepted standard way of executing the stored procedure.

Using Exec()
In Hour 6, “Retrieving Data from the Data Source,” you saw how to create Connection,
Command, and DataReader objects and use them to retrieve data from your database. As
you recall, the ExecuteReader() method of the DataReader object returns a forward-
only, read-only resultset, which you can then use to bind to a list control, or step through
manually.

Almost precisely the same code can be reused to call a stored procedure. Rather than
placing a query into the Command object, you can call the stored procedure directly, as
you did with the Query Analyzer. Listing 15.3 shows a Web form that calls the
Customers_Get stored procedure using this method.

204 Hour 15

LISTING 15.2 continued

16 0672323834 Ch15 4/19/02 2:24 PM Page 204

LISTING 15.3 A Simple Stored Procedure

<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)
‘Create and Open Connection
Dim conn as SqlConnection = new SqlConnection(“Data Source=” + _

“localhost;Initial Catalog=northwind;UID=sa;PWD=;”)
conn.Open()

‘Create Command object
Dim cmd as SqlCommand = new SqlCommand(“Exec Customers_Get”, conn)

Dim nwReader as SqlDataReader = cmd.ExecuteReader()

customers.DataSource = nwReader
customers.DataBind()

End Sub
</script>

</HEAD>
<BODY>

<h1>Creating a DataSet</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”customers” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

This method works quite well for stored procedures that only return data. However, call-
ing stored procedures using this method makes it impossible to access any output para-
meters that the stored procedure may have. In the next section, you’ll see another way to
call a stored procedure that gives you full access to these values.

Working with Stored Procedures 205

15

16 0672323834 Ch15 4/19/02 2:24 PM Page 205

Specifying CommandType
The Command object has a property named CommandType. Normally, you do not need to
worry about this property because, by default, ADO.NET assumes you will be sending a
query directly to the database, instead of calling a stored procedure. To tell ADO.NET
that you’re calling a stored procedure, you set the CommandType property as in the follow-
ing line of code:

cmd.CommandType = CommandType.StoredProcedure

Then you only need to place the name of the stored procedure in the Command object. The
ADO.NET code in Listing 15.4 can be placed into the preceding example in Listing
15.3, and will function identically.

LISTING 15.4 Another Way to Call a Stored Procedure

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

‘Create and Open Connection
Dim conn as SqlConnection = new SqlConnection(_

“Data Source=localhost;” + _
“Initial Catalog=northwind;UID=sa;PWD=;”)

‘Create Command
Dim cmd as SqlCommand = new SqlCommand(“Customers_Get”, conn)
cmd.CommandType = CommandType.StoredProcedure

conn.Open()
Dim nwReader as SqlDataReader = cmd.ExecuteReader()

customers.DataSource = nwReader
customers.DataBind()

conn.Close()
nwReader.Close()

End Sub
</script>

Now that you’ve seen how to call simple stored procedures from ADO.NET, it’s time to
see how to call some stored procedures that have input and output parameters.

Using Parameters
The Command object contains a collection of stored procedure parameters named, aptly
enough, Parameters. If your stored procedure requires input parameters or returns values

206 Hour 15

16 0672323834 Ch15 4/19/02 2:24 PM Page 206

using one or more output parameters, you will need to add each parameter to the
Parameters collection.

For example, consider the Customer_GetByID stored procedure you created at the begin-
ning of this hour. To set up the parameter object, the first step is to declare the parameter,
as follows:

Dim parameterCustomerID As SqlParameter = New SqlParameter(“@CustomerID”, _
SqlDbType.NChar, 4)

Note that the name of the parameter must match the name of the parameter declared
inside the stored procedure. Additionally, the type must match, as well. After the
parameter is declared, you must specify its value.

Specifying Parameter Value
Specifying a parameter’s value is simple. You just set the Value property of the parame-
ter object to whatever value you choose. Typically, the value is not hard-coded, as it is in
the following example, but provided by user input or other means. The following code
specifies the value for the @CustomerID parameter:

parameterCustomerID.Value = “ALFKI”

Setting Parameter Direction
Specifying the parameter direction is also straightforward. There are only two types of
parameters in ADO.NET for stored procedures: input and output. By default, when a
parameter is created, it is an input parameter by default. If you’re creating an output
parameter, you’ll need to change the Direction property to the output value, as in the
following code:

parameterCustomerID.Direction = ParameterDirection.Output

After you’ve specified all the parameter’s properties and values, you can add it to the
Parameters collection of the Command object:

cmd.Parameters.Add(parameterCustomerID)

Putting It All Together
The example in this section uses the concepts from this hour to create a Web form that
adds a new employee to the Employees table of the Northwind database. Before creating
the Web form, you need to create a stored procedure. By looking at the schema of the
Employees table shown in Figure 15.5, you can see that most of the fields in the table
allow null values. Therefore, we can ignore most of the fields and only add the ones we
need, plus a few extra to make it interesting.

Working with Stored Procedures 207

15

16 0672323834 Ch15 4/19/02 2:24 PM Page 207

Listing 15.5 contains the stored procedure that will be called to perform the insert into
the database. As you can see, the stored procedure has nine parameters, the last of which
is an output parameter used to return the EmployeeID of the recently added employee
record.

LISTING 15.5 Another Way to Call a Stored Procedure

/*
This stored procedure adds a new record
to the employees table

*/

CREATE PROCEDURE Employee_Add
(

@LastName nvarchar(20),
@FirstName nvarchar(10),
@Title nvarchar(30),
@BirthDate datetime,
@HireDate datetime,
@Address nvarchar(60),
@City nvarchar(15),
@PostalCode nvarchar(10),
@retval int OUTPUT

)

AS

INSERT INTO Employees
(

LastName,
FirstName,
Title,
BirthDate,
HireDate,
Address,
City,
PostalCode

)
VALUES
(

@LastName,
@FirstName,
@Title,
@BirthDate,
@HireDate,
@Address,
@City,
@PostalCode

208 Hour 15

16 0672323834 Ch15 4/19/02 2:24 PM Page 208

)

SELECT @retval = @@IDENTITY

Working with Stored Procedures 209

15
LISTING 15.5 continued

The @@IDENTITY variable always stores the ID of the most recently added
record.

Listing 15.6 contains a Web form that accepts information about a new employee record
and then saves it to the database using the stored procedure in Listing 15.5. Notice that
after the stored procedure has been run, you can access the return value simply by call-
ing the Value property of the output parameter.

LISTING 15.6 Another Way to Call a Stored Procedure

<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

If IsPostBack then
‘Create and Open Connection
Dim conn as SqlConnection = new SqlConnection(“Data Source=” + _

“localhost;Initial Catalog=northwind;UID=sa;PWD=;”)

‘Create Command
Dim cmd as SqlCommand = new SqlCommand(“Employee_Add”, conn)
cmd.CommandType = CommandType.StoredProcedure

Dim pLastName As SqlParameter = New SqlParameter(“@LastName”, _
SqlDbType.NVarChar, 20)

pLastName.Value = Request(“txtLastName”)
cmd.Parameters.Add(pLastName)

Dim pFirstName As SqlParameter = New SqlParameter(“@FirstName”, _
SqlDbType.NVarChar, 10)

pFirstName.Value = Request(“txtFirstName”)
cmd.Parameters.Add(pFirstName)

16 0672323834 Ch15 4/19/02 2:24 PM Page 209

Dim pTitle As SqlParameter = New SqlParameter(“@Title”, _
SqlDbType.NVarChar, 30)

pTitle.Value = Request(“txtTitle”)
cmd.Parameters.Add(pTitle)

Dim pBirthDate As SqlParameter = New SqlParameter(“@BirthDate”,
SqlDbType.DateTime, 8)

pBirthDate.Value = Request(“txtBirthDate”)
cmd.Parameters.Add(pBirthDate)

Dim pHireDate As SqlParameter = New SqlParameter(“@HireDate”, _
SqlDbType.DateTime, 8)

pHireDate.Value = Request(“txtHireDate”)
cmd.Parameters.Add(pHireDate)

Dim pAddress As SqlParameter = New SqlParameter(“@Address”, _
SqlDbType.NVarChar, 60)

pAddress.Value = Request(“txtAddress”)
cmd.Parameters.Add(pAddress)

Dim pCity As SqlParameter = New SqlParameter(“@City”, _
SqlDbType.NVarChar, 15)

pCity.Value = Request(“txtCity”)
cmd.Parameters.Add(pCity)

Dim pPostalCode As SqlParameter = New SqlParameter(“@PostalCode”,
SqlDbType.NVarChar, 10)

pPostalCode.Value = Request(“txtPostalCode”)
cmd.Parameters.Add(pPostalCode)

Dim pRetval As SqlParameter = New SqlParameter(“@retval”, _
SqlDbType.Int, 4)

pRetval.Direction = ParameterDirection.Output
cmd.Parameters.Add(pRetval)

conn.Open()
cmd.ExecuteNonQuery()
conn.Close()

lblStatus.Text = “Employee added with EmployeeID # “ + _
pRetval.Value.ToString()

End If

End Sub

</script>

</HEAD>
<BODY>

210 Hour 15

LISTING 15.6 continued

16 0672323834 Ch15 4/19/02 2:24 PM Page 210

<h1>Add a New Employee to the Northwind Database</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:label id=lblStatus runat=”server” />
<table>
<tr>

<td>First Name:</td>
<td><asp:textbox id=”txtFirstName” runat=”server” /></td>

</tr>
<tr>

<td>Last Name:</td>
<td><asp:textbox id=”txtLastName” runat=”server” /></td>

</tr>
<tr>

<td>Title:</td>
<td><asp:textbox id=”txtTitle” runat=”server” /></td>

</tr>
<tr>

<td>Birth Date:</td>
<td><asp:textbox id=”txtBirthDate” runat=”server” /></td>

</tr>
<tr>

<td>Hire Date:</td>
<td><asp:textbox id=”txtHireDate” runat=”server” /></td>

</tr>
<tr>

<td>Address:</td>
<td><asp:textbox id=”txtAddress” runat=”server” /></td>

</tr>
<tr>

<td>City:</td>
<td><asp:textbox id=”txtCity” runat=”server” /></td>

</tr>
<tr>

<td>Postal Code:</td>
<td><asp:textbox id=”txtPostalCode” runat=”server” /></td>

</tr>
</table>

<input type=”submit” value=”add new employee”>

</form>
<hr>

</BODY>
</HTML>

Working with Stored Procedures 211

15
LISTING 15.6 continued

16 0672323834 Ch15 4/19/02 2:24 PM Page 211

The code in Listing 15.6 might appear a bit intimidating at first. However, keep in mind
that much of the code is repetitive. Lines 10–19 create and configure the Connection
and Command objects. Then, lines 20–67 set up a series of parameters that are required by
the Employee_Add stored procedure. After all the parameters are created, the
ExecuteNonQuery() method of the Command object executes the stored procedure. The
remainder of the example in Listing 15.6 is display logic, necessary to present a form to
the user so they can submit a new record.

Summary
In this hour, you’ve seen how to work with stored procedures in a Microsoft SQL Server
database. You saw how to use the SQL Enterprise Manager to create and edit stored pro-
cedures. Then you used the Query Analyzer to test a stored procedure and verify that it
was returning data as expected. Finally, you saw how to call the stored procedure within
ADO.NET and send and retrieve parameters.

Q&A
Q Where can I find more information about building stored procedures?

A As is usually the case, Microsoft SQL Server Books Online contains a great deal of
information on creating and using stored procedures. Additionally, “Writing Stored
Procedures for Microsoft SQL Server” by Matt Shepker is an excellent resource.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. True or false: You can execute any valid SQL statement in a stored procedure.

2. What is the purpose of parameters in the context of a stored procedure?

212 Hour 15

16 0672323834 Ch15 4/19/02 2:24 PM Page 212

Exercise
Choose a few examples from previous hours such as Hour 9, “Binding Data to List
Controls,” or Hour 6, “Retrieving Data from the Data Source,” where the SQL query is
built dynamically. Modify the examples to use stored procedures instead.

Working with Stored Procedures 213

15

16 0672323834 Ch15 4/19/02 2:24 PM Page 213

16 0672323834 Ch15 4/19/02 2:24 PM Page 214

HOUR 16
ADO Upgrade Concerns

Even developers critical of Microsoft technologies have to agree that
ADO.NET is a giant leap forward in data access when compared with ADO.
However, this does not invalidate the millions of lines of existing Visual
Basic and C++ code in applications that make use of ADO. For many com-
panies, it would simply be impossible to convert all existing data-access
COM objects to .NET assemblies, just as it would be impossible to convert
all Visual Basic 6.0 applications to Visual Basic .NET Windows forms.

Luckily, these companies have the option of converting their codebase to
.NET piecemeal. Several options are available that enable you to work
directly with your legacy code and objects. In this hour, you’ll see some
practical methods for accessing your Visual Basic 6.0 data access objects.

Specifically, in this hour, you’ll learn

• How to deal with general upgrade issues when upgrading to
ADO.NET

• How to access an ADO recordset within ADO.NET

• How to convert an ADO recordset into an ADO.NET DataSet

17 0672323834 Ch16 4/19/02 2:24 PM Page 215

General Upgrade Issues from ADO to
ADO.NET

You have a number of architectural issues to consider when converting your codebase to
work within the managed code of the Microsoft .NET Framework. ADO.NET walks a
fine line: The ADO.NET object model is similar enough to ADO as to be instantly famil-
iar to an ADO developer, yet your ADO code will not work without modifications in a
.NET Windows form or Web form application. If you’ve worked with ADO, you’re going
to feel at home with ADO.NET, but you’re going to have to spend a significant amount
of time upgrading your codebase.

The next few sections discuss some of the major architectural changes you’ll face
upgrading from ADO to ADO.NET.

ADO.NET Completely Disconnected
ADO.NET is a completely disconnected set of data access objects. This means that,
unlike ADO, it is impossible to bind a table directly to a control, like the DataGrid.
ADO.NET objects connect to the data source, retrieve the data (and related schema), thus
creating a snapshot, which you can use as you please.

A number of benefits are associated with a disconnected set of data access objects, the
most important of which is scalability. Creating and maintaining an open connection to a
database is a very costly procedure, in terms of memory and licensing. For a single-user
standalone Visual Basic 6.0 application using a Microsoft Access database, this is not an
issue. However, when you consider a Visual Basic 6.0 application supporting multiple
users or a Web application with thousands of potential simultaneous users, the discon-
nected view of data makes more sense.

Therefore, any legacy code that makes use of a server-side cursor to navigate records or
any objects that bind directly to database objects will have to be examined closely and in
most cases re-engineered.

ADO.NET Is Strongly Typed
All database results in ADO are returned as a Variant data type, and then converted.
The Variant data type is roughly analogous to the Object type in the Microsoft .NET
Framework. The Variant data type carries a large amount of associated overhead by
default. Conversely, in ADO.NET, you can access columns returned from the database
using their native data types. As you might have guessed, the ADO types and their corre-
sponding ADO.NET types do not match up exactly. Table 16.1 shows a list of ADO

216 Hour 16

17 0672323834 Ch16 4/19/02 2:24 PM Page 216

types and their corresponding ADO.NET data types, which you can use in your code
conversions.

TABLE 16.1 ADO Versus ADO.NET Data Types

Code Symbol

adEmpty null

adBoolean Int16

adTinyInt SByte

adSmallInt Int16

adInteger Int32

adBigInt Int64

adUnsignedTinyInt promoted to Int16

adUnsignedSmallInt promoted to Int32

adUnsignedInt promoted to Int64

adUnsignedBigInt promoted to Decimal

adSingle Single

adDouble Double

adCurrency Decimal

adDecimal Decimal

adNumeric Decimal

adDate DateTime

adDBDate DateTime

adDBTime DateTime

adDBTimeStamp DateTime

adFileTime DateTime

adGUID Guid

adError ExternalException

adIUnknown object

adIDispatch object

adVariant object

adPropVariant object

adBinary byte[]

adChar string

adWChar string

ADO Upgrade Concerns 217

16

17 0672323834 Ch16 4/19/02 2:24 PM Page 217

adBSTR string

adChapter not supported

adUserDefined not supported

adVarNumeric not supported

Accessing an ADO Recordset from ADO.NET
Even if you aren’t ready to convert your existing codebase to work within the managed
Microsoft .NET Framework, you still have a few options for reusing your old compo-
nents. It’s possible to use COM interoperability to work directly with your old methods
and objects. A complete discussion of COM interoperability is out of the scope of this
book. However, in this section and the next few sections following, you’ll see how to
access a Visual Basic 6.0 COM object method that returns a recordset object.

The function in Listing 16.1 is written in Visual Basic 6.0. It’s fairly simple; it connects
to a data source and retrieves some employee information from the Northwind database,
places the results in a recordset object, and then returns that object. If you have Visual
Basic 6.0, and would like to follow along, create a new ActiveX DLL project in Visual
Basic and place the code in Listing 16.1 into a class called DataAccess. Name your pro-
ject “Northwind.” You’ll also need to add a reference to the ADO 2.6 type library (by
clicking on the Project menu and selecting References). After you have performed these
steps, click on the File menu and select Make Northwind.dll. Your screen should look
like Figure 16.1. Click OK to compile the project. After you compile the project, a new
class named Northwind.DataAccess will be registered on your system.

LISTING 16.1 A Legacy Visual Basic 6.0 Northwind Data Access Component

Public Function GetAllEmployees() As ADODB.Recordset

Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset

Set conn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset

sSQL = “SELECT FirstName, “ + _

218 Hour 16

TABLE 16.1 continued

Code Symbol

17 0672323834 Ch16 4/19/02 2:24 PM Page 218

“LastName, “ + _
“Address, “ + _
“City, “ + _
“PostalCode, “ + _
“HomePhone “ + _
“FROM Employees”

conn.Open “DSN=NorthwindSQL;Initial Catalog=Northwind;” & _
“Server=(local);UID=sa;PWD=;”

rs.ActiveConnection = conn

rs.Open sSQL

Set GetAllEmployees = rs

End Function

ADO Upgrade Concerns 219

16

LISTING 16.1 continued

The examples in this chapter require the use of a DSN. Make sure you have a
system DSN named Northwind that points to your Northwind database.

FIGURE 16.1
Compiling a Visual
Basic 6.0 component.

In ASP 3.0, this newly created ActiveX object would typically be used to pass some
employee information to another Visual Basic application or to an ASP page, as is the
case in Listing 16.2. As you can see from the code at the top of the page, the
Northwind.DataAccess object is created, and then the GetAllEmployees() method is
called to fill a recordset. The recordset object is then looped through on the page to dis-
play information about each employee in the database. Figure 16.2 shows how the code
in Listing 16.2 appears when run in a browser.

17 0672323834 Ch16 4/19/02 2:24 PM Page 219

LISTING 16.2 Legacy Usage of the Northwind.DataAccess ActiveX DLL

<%@ Language=VBScript %>

<%
dim rsEmployees
dim oNorthwind

set oNorthwind = Server.CreateObject(“Northwind.DataAccess”)

set rsEmployees = oNorthwind.GetAllEmployees

set oNorthwind = nothing
%>
<HTML>
<HEAD>
</HEAD>
<BODY>
<h1>Northwind Employees</h1>
<table>
<tr>
<th>
First Name

</th>
<th>
Last Name

</th>
<th>
Address

</th>
<th>
City

</th>
<th>
Postal Code

</th>
<th>
Home Phone

</th>
</tr>

<%
do while not rsEmployees.EOF
‘Add a single table row for each record

%>
<tr>
<td>
<%=rsEmployees(“FirstName”)%>

</td>
<td>
<%=rsEmployees(“LastName”)%>

220 Hour 16

17 0672323834 Ch16 4/19/02 2:24 PM Page 220

</td>
<td>
<%=rsEmployees(“Address”)%>

</td>
<td>
<%=rsEmployees(“City”)%>

</td>
<td>
<%=rsEmployees(“PostalCode”)%>

</td>
<td>
<%=rsEmployees(“HomePhone”)%>

</td>
</tr>

<%
‘Advance to the next record
rsEmployees.MoveNext

loop
%>

</BODY>
</HTML>

In ASP 3.0, the code in Listing 16.2 is one standard way of displaying database data.
Lines 3–13 create an instance of the COM object created from Listing 16.1. The
GetAllEmployees() method is then invoked, returning an ADO recordset of data. The
remainder of the listing is display logic; the inline ASP code iterates through the rows in
the recordset, manually building a table. Note that in ADO.NET, this has been replaced
by the DataGrid control.

The next few sections demonstrate how to use this legacy codebase to build a similar
screen using ADO.NET and an ASP.NET Web form.

COM Interoperability
COM interoperability is the bit of magic that enables you to use legacy COM objects
inside the Microsoft .NET Framework. There are two different ways to access legacy
objects: by using early binding or late binding. Binding, in this instance, refers to when
the object’s type information is available.

When you use early binding, the correct type is compiled into your application, improv-
ing performance and readability. You need not worry about the correct type not being
present at runtime.

ADO Upgrade Concerns 221

16

LISTING 16.2 continued

17 0672323834 Ch16 4/19/02 2:24 PM Page 221

However, the Server.CreateObject() method is still available for use. If you pass it a
valid Programmatic Identifier (ProgID), it will attempt to create the object and return it
as type Object. You will get a runtime error in your application if the ProgID cannot be
located.

Both of these methods for COM interoperability are covered in detail in the next few
sections.

Importing Type Libraries
As mentioned earlier, one method of accessing your legacy COM objects is to import
their type libraries into your existing applications and then work with them as you would
any other .NET object. The application used to import the type library is called
tblimp.exe. For the current example, you’re going to need to import two libraries.
Because you will need to create an instance of the recordset object, you must import its
type library. If ADO is installed in the default path, you can run the following line of
code from a command prompt:

tlbimp “c:\program files\common files\system\ado\msado15.dll” /out:adodb.dll

This generates a new DLL containing the type information for the recordset object. Place
this DLL in the /bin directory of your ASP.NET application. Likewise, you’ll need to

222 Hour 16

FIGURE 16.2
The output of
Listing 16.2.

17 0672323834 Ch16 4/19/02 2:24 PM Page 222

compile the type library for the Northwind.DataAccess object you created at the begin-
ning of this hour:

tlbimp Northwind.dll /out:NorthwindDOTNET.dll

Place this DLL in your /bin directory as well.

Server.CreateObject
The other method you can use to access legacy ActiveX objects is to create them at run-
time using the following line of code:

Server.CreateObject(“Northwind.DataAccess”)

This returns Northwind.DataAccess as type Object. After the object is created, you can
use its public methods and properties.

Filling a DataSet with ADO Recordset Data
To use early binding, as you saw in the section “Importing Type Libraries,” you would
need to import the two DLLs you created and placed into your bin directory using the
following code:

<%@ Import Namespace=”NorthwindDOTNET” %>
<%@ Import Namespace=”adodb” %>

However, this is not necessary for the following example, because it uses the second
method, or late binding, in order to access the object.

The Fill() method of the OleDbAdapter object is overloaded to accept a recordset
object directly. It converts the recordset object into a DataTable inside a DataSet. You
can see this in the example in Listing 16.3. In the LoadDataGrid() method, an instance
of the legacy Northwind.DataAccess COM object is created. Then a legacy recordset
object is created. Then the GetAllEmployees() method from Listing 16.1 is called,
which, as you’ll recall, returns a recordset of employee information.

Then, the recordset object is passed to the Fill() method of the OleDbDataAdapter,
along with a DataSet and a table name. The Fill() method imports the recordset into
the DataSet. The DataSet can then be manipulated any way you like. In this instance, it
was bound to a DataGrid object to display it on a Web form. You can see the results in
Figure 16.3.

LISTING 16.3 A Legacy Visual Basic 6.0 Northwind Data Access Component

<% @Page Debug=”true” Language=”VB” aspcompat=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>

ADO Upgrade Concerns 223

16

17 0672323834 Ch16 4/19/02 2:24 PM Page 223

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”ADO24HRS.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadDataGrid(orders)

End Sub

Private Sub LoadDataGrid(_
myDataGrid as System.Web.UI.WebControls.DataGrid)

‘Create Instance of Legacy Object
Dim adoComponent as Object = _

Server.CreateObject(“Northwind.DataAccess”)

‘Create Instance of Legacy Recordset
Dim adoRS As ADODB.Recordset

‘Access Legacy Method that returns recordset
adoRS = adoComponent.GetAllEmployees()

‘Create ADO.NET objects
Dim adapter As OleDbDataAdapter = New OleDbDataAdapter
Dim dsEmployees As DataSet = New DataSet

‘Use overloaded Fill() method to place recordset contents into
‘a DataTable in the dsEmployees Dataset
adapter.Fill(dsEmployees, adoRS, “Employees”)

‘Bind!
orders.DataSource = dsEmployees
orders.DataBind()

End Sub
</script>

</HEAD>
<BODY>

<h1 class=”MainHeader”>Northwind Employees</h1>
<hr>

<form runat=”server” id=form1 name=form1>

224 Hour 16

LISTING 16.3 continued

17 0672323834 Ch16 4/19/02 2:24 PM Page 224

<asp:DataGrid id=”orders” runat=”server”></asp:DataGrid>
</form>
<hr>

</BODY>
</HTML>

The example in Listing 16.3 is like many that you have seen before, with a few differ-
ences. First, notice that the System.Data.OleDb namespace is imported instead of the
System.Data.SqlClient namespace. OLE DB provides access to the legacy ADO
objects. Also, the Page attribute aspcompat is set to true. This makes the Web form run in
a mode compatible with legacy single-threaded COM objects.

The LoadDataGrid() method encapsulates the data access for the Web form. First, it cre-
ates an instance of the COM object compiled from Listing 16.1 using
Server.CreateObject() in lines 21–22. On line 28, the GetAllEmployees() method is
called, just as in Listing 16.2, to retrieve an ADO recordset of data from the database.
Then, on line 36, the recordset is passed as the second argument to the
OleDbDataAdapter’s Fill() method. This imports the ADO recordset directly into a
DataSet.

ADO Upgrade Concerns 225

16

LISTING 16.3 continued

FIGURE 16.3
A recordset object fills
a DataSet and dis-
played in a DataGrid.

17 0672323834 Ch16 4/19/02 2:24 PM Page 225

Summary
In this hour, you have seen some techniques for making use of your legacy ActiveX
objects without converting them to managed .NET Framework objects. First we analyzed
some possible rough spots you might see when upgrading from ADO to ADO.NET. Then
you saw how to directly access legacy objects from within a Web form. In the next hour,
you’ll see how to use connection pooling with ADO.NET.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. What is the name of the application that imports type libraries?

2. Name two differences between ADO and ADO.NET.

Exercise
If the option is available to you, practice retrieving data from recordset objects created by
either Visual Basic 6.0 or C++.

226 Hour 16

17 0672323834 Ch16 4/19/02 2:24 PM Page 226

HOUR 17
Using Connection
Pooling

Many design considerations must be addressed when building Web-based
applications, especially Web applications that need to handle a large number
of users and promise great scalability. Deciding how to use a technical
design feature such as “connection pooling” can make the difference
between a slow and clunky Web app or a fast and sleek Web app.
Connection pooling deals with how the database connections are utilized
(used and reused) to enhance the overall efficiency of the whole system. In
fact, this one little feature translates directly into being able to support a
much larger number of users with minimum performance impact. Ah, the
promise is fulfilled.

Basically, the Microsoft .NET Framework has taken the approach (the com-
mitment) of using connection pooling as the default. In other words, connec-
tion pooling will always be “true” unless you specifically disable it. This
allows you to utilize the internal connection-pooling capabilities of the .NET
data providers, such as the SQL Server .NET data provider and the OLE DB

18 0672323834 Ch17 4/19/02 2:24 PM Page 227

data provider, to achieve much more efficient and scalable applications without lifting a
finger.

In this hour, you will learn about the following topics:

• An overview of connection pooling

• How to create connection pools in ADO.NET

• Connection pools and transaction enlisting

• Controlling connection pools with the connection string

What Is Connection Pooling?
In brief, connection pooling allows applications to reuse an existing database connection
from a pool of already established connections, instead of having to repeatedly re-
establish new connections to that same database. Establishing database connections is
fairly expensive if you compare that aspect to the overall work that will be handled with
a database connection in the first place. It is expensive because when a user establishes a
connection to a database, the user must be identified and pass authentication (security)
before the connection is even allowed. Repeating this over and over puts a huge burden
on the database management system and the server, not to mention the overall network
traffic that results. This, in turn, directly affects the overall performance of your system
and can limit its scalability significantly.

A simple breakdown of the time spent with connection establishment versus actual data-
base work being done with a short query to the Customers table of the Northwind data-
base supplied with Microsoft SQL Server 2000 yielded 84% of the time in the
connection/authentication part, and 16% in the actual retrieval and display of a single
row from this table. Wow, that’s expensive when compared to the overall transaction. It is
also ripe for some type of improvement; hence, connection pooling.

So, once again, the overall design approach is to avoid repeatedly establishing these data-
base connections if you can!

Connection pooling is handled at the .NET data provider level. In other words, each
.NET data provider, such as the SQL Server .NET data provider and the OLE DB .NET
data provider, has a connection-pooling capability embedded in it. Figure 17.1 depicts
this aspect.

There are slight differences in how connection pooling works with the different .NET
data providers. But, in general, this is fairly transparent from the .NET programmer’s
point of view.

228 Hour 17

18 0672323834 Ch17 4/19/02 2:24 PM Page 228

What will actually happen is that when a connection is opened to a database, a connec-
tion pool entry, based on the connection string, will be automatically created in the con-
nection pool (on a per-process basis). These pools are not destroyed until the process
ends.

A connection pool entry would be created when the following connection string is used
in a SqlConnection open:

“server=localhost;Trusted_Connection=yes;database=northwind;”

All subsequent connections are pooled (utilized) through an exact match algorithm on
the connection string. If even one character is different in another connection string that
is connecting to the same server and database (that is conceptually the same connection
string), a new connection pool will be created and any others that might have been pre-
sent will not be used. The following connection string, although almost exactly the same
as the earlier one, will be considered different because it is not an exact match.

“server=localhost;Trusted_Connection=yes ;database=northwind;”

In addition, several connection-string keywords in the connection string change or adjust
the behavior of the connection pool. These are as follows:

• Connection Lifetime—When a connection is returned to the pool, its creation
time is compared with the current time, and the connection is destroyed if that time

Using Connection Pooling 229

17

FIGURE 17.1
Microsoft ADO.NET
data provider connec-
tion-pooling architec-
ture.

Microsoft

ORACLE

Client

Web Client

DataSet

XML

DataView

DataTableCollection

DataRelationCollection

ExtendedProperties

DataView

Constraints

DataRowCollection

DataRowDataColumnCollection

DataColumn

Othe
r P

rov
ide

rs

OLE
 D

B
.N

ET D
ata

 P
rov

ide
r

OLE
 D

B S
er

vic
e C

om
po

ne
nt

OLE
 D

B P
rov

ide
r

SQLS
er

ve
r .N

ET D
ata

 P
rov

ide
r

.N
ET D

ata
 P

rov
ide

r
Data

Rea
de

r
Con

ne
cti

on

Tra
ns

ac
tio

n

Com
man

d

Para
mete

rs

Data
Ada

pte
r

Ins
er

tC
om

man
d

Dele
teC

om
man

d
Sele

ctC
om

man
d

Con
ne

cti
on

Poo
lin

g

Con
ne

cti
on

Poo
lin

g

Con
ne

cti
on

Poo
lin

g

Upd
ate

Com
man

d

Presentation
Tier

Application/Business
Tier

Data and Resources
Tier

OLE DB
data sources

SQL Server
7.0 & 2000

18 0672323834 Ch17 4/19/02 2:24 PM Page 229

span (in seconds) exceeds this value. A value of zero (0) will cause pooled connec-
tions to have the maximum timeout. Zero is also the default. The only time you
would vary this value is when you are in a load-balancing situation where you
want connection pools to expire fairly quickly so that work can be spread out to
other servers.

• Connection Reset—Determines whether the database connection is reset when
being removed from the pool. In all cases, the connection state (such as the data-
base context) is not being reset. The default value is “true”.

• Enlist—When this is set to “true”, the pooler automatically enlists the connection
in the current transaction context of the creation thread (if a transaction context
exists). If no transaction context exists, it is ignored. The default value is “true”.

• Max Pool Size—Indicates the maximum number of connections allowed in this
specific connection pool. The correct setting depends on your needs here. If the
application has an opportunity to take advantage of the connection pool in a big
way, a large value will be specified. Otherwise, smaller values will suffice. The
default value is 100.

• Min Pool Size—Indicates the minimum number of connections that will be pre-
sent (maintained) in this specific connection pool. So, if you know that the applica-
tion will be making frequent usage of the connection pool, set this up to be enough
to make a difference quickly. What will actually happen is when the first open con-
nection occurs, more connection pool entries will be created up to the Min Pool
Size you specified. The default value is 0.

• Pooling—Indicates that a connection should be drawn from the appropriate con-
nection pool, or if necessary, created and added to the appropriate connection pool.
The default value here is “true”. In other words, you are, by default, using connec-
tion pooling.

The following Visual Basic code is a typical example of defining a connection string
with a few of the connection-string keywords that control connection-pooling behavior.
In addition, this code opens the connection and, transparently to us, an entry will be cre-
ated in the connection pool based on this connection string.

Dim connString1 as String
connString1 = “server=localhost;Trusted_Connection=yes;database=northwind;” & _

“connection reset=true;” & _
“connection lifetime=0;” & _
“enlist=true;” & _
“min pool size=1;” & _
“max pool size=50”

Dim myConnection1 as SqlConnection = new SqlConnection(connString1)
Dim CustomerAdapter1 As SqlDataAdapter = New SqlDataAdapter

230 Hour 17

18 0672323834 Ch17 4/19/02 2:24 PM Page 230

(“SELECT CustomerID, CompanyName, ContactName “ &
“FROM Customers WHERE CustomerID like ‘B%’ “ &
“ORDER BY CustomerID”, myconnection1)

myConnection1.Open()

Perhaps the most important thing to remember is to close the connection. This releases
the connection back to the pool for possible reuse. If you don’t close the connection
explicitly, it will not be released back to the pool (thus defeating the whole purpose of
establishing connection pools to begin with).

myConnection1.Close()

It is also interesting to see that the connection pool is actually divided up into multiple
transaction-specific pools and one pool for connections not currently enlisted in a trans-
action. This makes it easier to work with enlisted transaction connections.

OLE DB .NET Data Provider
The OLE DB .NET data provider pools connections by using the underlying services of
OLE DB resource pooling. This is essentially the same thing, just worded differently.
You will be able to use the connection string to configure, enable, or disable resource
pooling (connection pooling), use the registry to configure OLE DB resource pooling
(not recommended), and programmatically configure resource pooling. OK, so if you
want to disable OLE DB .NET connection pooling and use the COM+ object pooling,
you will have to supply a connection string keyword that turns it off (OLE DB
Services=-4) because it is “on” as the default. The connection would look like this:

Dim nwindConn As OleDbConnection = New OleDBConnection
(“Provider=SQLOLEDB;OLE DB Services=-4;Data Source=localhost;
Integrated Security=SSPI;”)

NwindConn.Open()

Using Connection Pooling 231

17

When a connection is opened and a pool created, multiple connections are
added to the pool to bring the connection count to the configured mini-
mum level (as specified with the Min Pool Size keyword). To establish a
minimum pool size, there will be a small amount of overhead when the
pool is initially created. These additional entries are serialized and will not
bog down your server.

Connections can be subsequently added to the pool up to the configured
maximum pool count (as specified with the Max Pool Size keyword). When
the maximum count is reached, new requests to open a connection are
queued.

18 0672323834 Ch17 4/19/02 2:24 PM Page 231

Keep an eye on connection-pooling usage by using either Profiler or Performance
Monitor. As you can see from Figure 17.2, you can monitor the User Connections entry
of the General Statistics performance counters for SQL Server to see the level of connec-
tions established by all applications for a particular SQL Server instance. With the .NET
Framework, you will also get many other performance counters. For monitoring connec-
tion pooling, you can focus in on the .NET CLR Data performance object.

In addition, you can also use the trace properties of Profiler for basically the same type
of information by selecting the Security Audit event classes. We will see more on this
later in this hour.

232 Hour 17

FIGURE 17.2
The Microsoft
Performance Monitor
counters and profiler
event classes for moni-
toring connection-
pooling results.

Microsoft

SQL Server
2000

Managing Security?
When you get into the connection-pooling business, you will no longer be
able to use security at the individual user and database level. It just isn’t fea-
sible any longer. Connection pooling relies on exact matches of connection
strings, and if users’ IDs are substituted into the connection strings, the
resulting connection strings would not match any existing entries in the con-
nection pool.

All of the examples shown in this chapter rely on Windows authentication
and trusted connections.

The .NET Beta 2 performance results showed that it took longer to open a
pooled database connection when using Windows authentication, compared

18 0672323834 Ch17 4/19/02 2:24 PM Page 232

In the following Visual Basic code sample (17conpool.vb), a series of connection strings
are defined and used to establish connection pools for subsequent processing (Pool A and
Pool B). In addition, several separate SQLConnections will be made that will take advan-
tage of the connection pools being established. This code was designed to require input
from the console at certain points of its execution so that you can see the results of the
performance counters along the way. Listing 17.1 provides the code.

LISTING 17.1 Visual Basic Connection Pooling Code Sample (from file
17conpool.vb)

. . .
public class conpool
public shared sub Main()
Dim myconpool as conpool = new conpool()
myconpool.Run()

end sub
public sub Run()
try
Dim connString1 as String
connString1 = “server=localhost;Trusted_Connection=yes;

database=northwind;” & _
“connection reset=true;” & _
“connection lifetime=0;” & _
“enlist=true;” & _
“min pool size=1;” & _
“max pool size=50”

Dim connString3 as String
connString3 = “server=localhost;Trusted_Connection=yes;database=pubs;” & _

“connection reset=true;” & _
“connection lifetime=0;” & _
“enlist=true;” & _
“min pool size=10;” & _
“max pool size=50”

Dim myConnection1 as SqlConnection = new SqlConnection(connString1)
Dim myConnection2 as SqlConnection = new SqlConnection(connString1)
Dim myConnection3 as SqlConnection = new SqlConnection(connString1)
Dim myConnection5 as SqlConnection = new SqlConnection(connString3)

. . .
‘********************** establish first connection pool **********************

Console.WriteLine (“Opening two connections in pool A”)

Using Connection Pooling 233

17

to using SQL Server authentication. However, in general, it is better to use
Windows authentication rather than SQL Server authentication for many
other reasons.

18 0672323834 Ch17 4/19/02 2:24 PM Page 233

myConnection1.Open()
myConnection2.Open()

. . .
Console.WriteLine (“Now Returning both of the connections to pool A”)
myConnection1.Close()
myConnection2.Close()
Console.WriteLine (“Open another connection from the same pool A”)
myConnection3.Open()

. . .
Console.WriteLine (“Returning this connection to pool A”)
myConnection1.Close()

‘*************** establish a separate connection pool ***************
Console.WriteLine (“Opening a new connection in pool B”)
myConnection5.Open()

. . .
Console.WriteLine (“Returning this connection to pool B”)
myConnection5.Close()

catch e as Exception
‘ Display the error.
Console.WriteLine(e.ToString())

end try
end sub

end class
end namespace

To execute this code, you must first compile it from a DOS command prompt. Change
directories to the location of the VB source code that contains this example
(17conpool.vb). Then just compile the code as follows:

C:\ADOSAMPLES> vbc.exe 17conpool.vb /r:System.dll /r:System.Data.dll
/r:System.Xml.dll

After the code has compiled successfully, you will need to make sure that you have
Microsoft SQL Server up and running and the Northwind database has been installed
(usually by default). To execute this sample, just specify the sample name at the DOS
command prompt and press Enter. Again, this VB program will be prompting you to
press Enter at certain points so that you can go look at the performance and user connec-
tion information as it is executing. Figure 17.3 shows the actual execution of this sample
VB program. You should be able to get the same results.

After you have executed this sample once, open the Performance Monitor console and
choose to add (Plus +) the following counters to the monitor console:

• “.NET CLR Data” performance object → “SqlClient:Current # connection Pools”
counter

234 Hour 17

LISTING 17.1 continued

18 0672323834 Ch17 4/19/02 2:24 PM Page 234

• “.NET CLR Data” performance object → “SqlClient:Current # pooled connec-
tions” counter

• “.NET CLR Data” performance object → “SqlClient:Peak # of Pooled connec-
tions” counter

• “MSSQL$NetSDK:General Statistics” performance object → “User connections”
counter

For the “.NET CLR Data” performance objects, be sure to indicate the instance selection
when adding these (the “17conpool” instance entry). These are all the connection pools
being generated by this process.

Then run the sample VB program again and monitor the connection pool levels and user
connections during execution. User connections will remain low, but the connection
pools will grow and hopefully be utilized in the future.

In Figure 17.4, you can see the different connection counter levels during this execution.
The top line in the monitor shows a stepped increase in the pooled connections
(“SQLClient:Peak # pooled connections”) counter. The first step was the open of the first
connection string for Pool A processing. In that connection string, we had indicated a
minimum pool size value of 1. The second, much larger, step is the second connection
string open. In that connection string, we had indicated a minimum pool size value of 10.
As the program ends (when the top line reaches a plateau), you can also see the user con-
nections drop off to zero (the monitor line that looks like a mountain).

Using Connection Pooling 235

17

FIGURE 17.3
The Connection
Pooling sample VB
program executing at
the DOS prompt.

18 0672323834 Ch17 4/19/02 2:24 PM Page 235

Summary
In this hour, you’ve seen how connection pools are orchestrated and that they are embed-
ded in the individual .NET data providers themselves. This maximizes the strengths and
individual characteristics of each data provider’s implementation. In addition, you have
learned about the connection keywords that are directly related to connection pooling and
control its behavior. Because connection pooling is such a critical aspect of large applica-
tions and scalability, it is always a good idea to monitor how effectively the values you
choose are being utilized over time. Adjust these as needed. You can use Performance
Monitor to regularly get a good feel for how things are going.

The really good news to this whole story is that Microsoft has decided to make connec-
tion pooling the default approach from the start. You will find that most applications you
will ever code will take full advantage of this decision.

Q&A
Q How will I know if connection pooling is being used?

A Remember, connection pooling is the default (pooling = “true”)! You will have
to specifically disable this setting if you don’t want to use it. In addition, you can
always flip on the Performance Monitor for your process (as we did for 17conpool)
and see the connection pool’s usage.

236 Hour 17

FIGURE 17.4
Performance Monitor
showing connection
pooling behavior.

18 0672323834 Ch17 4/19/02 2:24 PM Page 236

Q Which security model should you use with connection pooling?

A Windows authentication should be your default security model approach. It is
much more oriented to allowing you to construct and use general connection
strings that will be easily matched in the connection pool entries.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. When is a connection pool entry established?

a. When you open a connection to the database

b. When you fill a DataSet

c. When you close a connection to the database

d. When you read the rows from the DataSet

2. True or false: Connection pooling is automatically turned off for .NET.

3. What must you do every time in coding to make sure that you and others can take
advantage of the connection pool in subsequent processing?

a. Store it in cache

b. Record the time it was used in a local variable

c. Close the connection to the database

d. Open a new connection to a different database

4. What must match exactly for the application to draw on an already established con-
nection pool entry?

a. The entire connection string

b. The database portion of the connection string

c. The DataSet name

d. The minimum pool size

5. What performance object can you use to monitor usage of connection pooling?

a. MSSQL$NetSDK:Buffers

b. .NET CLR Security—performance object

c. ASP.NET—performance object

d. .NET CLR Data—performance object

Using Connection Pooling 237

17

18 0672323834 Ch17 4/19/02 2:24 PM Page 237

Exercise
Part I: Modify the 17conpool.vb code to request a minimum pool size of 20 and a maxi-
mum pool size of 200 for both connection strings. Monitor the behavior of these changes
using Performance Monitor.

Part II: The 17conpool.vb code uses the .NET SQL Server data provider. Recode this
program to use the OLE DB data provider instead.

238 Hour 17

18 0672323834 Ch17 4/19/02 2:24 PM Page 238

HOUR 18
Working with
Transactions

In the preceding hour, you saw how to use SQL and OLE DB connection
pooling in your applications to increase your application’s responsiveness
and decrease the amount of system resources used. In this hour, you’re going
to see how database transactions can help maintain the integrity of your
database. A transaction is a set of actions that are executed as a group, with
all actions succeeding or all actions failing.

In this hour, you’ll see how to

• Initiate a database transaction using ADO.NET

• Roll back changes made to a database

• Save changes made while using a transaction

• Perform a database transaction in a stored procedure

19 0672323834 Ch18 4/19/02 2:24 PM Page 239

What Is a Transaction?
Consider this classic transaction example: A bank needs to transfer a million dollars from
bank account A to bank account B. First, the money in A needs to be placed in B. Then,
after the transfer has been verified, the money needs to be removed from account A.
Obviously, if there is any sort of problem placing the money in account B, you do not
want to remove it from account A. Likewise, if the money is placed successfully in
account B, you want to ensure that it is removed from account A. All actions need to fail
or all actions need to succeed.

If you were coding an application to perform the monetary transactions in the last para-
graph, you could do so relatively easily without having to use a transaction by intelli-
gently trapping application errors and maintaining state. However, consider that a
transaction isn’t limited in size. Imagine keeping track of 500 database changes manu-
ally! Also, suppose the server is turned off in the middle of your application’s processing.
You need to make sure that when the application is brought back online, it knows exactly
where it stopped so that it can either reverse all the changes made or attempt to continue
where it left off.

Fortunately, because transactions exist, you need not worry about any of these problems.
By wrapping your database actions in a transaction, you can help ensure that your data
remains correct and consistent. In the next few sections, you’ll see how to use database
transactions.

Transactions and ADO.NET
The ADO.NET Connection object is used to work with transactions. As you’ll see in the
next few sections, the Connection object is used to initiate the transaction. Any com-
mand objects that need to enlist in the transaction are then assigned to the transaction.
The transaction object itself is used to save, roll back, and perform other actions on the
transaction.

Starting a Transaction
In ADO.NET, you can start a database transaction by calling the BeginTransaction()
method of the Connection object, as seen in Listing 18.1.

240 Hour 18

19 0672323834 Ch18 4/19/02 2:24 PM Page 240

LISTING 18.1 Starting a New Transaction

‘Create Connection
Dim conn as SqlConnection = new SqlConnection(“Data Source=(local);” +

“Initial Catalog=northwind;UID=sa;PWD=;”)

‘Create Command
Dim cmd as SqlCommand = new SqlCommand()
cmd.Connection = conn

‘Connection must be open to start transaction
conn.Open()

‘Create Transaction and apply it to command object
Dim myTrans = conn.BeginTransaction(“TransactionName”)

Working with Transactions 241

18

In order to begin a new transaction, the Connection object must be open. If
you attempt to start a new transaction without first calling the Open()
method of the Connection object, an InvalidOperationException is thrown.

Notice that the BeginTransaction() method returns a SqlTransaction object. For the
life of the transaction, you will use this object to manipulate the database transaction, as
needed.

At this point, you might be tempted to start executing commands against the database.
However, before you can send any queries to the database using this transaction, you
must assign the transaction object to the Transaction property of the Command object as
seen in the last line of Listing 18.1. This is slightly counterintuitive, because the Command
object already has an associated Connection object assigned, and transactions operate
over a connection. However, you must still remember this step.

Do not forget to assign the SqlTransaction object returned by the
BeginTransaction() method to the Transaction property of the Command
object. If you forget, an InvalidOperationException will be thrown by your
code the first time you attempt to execute a query.

Now you’re ready to make some database changes using the Command object. Feel free to
be creative. You can even delete an entire table, if you like. Because you’re executing all
these changes in a transaction, it’s very easy to roll back your changes and return to the
table’s original state.

19 0672323834 Ch18 4/19/02 2:24 PM Page 241

Rolling Back a Transaction
As you process each of the individual database changes that comprise your database
transaction, it’s possible to undo or roll back any of the changes you’ve made to the data-
base since beginning the transaction. For instance, alluding to the monetary transaction
example from earlier this hour, if there is an error removing the funds from bank account
A after placing the money in account B, you would definitely want to roll back the
changes you’ve made and either retry the transaction at a later time, or flag the record for
later examination.

To roll a transaction back to its original state, you just call the Rollback() method of the
transaction object, as in Listing 18.2.

LISTING 18.2 Rolling a Transaction Back

<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

If IsPostBack then

Dim sOutput as string

‘Create Connection
Dim conn as SqlConnection = new SqlConnection(“Data Source=” + _

“localhost;Initial Catalog=northwind;UID=sa;PWD=;”)

‘Create Command
Dim cmd as SqlCommand = new SqlCommand()
cmd.Connection = conn

242 Hour 18

Keep in mind that only changes made to the database through this
Connection object will be in the transaction. Therefore, if you were to mod-
ify the data through any other means, such as SQL Enterprise Manager,
those changes will not be rolled back.

19 0672323834 Ch18 4/19/02 2:24 PM Page 242

‘Connection must be open to start transaction
conn.Open()

‘Create Transaction and apply it to command object
Dim myTrans = conn.BeginTransaction(“TransactionName”)
cmd.Transaction = myTrans

‘Show Database before modifications
GetAndBindData(datagrid1)

‘Execute Database Change #1
ExecuteSQL(cmd, “UPDATE Fruits SET Quantity = 4 “ + _

“WHERE Name = ‘Apple’”)

‘Execute Database Change #2
Try

ExecuteSQL(cmd, “DELETE FROM FRUITS”)
Throw New Exception(“A random horrible database error”)
myTrans.Commit()

Catch
myTrans.Rollback()

End Try

‘Requery to make sure changes are gone
GetAndBindData(datagrid7)

conn.Close()

Else
‘--- No post back ---
‘Just display the fruit table as it is
GetAndBindData(datagrid1)

End If ‘Postback

End Sub

Private Sub ExecuteSQL(cmd as SqlCommand, sSQL as string)

cmd.CommandText = sSQL
cmd.ExecuteNonQuery()

End Sub

Private Sub GetAndBindData(myDataGrid as _
System.Web.UI.WebControls.DataGrid)

Working with Transactions 243

18

LISTING 18.2 continued

19 0672323834 Ch18 4/19/02 2:24 PM Page 243

Dim conn as SqlConnection = new SqlConnection(“Data Source=” + _
localhost;Initial Catalog=Northwind;UID=sa;PWD=; “)

Dim cmd as SqlCommand = new SqlCommand(“SELECT name, “ + _
“description, quantity FROM Fruits”, conn)

conn.Open()
myDataGrid.DataSource = cmd.ExecuteReader()
myDataGrid.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Working With Transactions</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:label id=lblStatus runat=”server” />

<p>

<input type=”submit” Value=”Run Queries”>
<table align=”center” cellpadding=10 cellspacing=10>
<tr>
<td colspan=2 valign=”center”>
<h3>Original Data:</h3>
<asp:datagrid id=datagrid1 runat=”server” />

</td>
</tr>
</tr>
<td colspan=2>
<h3>After rolling back transaction to beginning:</h3>
<asp:datagrid id=datagrid7 runat=”server” />

</td>
</tr>

</table>

</form>
<hr>

</BODY>
</HTML>

244 Hour 18

LISTING 18.2 continued

19 0672323834 Ch18 4/19/02 2:24 PM Page 244

Listing 18.2 creates a transaction, performs some database changes, and then rolls these
changes back. On line 28, the transaction is started using the BeginTransaction()
method of the Connection object. On the following line, the transaction object is
assigned to the Command object. Any queries executed using the cmd Command object are
performed under the umbrella of this transaction.

The database is then displayed before modifications using the GetAndBindData() method
on line 32. On lines 34–36, the first database change is made, changing the quantity of
apples to 4. Lines 37–43 perform the next database change. Then, an error is simulated
using the Throw() method on line 39, causing the Rollback() method to run in the
Catch code block on line 41. Had there been no error, the transaction would have been
committed and all database changes made final. However, because the Rollback()
method was called instead, all changes made under this transaction are reverted back to
their previous state.

Working with Transactions 245

18

FIGURE 18.1
The appearance of the
Web form in Listing
18.2 after submitting
the form.

As you can see in Figure 18.1, the code in Listing 18.2 displays a Web form. After you
click the button labeled Run Queries, a connection to the database is opened and a trans-
action started. Database change #1 is made, and then the second change is attempted.
The second database change is wrapped in a Try...Catch block. This enables you to
check for an error and handle that error gracefully. In this case, the transaction is rolled
back, canceling any changes. Otherwise, the transaction is saved.

19 0672323834 Ch18 4/19/02 2:24 PM Page 245

Committing a Transaction
In Listing 18.2, after all database modifications have been successfully performed, the
transaction is saved by using the Commit() method of the transaction object. This ends
the transaction and makes all database changes permanent.

Canceling a Transaction
If an error had occurred during the second database modification in Listing 18.2, the
error would have been caught by the Try...Catch block and the Catch portion of the
code would have been executed. In this case, the Rollback() method of the transaction
object would have been called, reversing all changes made to the database, leaving it in
its original state.

Saving a Transaction
When working with database transactions, it’s possible to save the transaction at any
point. However, the term “saving” when applied to transactions is a bit misleading. The
process is more like bookmarking a site than saving a file. After saving at a point in a
transaction, you can revert back to that point, canceling any changes you might have
made after saving.

In other words, let’s say you initiate a transaction, and save the transaction after updating
several hundred fields in the database. Suppose that later, after several other database
modifications, an error occurs. Rather than rolling all the way back to the beginning, you
can save your transaction after the first batch of queries is executed. Then, later you can
roll back your changes to that saved point. However, this method can be dangerous if any
table relationships are missing, creating an unstable database.

To save a database transaction at any point, you need only call the Save() method of the
transaction object, and pass it the name you would like to use to reference the saved
point. Saving a transaction often makes more sense when working with hundreds or
thousands of database changes in a single transaction. Without saving, you’d be forced to
roll back all of these changes in the case of an error!

The example in Listing 18.3 demonstrates this concept. Just as in the previous example, a
database connection is opened and a transaction initiated. Some changes are made to the
data in the database, the transaction is saved, some more changes are made, and then the
transaction is rolled back to the saved point. The transaction is then committed, finalizing
all the changes made up to the saved point. Figure 18.2 shows the appearance of the Web
form after submitting the form.

246 Hour 18

19 0672323834 Ch18 4/19/02 2:24 PM Page 246

LISTING 18.3 Rolling a Transaction Back to a Saved Point

<%@ Page Debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

If IsPostBack then

Dim sOutput as string

‘Create Connection
Dim conn as SqlConnection = new SqlConnection(“Data Source=” + _

“localhost;Initial Catalog=northwind;UID=sa;PWD=;”)

‘Create Command
Dim cmd as SqlCommand = new SqlCommand()
cmd.Connection = conn

‘Connection must be open to start transaction
conn.Open()

‘Create Transaction and apply it to command object
Dim myTrans = conn.BeginTransaction(“TransactionName”)
cmd.Transaction = myTrans

‘Show Database before modifications
GetAndBindData(datagrid1)

‘Execute Database Change #1
ExecuteSQL(cmd, “UPDATE Fruits SET Quantity = 2 “ + _

“WHERE Name = ‘Apple’”)

‘Insert potentially hundreds of database changes here

‘Save Transaction
myTrans.Save(“SavePoint1”)

‘Execute Database Change #2
ExecuteSQL(cmd, “DELETE FROM FRUITS”)

‘Oh no! We’ve made a horrible mistake.
‘Rollback to saved point

Working with Transactions 247

18

19 0672323834 Ch18 4/19/02 2:24 PM Page 247

myTrans.Rollback(“SavePoint1”)

‘Commit earlier changes
myTrans.Commit()

‘Requery
GetAndBindData(datagrid7)

conn.Close()

Else

‘--- No post back ---
‘Just display the fruit table as it is
GetAndBindData(datagrid1)

End If ‘Postback

End Sub

Private Sub ExecuteSQL(cmd as SqlCommand, sSQL as string)

cmd.CommandText = sSQL
cmd.ExecuteNonQuery()

End Sub

Private Sub GetAndBindData(myDataGrid as _
System.Web.UI.WebControls.DataGrid)

Dim conn as SqlConnection = new SqlConnection(“Data Source=” + _
“localhost;Initial Catalog=Northwind;UID=sa;PWD=;”)

Dim cmd as SqlCommand = new SqlCommand(“SELECT name, “ + _
“description, quantity FROM Fruits”, conn)

conn.Open()
myDataGrid.DataSource = cmd.ExecuteReader()
myDataGrid.DataBind()
conn.Close()

End Sub
</script>

</HEAD>
<BODY>

<h1>Working With Transactions</h1>

248 Hour 18

LISTING 18.3 continued

19 0672323834 Ch18 4/19/02 2:24 PM Page 248

<hr>

<form runat=”server” id=form1 name=form1>
<asp:label id=lblStatus runat=”server” />

<p>

<input type=”submit” Value=”Run Queries” id=submit1 name=submit1>
<table align=”center” cellpadding=10 cellspacing=10>
<tr>
<td colspan=2 valign=”center”>
<h3>Original Data:</h3>
<asp:datagrid id=datagrid1 runat=”server” />

</td>
</tr>
</tr>
<td colspan=2>
<h3>After rolling back transaction to saved point:</h3>
<asp:datagrid id=datagrid7 runat=”server” />

</td>
</tr>

</table>

</form>
<hr>

</BODY>
</HTML>

Listing 18.3 is similar to the previous transaction code provided in Listing 18.2. Line 29
starts a transaction that is then assigned to the cmd Command object on the next line. The
current state of the database is displayed using the GetAndBindData() method on line 33.
A database change is then made on line 36, changing the quantity of apples from 2 to 4.

Shortly after on line 42, the transaction is saved using the Save() method of the transac-
tion object. The following line of code then deletes all contents from the Fruit table. For
the purposes of this example, that is undesirable. On line 49, the transaction is rolled
back to the previous save point, before the deletion was performed. Line 52 uses the
Commit() method to end the transaction and commit these database changes. Line 55
again shows the state of the database. As you can see in Figure 18.2, the quantity of
apples is modified, but the results of the DELETE query were not saved.

Working with Transactions 249

18

LISTING 18.3 continued

19 0672323834 Ch18 4/19/02 2:24 PM Page 249

Transactions with Stored Procedures
Database transactions are by no means limited to ADO.NET. In fact, transactions are
powered by the data source. That is to say, when you initiate a transaction inside
ADO.NET, the data source (in this case Microsoft SQL Server) actually performs all the
work.

To illustrate this point, the example in Listing 18.4 demonstrates how to perform a data-
base transaction inside a stored procedure. It’s very similar to an example used in a pre-
vious hour that adds an employee to the Employees table of the Northwind SQL Server
database. This procedure also assigns a territory to the newly added employee as well, all
rolled into a transaction.

To start a transaction inside a stored procedure in Microsoft SQL Server, you use the
BEGIN TRAN keywords. To roll back a transaction, you use ROLLBACK TRAN and as you
might have guessed, to commit a transaction, you use COMMIT TRAN.

LISTING 18.4 Rolling a Transaction Back to a Saved Point

CREATE PROCEDURE Employee_Add
(

@LastName nvarchar(20),
@FirstName nvarchar(10),

250 Hour 18

FIGURE 18.2
Saving a database
transaction.

19 0672323834 Ch18 4/19/02 2:24 PM Page 250

@Title nvarchar(30),
@BirthDate datetime,
@HireDate datetime,
@Address nvarchar(60),
@City nvarchar(15),
@PostalCode nvarchar(10),
@TerritoryID nvarchar(20)

)

AS

DECLARE @iCommunityProductAuditID int

BEGIN TRAN

-- add the main record
INSERT INTO Employees
(

LastName,
FirstName,
Title,
BirthDate,
HireDate,
Address,
City,
PostalCode

)
VALUES
(

@LastName,
@FirstName,
@Title,
@BirthDate,
@HireDate,
@Address,
@City,
@PostalCode

)

IF @@ERROR <> 0
BEGIN
ROLLBACK TRAN
RETURN @@ERROR

END

-- get EmployeeID
declare @EmployeeID int
SET @EmployeeID = @@IDENTITY

Working with Transactions 251

18

LISTING 18.4 continued

19 0672323834 Ch18 4/19/02 2:24 PM Page 251

-- add employee to a territory
INSERT INTO EmployeeTerritories
(

EmployeeID,
TerritoryID
)

VALUES
(

@EmployeeID,
@TerritoryID

)

IF @@ERROR <> 0
BEGIN
ROLLBACK TRAN
RETURN @@ERROR

END

COMMIT TRAN

RETURN @@ERROR
GO

The Employee_Add stored procedure in Listing 18.4 accepts a relatively large list of para-
meters in lines 3–11. As you’ll recall from Hour 15, “Working with Stored Procedures,”
these are the same as function arguments. Line 18 begins a transaction within the stored
procedure. Lines 21–42 add a record into the Employees table using the values supplied
in the parameters.

If any errors were encountered while performing the INSERT query, the transaction is
rolled back using the ROLLBACK TRAN SQL statement in lines 44–48. In line 52, the auto-
matically incremented identity number created for the newly added employee is assigned
to the @EmployeeID variable. The @EmployeeID is then used in lines 55–64 to add a ter-
ritory for that new employee to the EmployeeTerritories table. Again, lines 66–70 ensure
that if any errors were encountered, the entire transaction is rolled back; this means that
not only will the EmployeeTerritories entry be removed, but also the entry made for
the new employee in the Employees table. On line 72, the transaction is commited.

Summary
In this hour, you’ve seen how to work with database transactions using ADO.NET. You
saw how to start a transaction and assign that transaction to the Command object. You then

252 Hour 18

LISTING 18.4 continued

19 0672323834 Ch18 4/19/02 2:24 PM Page 252

saw how to revert transactions back to previous states and also how to finalize a transac-
tion. Lastly, you saw how to perform a transaction directly in a stored procedure.

Q&A
Q Can I enlist multiple command operations in the same transaction?

A Certainly! All you need to do is create another Command object and assign it the
same Connection object. Then remember to assign the SqlTransaction object to it
as well.

Q What happens to my transaction if the server crashes while it is processing?

A This is dependent upon your data source. However, using Microsoft SQL Server
7.0 or 2000, all changes made during the life of your transaction will be rolled
back. Almost any transactional data source should operate in the same manner.

Q What if I do not explicitly call the Commit() method to save the transaction?

A If you do not call the Commit() method, the database changes made during the life
of the transaction will not be saved.

Q Are changes to database schema performed while in a transaction rolled back
as well?

A Yes. If you were to create a table while participating in a transaction, and then
decided to roll the transaction back, the table would be rolled back as well.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. Which method of the SqlTransaction object finalizes a transaction? How is this

done in T-SQL?

2. In ADO.NET, a database transaction is started by using which object?

Working with Transactions 253

18

19 0672323834 Ch18 4/19/02 2:24 PM Page 253

Exercise
Try to implement a simple financial transaction example, like the one mentioned in the
introduction of this hour. Create two database tables, one for bank A and one for bank B.
Then create a procedure that copies the checking and savings balance from one bank to
another for a given AccountID. Make sure, of course, to use a transaction to perform the
transfer.

254 Hour 18

19 0672323834 Ch18 4/19/02 2:24 PM Page 254

HOUR 19
Using Automatically
Generated Commands

Most application code (Web or otherwise) that accesses SQL Server data
tends to be fairly simple in nature. Rarely is there the need to do complex
table joins as the basis of your DataSet population, let alone as the basis of
updates back to the database. In the cases where you are only dealing with
single-table commands, you can leverage the CommandBuilder feature of
.NET to generate the appropriate INSERT, UPDATE, and DELETE commands for
this type of single-table processing automatically. There are some limitations
to automatic code generation, but its efficiency and coding simplicity far
outweigh these limitations. In addition, Visual Studio .NET Enterprise
Architect provides much of the same type of code generation capability but
does not use the CommandBuilder object. In both cases, Microsoft continues
to try to make the programmer’s job easy.

In this hour, you will learn the following topics:

• When automatically generated commands are created

• Coding examples using the CommandBuilder

20 0672323834 Ch19 4/19/02 2:19 PM Page 255

• What to do when the original SELECT statement changes

• A brief look at Windows Form Designer–generated code

Automatically Generated Commands
A recent survey of a large Silicon Valley-based corporation’s application code library
yielded an interesting characteristic about their major intranet applications. This charac-
teristic was that nearly 90% of the code acted (read, updated, inserted, or deleted) against
only one table at a time. There were many reasons for this including performance (keep-
ing tight, short transactions), concurrency issues (minimizing of locking), and a desire to
keep application code very small and modular. This is very typical for most organiza-
tions. With this in mind, the advent of having code generated automatically if it meets
certain criteria was made a reality in .NET.

As you analyze your coding requirements and find that you will meet these criteria, you
can take advantage of having .NET generate much of your update, insert, and delete code
for you. .NET uses an object called CommandBuilder to automatically generate the
DeleteCommand, InsertCommand, and UpdateCommand of the DataAdapter. It is available
for both the OLE DB and SQL data adapters (the SqlCommandBuilder class and the
OleDbCommandBuilder class). From a benefits point of view, this translates directly into
smaller, more easily maintained code throughout. Now, this is a really big benefit.

256 Hour 19

The SqlDataAdapter and the OleDbDataAdapter do not automatically gener-
ate the SQL statements required to reconcile changes made to a DataSet
with the associated data source. You must explicitly set the SelectCommand
property of the data adapter to make this happen!

Automatically Generated Commands Criteria
To take advantage of the automatically generated commands capability, you must only
be dealing with a single table at a time. The table must also have a unique primary key
or unique column of some kind; otherwise, an InvalidOperation exception will be
encountered and no automatically generated commands will be created. The generated
code does not take into account any underlying relationships that might exist that logi-
cally relate tables such as foreign key constraints, and so on. The responsibility is on you
to make sure you are not interfering with this type of situation.

The logic for this automatically generated code will also adhere to the optimistic concur-
rency model (see Chapter 14, “Managing ADO.NET Concurrency,” for more detailed

20 0672323834 Ch19 4/19/02 2:19 PM Page 256

information on what the optimistic concurrency model is). In other words, the data that is
read by the SelectCommand will not be locked for update and can be modified by any
other user or application at any time. And, the update and delete code that is automati-
cally generated will contain a WHERE clause that compares all of the original data values
against what exists in the database. If it fails this comparison, the command will not suc-
ceed and will throw a DBConcurrencyException.

In the case of an update, if the row that it is targeting was deleted, the update will fail
with the same DBConcurrencyException.

Speaking of the SelectCommand, the CommandBuilder must execute the SelectCommand
in order to retrieve the necessary metadata to build the INSERT, UPDATE, and DELETE com-
mands. So, this will be one extra query that must be executed (only a slight, but neces-
sary nuisance).

If anything changes with the metadata after this initial SelectCommand retrieval (for
example, you select a different column and want to update this value instead), you will
have to refresh this metadata, which will also cause a refresh of the automatically gener-
ated UPDATE, INSERT, and DELETE code.

CommandBuilder has a bit of difficulty mapping output parameters that are identity
columns (or autonumbers columns). In this case, you will not be able to use this feature
and have to explicitly code the UPDATE command.

And last, but not least, if any column names or table names contain any special charac-
ters like periods, quotation marks, spaces, or other nonalphanumeric characters (even if
delimited by brackets []), this will cause the generated logic to fail. This would only
affect perhaps .05% of the world. Most folks name their columns and tables in a fairly
standard way.

This limitation does not apply to table names in the form of schema.owner.table, though.

Using the CommandBuilder
Normally when you go about updating, deleting, or inserting data via the DataSet, you
fill the dataset, make your changes to the DataSet, and then issue an explicit update
(DELETE or INSERT) command. Listing 19.1 shows a typical update process:

LISTING 19.1 The Update Process (19NormalUpd.vb)

Dim dbConn As SqlConnection = New SqlConnection(“Data Source=localhost;
Integrated Security=SSPI;Initial Catalog=northwind”)

Dim CustomerAdapter As SqlDataAdapter = New SqlDataAdapter

Using Automatically Generated Commands 257

19

20 0672323834 Ch19 4/19/02 2:19 PM Page 257

(“SELECT CustomerID, ContactName FROM Customers”, dbConn)
CustomerAdapter.UpdateCommand=New SqlCommand

(“UPDATE Customers SET ContactName=@ContactName “ & _
“WHERE CustomerID = @oldCustomerID”, dbConn)

CustomerAdapter.UpdateCommand.Parameters.Add
(“@ContactName”, SqlDbType.NVarChar, 30, “ContactName”)

Dim OldParms As SqlParameter
OldParms = CustomerAdapter.UpdateCommand.Parameters.Add

(“@oldCustomerID”, SqlDbType.NChar, 5, “CustomerID”)
OldParms.SourceVersion = DataRowVersion.Original
Dim CustomerDataSet As DataSet = New DataSet()
CustomerAdapter.Fill(CustomerDataSet, “Customers”)
Dim UpdtRow As DataRow = CustomerDataSet.Tables(“Customers”).Rows(0)
UpdtRow(“ContactName”)= “Donald Renato”
CustomerAdapter.Update(CustomerDataSet, “Customers”)

However, if your update operation to the database meets all of the criteria that we out-
lined earlier, the code could be greatly simplified by taking advantage of the automati-
cally generated code from the CommandBuilder. Listing 19.2 is the same update
processing but utilizing the SqlCommandBuilder instead. We will be able to remove the
UpdateCommand logic, the old parameter-saving logic, and yield a tighter, smaller code
result. You will see first the declaration of the SqlCommandBuilder for the
SqlDataAdapter. This will generate all of the needed INSERT, UPDATE, and DELETE com-
mands automatically. Then, you simply open the connection, fill the dataset, update a
value in the dataset, and push the update back to the database
(CustomerAdapter.Update..). That’s it.

LISTING 19.2 Updating Using the SqlCommandBuilder (19AGCUpd.vb)

Dim dbConn As SqlConnection = New SqlConnection(“Data Source=localhost;
Integrated Security=SSPI;Initial Catalog=northwind”)

Dim CustomerAdapter As SqlDataAdapter = New SqlDataAdapter
(“SELECT CustomerID, ContactName FROM Customers”, dbConn)

Dim CustomerCMDBLDR As SqlCommandBuilder =
New SqlCommandBuilder (CustomerAdapter)

Dim CustomerDataSet As DataSet = New DataSet()
dbConn.Open()
CustomerAdapter.Fill(CustomerDataSet, “Customers”)
Dim UpdtRow As DataRow = CustomerDataSet.Tables(“Customers”).Rows(0)
UpdtRow(“ContactName”)= “Donald Bertucci”
CustomerAdapter.Update(CustomerDataSet, “Customers”)
dbConn.Close()

258 Hour 19

LISTING 19.1 continued

20 0672323834 Ch19 4/19/02 2:19 PM Page 258

Showing What Was Automatically Generated
If you want, you can display the exact SQL code that the CommandBuilder has generated
using the Get..Command() methods. Listing 19.3 is a code example of displaying the
generated commands out to the console and the execution results of this display.

LISTING 19.3 Displaying the Generated Commands (19ShowUpd.vb)

Dim CustomerAdapter As SqlDataAdapter = New SqlDataAdapter
(“SELECT CustomerID, ContactName FROM Customers”, dbConn)

Console.Writeline(CustomerCMDBLDR.GetUpdateCommand().CommandText)
Console.Writeline(CustomerCMDBLDR.GetInsertCommand().CommandText)
Console.Writeline(CustomerCMDBLDR.GetDeleteCommand().CommandText)

The preceding code, when executed, displays the following results:

UPDATE Customers SET CustomerID = @p1 , ContactName = @p2 WHERE ((CustomerID =
@p3) AND ((ContactName IS NULL AND @p4 IS NULL) OR (ContactName = @p5)))
INSERT INTO Customers(CustomerID , ContactName) VALUES (@p1 , @p2)
DELETE FROM Customers WHERE ((CustomerID = @p1) AND ((ContactName IS NULL AND
@p2 IS NULL) OR (ContactName = @p3)))

If the SELECT Statement Changes
If the SELECT statement that was originally defined in your program needs to change for
any reason, you run the risk of executing automatically generated code that does not
match the current SELECT statement’s metadata. For example, your application might
need a different set of columns than were selected earlier, or the SELECT statement could
be dynamically provided as an input from the user. If something has changed in this
SELECT statement, you must make sure you regenerate the automatically generated code.

What really is happening is that the metadata has changed (the different SELECT state-
ment) and any automatically generated code would be out of sync with this new meta-
data. The approach for keeping the SELECT statement’s metadata in sync with the
automatically generated code is to issue a Refresh command after any changes have
been made to the SELECT statement.

Listing 19.4 is an example of code that issues a first SELECT statement (CustomerID and
ContactName), updates data based on that SELECT statement’s automatically generated
code, then changes the SELECT statement (CustomerID and CompanyName), refreshes the
automatically generated code, and proceeds with the next update based on the newly
generated code. Very clean implementation!

Using Automatically Generated Commands 259

19

20 0672323834 Ch19 4/19/02 2:19 PM Page 259

LISTING 19.4 Refreshing the Automatically Generated Code (19RefreshUpd.vb)

Dim CustomerAdapter As SqlDataAdapter = New SqlDataAdapter
(“SELECT CustomerID, ContactName FROM Customers”, dbConn)

Dim CustomerCMDBLDR As SqlCommandBuilder = New SqlCommandBuilder
(CustomerAdapter)

Dim CustomerDataSet As DataSet = New DataSet()
dbConn.Open()
CustomerAdapter.Fill(CustomerDataSet, “Customers”)
Dim UpdtRow As DataRow = CustomerDataSet.Tables(“Customers”).Rows(0)
UpdtRow(“ContactName”)= “Juliana Nicole”
CustomerAdapter.Update(CustomerDataSet, “Customers”)
CustomerAdapter.SelectCommand.CommandText=

“SELECT CustomerID, CompanyName FROM Customers”
CustomerCMDBLDR.RefreshSchema()
CustomerDataSet.Tables.Remove(CustomerDataSet.Tables(“Customers”))
CustomerAdapter.Fill(CustomerDataSet, “Customers”)
Dim UpdtARow As DataRow = CustomerDataSet.Tables(“Customers”).Rows(0)
UpdtARow(“CompanyName”)= “ABCDE Company”
CustomerAdapter.Update(CustomerDataSet, “Customers”)
dbConn.Close()

Windows Form Designer-Generated Code—VS .NET
Many places in Visual Studio .NET Enterprise Architect have been enhanced with auto-
matic code generation. The area that corresponds to that of the CommandBuilder can be
found when you create the DataAdapter for database access for a form when using the
Windows Form Designer. You do not have to use the CommandBuilder object to set this
capability. You simply choose to have the Data Adapter Configuration Wizard generate
INSERT, UPDATE, and DELETE statements for you. These then become part of the Windows
Form Designer–generated code used by the form you are building. They will also follow
the optimistic concurrency model if you direct the wizard to do so. Figure 19.1 shows the
Data Adapter Configuration Wizard with the Use SQL statements option checked and the
Advanced SQL Generation Options dialog box. As you can see, these correspond exactly
with what CommandBuilder would generate.

The next wizard dialog box (see Figure 19.2) reviews the list of tasks the Data Adapter
Confirmation Wizard has performed, which includes the generation of the INSERT,
UPDATE, and DELETE statements (just as we saw with the CommandBuilder object).

Then, if you jump back over to the Code Editor tab in the Windows Form Designer, as
you can see in Figure 19.3, you will see a node that contains the “Windows Form
Designer generated code”. Expand this node and you can walk through all the generated
INSERT, UPDATE, and DELETE code that was generated for you.

260 Hour 19

20 0672323834 Ch19 4/19/02 2:19 PM Page 260

Using Automatically Generated Commands 261

19

FIGURE 19.1
Data Adapter
Configuration Wizard
and the Advanced SQL
Generation Options
dialog box.

FIGURE 19.2
Data Adapter
Configuration
Wizard—View Wizard
Results.

The generated code is quite extensive and pretty much bulletproof as well. Again, this
example follows the optimistic concurrency model for updates. A snippet of code that
was generated is shown in Listing 19.5.

LISTING 19.5 Generated Code (19Vsdesigner.vb)

‘SqlInsertCommand1
Me.SqlInsertCommand1.CommandText = “INSERT INTO Customers

(CustomerID, CompanyName, ContactName, ContactTitle, Address” & _
“, City, Region, PostalCode, Country, Phone, Fax) VALUES

(@CustomerID, @CompanyName, “ & _
“@ContactName, @ContactTitle, @Address, @City, @Region,

@PostalCode, @Country, @Phone, @Fax); “ & _
“SELECT CustomerID, CompanyName, ContactName,

ContactTitle, Address,” & _

20 0672323834 Ch19 4/19/02 2:19 PM Page 261

262 Hour 19

“City, Region, PostalCode, Country, Phone, Fax
FROM Customers WHERE (CustomerID = @CustomerID)”_

‘SqlUpdateCommand1
Me.SqlUpdateCommand1.CommandText = “UPDATE Customers

SET CustomerID = @CustomerID, CompanyName = @CompanyName,
ContactName = @ContactName, ContactTitle = @ContactTitle, “ & _

“ Address = @Address, City = @” & _
“City, Region = @Region, PostalCode = @PostalCode, Country = @Country,”&
“Phone = @P hone, Fax = @Fax WHERE (CustomerID = @Original_CustomerID) “ &
“
“AND (Address = @Original_Address OR @Original_Address IS NULL AND “ &
“ Address IS NULL) AND (City = @Original_City OR “ & _
“@Original_City IS NULL AND City IS NULL) “ & _
“ AND (CompanyName = @Original _CompanyName) AND (ContactName = “ &
“ @Original_ContactName OR @Original_ContactName” & _
“ IS NULL AND ContactName IS NULL) AND (ContactTitle = @Original” & “ &
“ContactTitle OR @Original_ContactTitle IS NULL AND ContactTitle” &
“ IS NULL) AND (Country = @Original_Country OR @Original “ & _
“ _Country IS NULL AND Country IS NULL) AND (Fax = @Original” & _
“_Fax OR @Original_Fax IS NULL AND Fax IS NULL) AND “ &
“ (Phone = @Original_Phone OR @” & _
“Original_Phone IS NULL AND Phone IS NULL) AND (PostalCode = “ &
“ @Original_PostalCode OR @Original_PostalCode “ & _
“ IS NULL AND PostalCode IS NULL) AND (Region = @Original” & _
“_Region OR @Original_Region IS NULL AND Region IS NULL); “ &
“ SELECT CustomerID, CompanyName, ContactName, ContactTitle “ & _
“, Address, City, Region, PostalCode, Country, “ & _
“Phone, Fax FROM Customers WHERE (CustomerID = @CustomerID)”

‘SqlDeleteCommand1
Me.SqlDeleteCommand1.CommandText = “DELETE FROM Customers “ &
WHERE (CustomerID = @Original_CustomerID) AND (Address = “ & _
“@Original_Address OR @Original_Address IS NULL AND Address “ &
“ IS NULL) AND (City = @Original_City OR @Original_City “ & _
“IS NULL AND City IS NULL) AND (CompanyName = @Original_CompanyName)” &
“AND (ContactName = @Original_ContactName OR @Original_Contact” & _
“Name IS NULL AND ContactName IS NULL) AND (ContactTitle = “ &
“@Original_ContactTitle OR @Original_ContactTitle IS NULL “ & _
“ AND ContactTitle IS NULL) AND (Country = @Original_Country “ & _
“ OR @Original_Country IS NULL AND Country IS NULL) AND “ & _
“(Fax = @Original_Fax OR @Original_Fax IS NULL AND Fax IS NULL)” &
“ AND (Phone = @Original_Phone “ & _
“OR @Original_Phone IS NULL AND Phone IS NULL) AND” &
“ (PostalCode = @Original_Postal Code OR @Original_PostalCode “ & _
“ IS NULL AND PostalCode IS NULL) AND (Region = @Original “ & _
“ _Region OR @Original_Region IS NULL AND Region IS NULL)”

LISTING 19.5 continued

20 0672323834 Ch19 4/19/02 2:19 PM Page 262

You can see the WHERE clause comparisons for guaranteeing your update or delete is
being used (for optimistic concurrency). Just be glad that you don’t have to code all of
this yourself!

Summary
In this hour, you’ve seen the advantages of using automatically generated commands via
the CommandBuilder object. Not only does this simplify coding, but it also makes your
code much more consistent and easy to maintain. Even though you are limited to single-
table data accesses when using this capability, you shouldn’t run into that many cases
where you can’t take advantage of the CommandBuilder. Remember, the CommandBuilder
is using the optimistic concurrency model. And luckily, when you are using the VS .NET
Enterprise Architect, you can leverage off the same automatically generated code while
building the DataAdapter instances for your forms development. Coding life just got a
lot easier.

Q&A
Q How will I know when to use CommandBuilder or not?

A The data access requirements must correspond to the single-table limitation, the
unique column or primary key requirement along with no related table

Using Automatically Generated Commands 263

19

FIGURE 19.3
Code Editor tab—
Windows Form
Designer–generated
code.

20 0672323834 Ch19 4/19/02 2:19 PM Page 263

functionality that could cause data update discrepancies (like foreign key con-
straints, and so on). If you have met this criteria, save yourself a bunch of coding
and use CommandBuilder!

Q Do I do the same type of coding for the SqlDataAdapter that I would do for
the OleDbDataAdapter?

A Yes! There is basically no difference in the coding approach for either
DataAdapter. Both can use the CommandBuilder capability.

Q What if I don’t refresh the SELECT statement’s metadata when the statement is
changed?

A Unpredictable results will occur. Very often you will see the error of a new refer-
enced column is not available. Be sure to refresh the metadata after any SELECT
statement change!

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. CommandBuilder will generate UPDATE and DELETE statements following which con-

currency model?

a. Pessimistic concurrency model

b. Optimistic concurrency model

c. Data update concurrency model

2. True or false: Automatically generated commands will be created for all
SelectCommands coded in Visual Basic or C#.

3. What must be done following the change of a SELECT statement when using
CommandBuilder to automatically generate code?

a. Reassign SELECT variables

b. Refresh metadata

c. Close connection

d. Open connection

4. True or false: The following SELECT statement is valid for using with
CommandBuilder:

264 Hour 19

20 0672323834 Ch19 4/19/02 2:19 PM Page 264

SELECT a.*, b.*
FROM Customers a, Orders b
WHERE a.CustomerID = b.CustomerID

5. The SelectCommand that will be used for the CommandBuilder must:

a. Include a SELECT Distinct clause

b. Contain all columns in the table

c. Return at least one primary key or unique column

d. Contain a WHERE clause with at least one filter

Exercise
Take (download) the original non-CommandBuilder sample code (19NormalUpd.vb) and
manually convert it to use automatically generated commands with CommandBuilder. You
can use either the OleDBCommandBuilder or SqlCommandBuilder objects.

After you have completed this conversion (and it works!), add in an insert and delete that
also uses the automatically generated commands.

Using Automatically Generated Commands 265

19

20 0672323834 Ch19 4/19/02 2:19 PM Page 265

20 0672323834 Ch19 4/19/02 2:19 PM Page 266

HOUR 20
Working with Typed
DataSets

ADO.NET code has made some great strides forward in the context of typ-
ing. One such major stride is in the ability to access the data held in the
DataSet through a “strongly typed” metaphor. This may not seem like such
a big deal at first glance, but when compared to the old “weakly typed”
approach of vintage ADO, it is more than a pleasure to work with. In partic-
ular, you can now access the typed DataSet’s tables and columns with more
simplified and user-friendly code. Using typed DataSets also yields better
code coming out of the chute because any previously unknown runtime typ-
ing issues come out at compile time and not at runtime (as runtime errors,
nasty indeed!). Microsoft also throws in the XML Schema Definition tool
(XSD.exe—as part of the .NET Framework SDK) that generates typed
DataSets and has embedded the process of generating typed DataSets as
standard practice in Visual Studio .NET. The rest is up to you.

21 0672323834 Ch20 4/19/02 2:25 PM Page 267

In this hour, you will learn the following topics:

• A more detailed discussion of the typed DataSet

• How to generate typed DataSets with XSD.exe

• How to generate typed DataSets in VS .NET

• Using annotations with typed DataSets for even better code

• Typical programming with typed DataSets

The Typed DataSet
A typed DataSet is a class that derives from a DataSet class and inherits all the meth-
ods, events, and properties of DataSets. In other words, it looks and acts the same as a
DataSet. A typed DataSet also provides strongly typed methods, events, and properties.
All this translates to being able to access (in your code) the tables and columns by name,
instead of using collection-based methods. In addition, Visual Studio .NET code editors
use the typed DataSet to help automatically complete lines as you physically type a line
of code. As previously stated, the strong typing of DataSets also contributes to catching
type mismatch errors at compile time as opposed to at runtime. In the next section, we
will be generating the XML schema directly from some SQL Server tables and creating
typed DataSets for use in a coding example.

268 Hour 20

To generate a typed DataSet that can be used by many programs (and lan-
guages such as VB and C#), you must first start with an XML schema repre-
sentation of the DataSet. This will be the .xsd XML file (XML Schema
Definition). After this has been created, it can be turned into a typed
DataSet and made available to programs that reference it properly (via a
generated .dll). This .xsd schema of the DataSet must be compliant with the
XML Schema definition language standards, available at
http://www.w3.org/2001/XMLSchema and http://w3c.org.

After the XML Schema is generated, we will run it through the XSD.exe (XML Schema
Definition) tool and create the typed class definitions in the appropriate language we
would be using it with (such as VB or C#). We then compile the typed class definition as
a library (.dll) to be used in our code. It’s really that simple. All we then have to do is
include the library (and Imports) in our VB code, and we can reference the strongly
typed DataSet easily. Let’s step through this process now. Later in this hour we will see
how to do this using VS .NET Enterprise Architect as well.

21 0672323834 Ch20 4/19/02 2:25 PM Page 268

Generating a Typed DataSet
As mentioned earlier, you must first generate some valid XML for the DataSet you
intend to create. Well, you must have a clue of what you need in this DataSet before you
can start this process. Your coding needs dictate this. If you need only a portion of the
Customers data, it is a pretty small DataSet definition. Figure 20.1 illustrates the
Customers table in the Northwind database. We will use all or portions of the Customer
data in our coding example. Listing 20.1 is the associated XML Schema Definition for
Customers (compliant with the XML Schema definition language standards).

LISTING 20.1 The XML Schema File for Customers DataSet

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”CustDataSet” xmlns=””

xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”CustDataSet” msdata:IsDataSet=”true”>
<xs:complexType>
<xs:choice maxOccurs=”unbounded”>
<xs:element name=”Customers”>
<xs:complexType>
<xs:sequence>
<xs:element name=”CustomerID” type=”xs:string” minOccurs=”0” />
<xs:element name=”CompanyName” type=”xs:string” minOccurs=”0” />
<xs:element name=”ContactName” type=”xs:string” minOccurs=”0” />
<xs:element name=”ContactTitle” type=”xs:string” minOccurs=”0” />
<xs:element name=”Address” type=”xs:string” minOccurs=”0” />
<xs:element name=”City” type=”xs:string” minOccurs=”0” />
<xs:element name=”Region” type=”xs:string” minOccurs=”0” />
<xs:element name=”PostalCode” type=”xs:string” minOccurs=”0” />
<xs:element name=”Country” type=”xs:string” minOccurs=”0” />
<xs:element name=”Phone” type=”xs:string” minOccurs=”0” />
<xs:element name=”Fax” type=”xs:string” minOccurs=”0” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:schema>

If you need a much more complex DataSet that includes perhaps Customers (all ele-
ments) and their associated orders (all elements), the XML coding is a bit longer. Figure
20.2 shows the relationship that must be traversed from the Customers table to the
Orders table. This also translates into a potential complex XML schema definition that

Working with Typed DataSets 269

20

21 0672323834 Ch20 4/19/02 2:25 PM Page 269

contains both customers and orders. Remember, it must allow you to traverse a relation-
ship (from parent customers to their child orders) using one DataSet (as seen in
Listing 20.2).

270 Hour 20

FIGURE 20.1
The Customers table.

LISTING 20.2 The XML Schema File for Customers and Orders DataSet

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”CustDataSetO” xmlns=””

xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”CustDataSetO” msdata:IsDataSet=”true”>
<xs:complexType>
<xs:choice maxOccurs=”unbounded”>
<xs:element name=”Customers”>
<xs:complexType>
<xs:sequence>
<xs:element name=”CustomerID” type=”xs:string” minOccurs=”0” />
<xs:element name=”CompanyName” type=”xs:string” minOccurs=”0” />
<xs:element name=”ContactName” type=”xs:string” minOccurs=”0” />
<xs:element name=”ContactTitle” type=”xs:string” minOccurs=”0”/>
<xs:element name=”Address” type=”xs:string” minOccurs=”0” />
<xs:element name=”City” type=”xs:string” minOccurs=”0” />
<xs:element name=”Region” type=”xs:string” minOccurs=”0” />
<xs:element name=”PostalCode” type=”xs:string” minOccurs=”0”/>
<xs:element name=”Country” type=”xs:string” minOccurs=”0” />
<xs:element name=”Phone” type=”xs:string” minOccurs=”0” />
<xs:element name=”Fax” type=”xs:string” minOccurs=”0” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”Orders”>
<xs:complexType>
<xs:sequence>
<xs:element name=”OrderID” type=”xs:int” minOccurs=”0” />
<xs:element name=”CustomerID” type=”xs:string” minOccurs=”0” />

21 0672323834 Ch20 4/19/02 2:25 PM Page 270

<xs:element name=”EmployeeID” type=”xs:int” minOccurs=”0” />
<xs:element name=”OrderDate” type=”xs:dateTime” minOccurs=”0” />
<xs:element name=”RequiredDate” type=”xs:dateTime” minOccurs=”0”/>
<xs:element name=”ShippedDate” type=”xs:dateTime” minOccurs=”0” />
<xs:element name=”ShipVia” type=”xs:int” minOccurs=”0” />
<xs:element name=”Freight” type=”xs:decimal” minOccurs=”0” />
<xs:element name=”ShipName” type=”xs:string” minOccurs=”0” />
<xs:element name=”ShipAddress” type=”xs:string” minOccurs=”0”/>
<xs:element name=”ShipCity” type=”xs:string” minOccurs=”0” />
<xs:element name=”ShipRegion” type=”xs:string” minOccurs=”0” />
<xs:element name=”ShipPostalCode” type=”xs:string” minOccurs=”0”/>
<xs:element name=”ShipCountry” type=”xs:string” minOccurs=”0” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:schema>

Working with Typed DataSets 271

20

LISTING 20.2 continued

FIGURE 20.2
The Customers and
Orders table relation-
ships.

A quick-and-dirty way to generate the XML schema file definition for a DataSet is to
utilize the WriteXMLSchema method of the DataSet and just generate it out to a physical
file using the System.IO.StreamWriter object. The VB code example in Listing 20.3
defines what the DataSet should contain (Customers table data, all elements), fills the
DataSet, and then writes out the XML schema for the DataSet into a physical file
named Customers.xsd. Always use the “xsd” file type for XML Schema files.

21 0672323834 Ch20 4/19/02 2:25 PM Page 271

LISTING 20.3 Generating the XML Schema File Definition (20xmlsch.vb)

dbConnection = new SqlConnection(“server=localhost;
Trusted_Connection=yes;database=northwind”)
dbSqlDataAdapter = new SqlDataAdapter
(“select * from customers”, dbConnection)

CustDataSet = new DataSet()
dbSqlDataAdapter.Fill(CustDataSet,”Customers”)
Dim xmlsch As System.IO.StreamWriter =

New System.IO.StreamWriter(“Customers.xsd”)
CustDataSet.WriteXmlSchema(xmlsch)
xmlsch.Close()

If you wanted your DataSet to also include the Orders data (as seen in Figure 20.2), you
could just create another sqlDataAdapter that defines the SELECT statement for the
Orders table and fill this into your DataSet as well (as shown here):

SqlConnection(“server=localhost;Trusted_Connection=yes;database=northwind”)
dbSqlDataAdapter1 = new SqlDataAdapter

(“select * from customers”, dbConnection)
dbSqlDataAdapter2 = new SqlDataAdapter

(“select * from orders”, dbConnection)
CustODataSet = new DataSet()
dbSqlDataAdapter1.Fill(CustODataSet,”Customers”)
dbSqlDataAdapter2.Fill(CustODataSet,”Orders”)
Dim xmlsch As System.IO.StreamWriter =

New System.IO.StreamWriter(“CustomerO.xsd”)
CustODataSet.WriteXmlSchema(xmlsch)
xmlsch.Close()

After the XML Schema file is created, you can use this with the XSD tool to generate
the typed DataSet. Open up the physical file that was generated and make sure that you
have the desired schema id name (<xs:schema id= “CustDataSet”) along with its asso-
ciated element name value (<xs:element name=”CustDataSet”) as you can see in
Listing 20.4.

LISTING 20.4 Customer DataSet XML for generating a Typed DataSet
(Customers.xsd)

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”CustDataSet” xmlns=””
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>
<xs:element name=”CustDataSet” msdata:IsDataSet=”true”>

<xs:complexType>
<xs:choice maxOccurs=”unbounded”>
<xs:element name=”Customers”>

<xs:complexType>

272 Hour 20

21 0672323834 Ch20 4/19/02 2:25 PM Page 272

Using XSD.exe: The XML Schema Definition Tool
The XSD.exe (XML Schema Definition) tool is supplied to you in the .NET Framework
SDK. The XSD tool can generate XML schema or Common Language Runtime classes
from XDR, XML, and XSD files, or from classes in a runtime assembly. You will be pro-
viding the XML Schema file as input (Customers.xsd in this example) along with a few
directives. The file extensions drive the XSD tool logic. So if you specify (and provide)
an XML file, XSD.exe will infer a schema from the data in the file and produce an asso-
ciated schema file (.xsd). If you specify (and provide) an XSD file (schema file),
XSD.exe will generate source code for runtime objects that correspond to the XML
Schema. For our purpose the important directives are:

• /d[ataset]—Instructs XSD.exe to generate a typed DataSet.

• /l[anguage]—Instructs XSD.exe on what language to use (VB or CS or JS).
Default language is CS (C#).

• /n(amespace]:namespace—Specifies the runtime namespace for the generated
types. The default namespace is Schemas.

The output (results) of the XSD.exe command will be the corresponding typed DataSet
class code for the language specified. An example of generating the typed DataSet class
code from our Customers.xsd XML Schema file would be (from the DOS prompt):

D:> xsd.exe /d /l:VB customers.xsd /n:XSDSchema.Northwind
Microsoft (R) Xml Schemas/DataTypes support utility
[Microsoft (R) .NET Framework, Version 1.0.3617.0]
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.
Writing file ‘D:\ADOSAMPLE\customers.vb’.

The resulting Customers.VB source code is quite extensive, and it is recommended that
this code should not be changed. Here are the first few lines from the code:

‘--
‘ <autogenerated>
‘ This code was generated by a tool.
‘ Runtime Version: 1.0.3617.0
‘ Changes to this file may cause incorrect behavior and will be lost if
‘ the code is regenerated.
‘ </autogenerated>
‘--
Option Strict Off
Option Explicit On
Imports System
Imports System.Data
Imports System.Runtime.Serialization
Imports System.Xml
‘This source code was auto-generated by xsd, Version=1.0.3617.0.

Working with Typed DataSets 273

20

21 0672323834 Ch20 4/19/02 2:25 PM Page 273

Namespace XSDSchema.Northwind
<Serializable(), _
System.ComponentModel.DesignerCategoryAttribute(“code”), _
System.Diagnostics.DebuggerStepThrough(), _
System.ComponentModel.ToolboxItem(true)> _
Public Class CustDataSet

Inherits DataSet
Private tableCustomers As CustomersDataTable

. . .

Use the /t:library directive when compiling this code so that a corresponding library
(.dll) is generated for later use. Following our example, you would specify (at the DOS
prompt):

D:> vbc.exe /t:Library customers.vb /r:System.dll /r:System.Data.dll
/r:System.Xml.dll

Microsoft (R) Visual Basic .NET Compiler version 7.00.9447
for Microsoft (R) .NET Framework version 1.00.3617
Copyright (C) Microsoft Corporation 1987-2001. All rights reserved.

Now the typed DataSet is available to use in your code by including the namespace
(Imports for VB, Using for C#) and the appropriate /r: reference for the .dll (library).
The following is an example of compiling a sample VB program followed by some sam-
ple code lines of that VB program:

D:> vbc.exe 20usetyped.vb /r:System.dll /r:System.Data.dll /r:System.Xml.dll
/r:customers.dll

Microsoft (R) Visual Basic .NET Compiler version 7.00.9447
for Microsoft (R) .NET Framework version 1.00.3617
Copyright (C) Microsoft Corporation 1987-2001. All rights reserved.

The preceding example compiled the VB program code shown in Listing 20.5.

LISTING 20.5 Visual Basic Program Code—Typed DataSets (20UseTyped.vb)

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports Microsoft.VisualBasic
Imports XSDSchema.Northwind
namespace HowTo.ADONET24.Samples
public class usetypedDS
public shared sub Main()
Dim mytypedds as usetypedDS = new usetypedDS()
mytypedds.Run()

end sub
public sub Run()
try
Dim CSDataSet As CustDataSet = New CustDataSet()

274 Hour 20

21 0672323834 Ch20 4/19/02 2:25 PM Page 274

Dim CustomerAdapter As SqlDataAdapter =
New SqlDataAdapter(“SELECT CustomerID, CompanyName, ContactName “ &

“FROM Customers WHERE CustomerID like ‘B%’ “ &
“ORDER BY CustomerID”,
“server=localhost;Trusted_Connection=yes;database=northwind;”)

CustomerAdapter.Fill(CSDataSet, “Customers”)
Dim CustRow As CustDataSet.CustomersRow
For each CustRow in CSDataSet.Customers

Console.Writeline(“Customers Selected: “ + CustRow.ContactName)
Next
Console.WriteLine (“Much simpler code”)

catch e as Exception
‘ Display the error.
Console.WriteLine(e.ToString())

end try
end sub

end class
end namespace

Looking at the preceding code, you can readily see that using the typed DataSet has sim-
plified the code and has improved how the code reads as well. Specifically, it’s now
much easier to reference the CustDataSet (the typed DataSet we created):

Dim CSDataSet As CustDataSet = New CustDataSet()

Also we can use all of the inherited methods and properties directly:

Dim CustRow As CustDataSet.CustomersRow

and

Console.Writeline(“Customers Selected: “ + CustRow.ContactName)

Now the hard work of generating the typed DataSet has been done and it can be used
over and over accordingly. Go ahead and execute the sample program to verify its
capability.

Working with Typed DataSets 275

20

LISTING 20.5 continued

Using Annotations with a Typed DataSet
Please note that default reference names are given to the objects in the
DataSet, such as CustomersRow for the DataRow object name and Customers
for the DataRowCollection object name. This might be fine, but things can
be made even simpler and clearer by using annotations with a typed
DataSet. Plus, it’s not very hard.

21 0672323834 Ch20 4/19/02 2:25 PM Page 275

276 Hour 20

Annotations will allow you to modify the names of the elements in your
typed DataSet without modifying the underlying schema.

Our coding preference is to be able to reference the DataRow object name as
just “Customer” (instead of CustomerRow) and the DataRowCollection object
name as “Customers”. This will make coding even simpler.

The following code is part of an annotated version of the original cus-
tomers.xsd XML Schema file we used in generating our typed DataSet. To
use annotations, you must include a special xmlns reference in your XML
Schema file (xmlns:codegen=”urn:schemas-microsoft-com:xml-msprop”).
Then, each annotation uses the codegen= in its specification.

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”CustDataSet”

xmlns:codegen=”urn:schemas-microsoft-com:xml-msprop”
xmlns=””
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”CustDataSet” msdata:IsDataSet=”true”>
<xs:complexType>

<xs:choice maxOccurs=”unbounded”>
<xs:element name=”Customers”
codegen:typedName=”Customer”
codegen:typedPlural=”Customers”>

<xs:complexType>
<xs:sequence>

<xs:element name=”CustomerID”
type=”xs:string” minOccurs=”0” />

Then we just repeat the process of generating this as a typed DataSet as we
did earlier. The VB code (20UsedTyped.vb) that we used earlier can now be
coded as follows:

(20UsedTypedA.vb)

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports Microsoft.VisualBasic
Imports XSDSchema.Northwind
namespace HowTo.ADONET24.Samples
public class usetypedDSA

public shared sub Main()
Dim mytypedds as usetypedDSA = new usetypedDSA()
mytypedds.Run()

end sub
public sub Run()

try
Dim CSDataSet As CustDataSet = New CustDataSet()
Dim CustomerAdapter As SqlDataAdapter =

21 0672323834 Ch20 4/19/02 2:25 PM Page 276

Typed DataSets in Visual Studio .NET
In Visual Studio .NET, you will frequently be adding typed datasets to forms or compo-
nents to manipulate data, bind controls to the dataset, and so on. Remember, when you
add a dataset, you are really creating an instance of the typed DataSet class on your
form or component. The dataset must be in your project for you to use it. Just as you did
before, you will have to generate this typed dataset somehow. There are a few places
where the typed dataset can come from. The first is by generating it in another form or
component in your project. Or, you could create it manually (as we did earlier) and pull
it into your project to use. And lastly, you can create a reference to an XML Web service
or another component that returns a dataset. In all cases, we will want to generate it as a
typed dataset. The best way to get the hang of generating the needed typed dataset in VS
.NET is to build a tiny forms application. Let’s quickly step through an example that will
query customer contact names for customers in the Customers table of the Northwind
SQL Server database.

Working with Typed DataSets 277

20

New SqlDataAdapter(“SELECT * FROM Customers “ &
“WHERE CustomerID like ‘B%’ ORDER BY CustomerID”,
“server=localhost;Trusted_Connection=yes;database=north

➥wind;”)
CustomerAdapter.Fill(CSDataSet, “Customers”)
Dim Customer As CustDataSet.Customer
For each Customer in CSDataSet.Customers

Console.Writeline(“Customers Selected: “ +
Customer.ContactName)

Next
Console.WriteLine (“Much more readable code”)

catch e as Exception
‘ Display the error.
Console.WriteLine(e.ToString())

end try
end sub

end class
end namespace

And, adding new customer code is as easy as

Dim NewCust As CustDataSet.Customer =
CSDataSet.Customers.NewCustomer()
NewCust.CustomerID = “BERTU”
NewCust.CompanyName = “Bertucci’s Pizza”
CSDataSet.Customers.AddCustomer(newCust)

Updating customer data is as easy as

CSDataSet.Customers(“BERTU”).ContactName = “Donald Renato”

21 0672323834 Ch20 4/19/02 2:25 PM Page 277

Create a New Project in VS .NET
1. Create a new project in VS .NET by choosing File, New, and then choosing the

Project option.

2. When the New Project dialog box appears, choose Visual Basic Projects (or Visual
C# Projects) and Windows Applications. Name this project “ADO.NET24hours” as
you can see in Figure 20.3.

278 Hour 20

FIGURE 20.3
Visual Studio .NET
New Projects dialog
box.

3. This creates a default form for you to start from.

Add the Data Connection and Data Adapter
We will be accessing the Customers table in SQL Server’s Northwind database. So, first
we will need to create a data connection and a data adapter to Microsoft SQL Server.

1. From the Data tab of the Toolbox, drag a SQLDataAdapter object into your form.

FIGURE 20.4
Visual Studio .NET
Form with Data
Toolbox
SqlDataAdapter object
selected.

21 0672323834 Ch20 4/19/02 2:25 PM Page 278

2. This will automatically invoke the Data Adapter Configuration Wizard. Both the
data connection and the data adapter can be fully configured here.

a. The wizard starts with the Choose Your Data Connection dialog box. If you
already have a connection defined in your project, it will be placed in the
dialog box; otherwise, choose to create a new connection and specify the
appropriate connection information (test the connection as well).

Working with Typed DataSets 279

20

FIGURE 20.5
Data Adapter
Wizard—Choose Your
Data Connection dia-
log box.

b. You will then have to decide to supply SQL statements, build a new stored
procedure, or give the name of an existing stored procedure for the data
access. In our example we will use the Use SQL Statements option.

c. You will be presented with a Generate the SQL Statements dialog box where
you will simply type in a valid SQL statement or you can use the Query
Builder option to formulate the SQL query. For this example, just type in the
following query:
SELECT CustomerID, ContactName FROM Customers
WHERE (CustomerID = @param1)

It should also be noted that for SqlDataAdapters, you will use a named
parameter (@param....) for any values that are to be substituted into the
WHERE clause. The OleDBDataAdapter’s SQL statements would use a “?”.
This dialog box should look like what is shown in Figure 20.6.

d. Lastly, the wizard will show you the tasks it has done and indicate whether
the SqlDataAdapter has been configured successfully.

After the SqlDataAdapter and DataConnection objects have been configured and added
to the form, you must first generate a typed DataSet and then add an instance of this
DataSet to the form.

21 0672323834 Ch20 4/19/02 2:25 PM Page 279

Generate the Typed DataSet
You can generate a typed DataSet from either a predefined XML Schema (as we did
manually before) or from a DataSet you have already created with the Component
Designer. Because we already have a good Customers.xsd (XML schema), we will use
this approach (for consistency).

1. Choose Project, Add Existing Item and locate the .xsd file you will be using as the
basis of your dataset creation (Customers.xsd). We have placed a copy in the
ADO.NET24hours folder.

2. When you have located the .xsd file, choose Open and the file will be placed in
your Solution Explorer.

3. Double-click on this Customers.xsd entry in the Solution Explorer window.
Immediately it will appear in the Component Designer as you can see in
Figure 20.7.

280 Hour 20

FIGURE 20.6
Data Adapter
Wizard—Generate the
SQL Statements dialog
box.

FIGURE 20.7
Visual Studio .NET
Component Designer
for Customers.xsd.

21 0672323834 Ch20 4/19/02 2:25 PM Page 280

4. Choose Schema, Generate DataSet and you will see the customers.vb entry added
in the Solution Explorer. A typed DataSet has been generated and placed below
the customers.xsd schema file in the Solution Explorer. You haven’t added this
dataset to your form yet; that comes next.

Working with Typed DataSets 281

20

Add an Instance of the DataSet to the Form
You must now add an instance of the typed DataSet to the form. Simply drag and drop a
DataSet object from the Data tab of the toolbox and place it in the form. As you can see
in Figure 20.8, you must choose whether it should be a “typed” or “untyped” dataset.
Simply choose for it to be typed and click OK.

You could have just as easily created a typed DataSet from the
SqlDataAdapter side as well. After the SqlDataAdapter is added to the
designer, you could have chosen the Data menu and the Generate DataSet
option. The resulting typed DataSet would be what was specified in the SQL
statement for the data adapter.

FIGURE 20.8
The Add Dataset dia-
log box for a new
instance of a DataSet
for the form.

You have now completed everything you need to do to populate the DataSet from a
valid SQL Server connection.

Add Some Controls to Display the Data
The next step is to complete the small form example to include a couple of text boxes
and a control button. From the Windows Forms tab of the Toolbox, add the following:

• Textbox—With a name of txtCustParameter and text is blank.

• Textbox—With a name of txtContactName and text is blank.

• Button—With a name of btnGet and text of “Get Contact”.

21 0672323834 Ch20 4/19/02 2:25 PM Page 281

Go ahead and add labels in front of each text box so that it looks like the form in
Figure 20.9.

282 Hour 20

FIGURE 20.9
Add text boxes, button,
and labels to the form.

Add Code to Populate the DataSet
Now we are ready to complete the application by adding the code to fill the dataset
based on the parameterized value we get from the txtCustParameter text box. This will
be plugged into the SQL statement and executed to fill the DataSet (and displayed in the
txtContactName text box).

Just double-click on the Get Contact button to create a method for the Click event. You
will have to add code to the handler to set the value of the single parameter required by
the SQL statement (from txtCustParameter), make a call to the dataset’s Clear method
to clear the dataset between iterations, and call the data adapter’s Fill method, passing
the reference to the dataset and the parameter value for the query. The following code is
added:

SqlDataAdapter1.SelectCommand.Parameters(“@param1”).Value =
txtCustParameter.Text

Customers1.Clear()
SqlDataAdapter1.Fill(Customers1)

Bind the Text Box to the DataSet
Nothing is left to do other than bind the text box to the DataSet and run the application.

1. From the Forms designer, select the txtContactName text box and press F4. This
will position you to the properties window for this text box.

21 0672323834 Ch20 4/19/02 2:25 PM Page 282

2. Expand the (DataBindings) node in the properties list and its text property.

3. Expand the Customers1 and Customers nodes and select the ContactName from
the list as seen in Figure 20.10.

Working with Typed DataSets 283

20

FIGURE 20.10
The (Databindings)

node of the text box
property.

Test It!
That’s it. Now just hit the F5 key and test your application by putting in a CustomerID
value that is in the Customers table. Try the value “ALFKI”. In Figure 20.11 you can see
the form retrieving a valid contact name from the Customers database successfully.

FIGURE 20.11
Form execution—
retrieving valid con-
tact name from
Customers.

Summary
In this hour, you’ve been completely inundated with typed DataSet creation and usage.
We have gone from extracting XML schema files with the WriteXmlSchema method, to
generating typed DataSets manually with the XSD tool and dynamically in Visual
Studio .NET Enterprise Architect. Using typed DataSets should move you greatly
toward simplifying coding and making it much more user-friendly (for you and others

21 0672323834 Ch20 4/19/02 2:25 PM Page 283

who have to maintain the code you write), and you will find fewer runtime typing issues
across the board, adding to the stability of your applications.

Q&A
Q What is the best way to create a typed DataSet?

A Two paths exist for you to generate typed DataSets. One path is the manual
approach using the XSD tool. The other path is dynamically using the Generate
Dataset option in Visual Studio .NET. Both are equal in their results.

Q Should I code my own XSD schema files for datasets?

A You can do this, but remember, this XML schema must comply to the standard
XML schema definitions as described at http://w3c.org. It is much easier to have
Visual Studio .NET, use the WriteXmlSchema method, or use the XSD tool to gen-
erate this for you. You can then edit this slightly to suit your needs.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. What is the directive of XSD that generates the dataset?

a. /n directive

b. /d directive

c. /l directive

2. True or false: You can only generate a typed DataSet using the XSD XML Schema
Definition tool?

3. How can the manually created typed DataSet be referenced in my VB code?

a. Imports an /r directive with library (.dll)

b. /l language directive at compile time

c. /n directive at compile time

284 Hour 20

21 0672323834 Ch20 4/19/02 2:25 PM Page 284

4. What is used to create more user-friendly names for DataSet objects in the XML
Schema file for a DataSet?

a. Annotations on the <XS:element name ...>

b. Comments, preceded by <>

c. New tag definitions of <XS:User-Friendly term >

Exercise
Part I: Go back and modify the 20xmlsch.vb program to include orders along with cus-
tomers. Compile and execute it so that it produces a corresponding XML Schema file
(.xsd).

Part II: Modify the 20UsedTyped.vb program to use this new Typed DataSet and to tra-
verse orders for each customer.

Working with Typed DataSets 285

20

21 0672323834 Ch20 4/19/02 2:25 PM Page 285

21 0672323834 Ch20 4/19/02 2:25 PM Page 286

HOUR 21
Optimizing Data Access
Using Tiered
Development

In the preceding hour, you saw how to take advantage of the strongly typed
nature of the Microsoft .NET Framework by using a typed DataSet to per-
form data access to make your code more readable. In this hour, you’ll see
how to implement tiered development practices in your applications.

In this hour, you’ll learn how to

• Create an assembly that will perform database access

• Return Product List data through your assembly to a product listing
screen

• Use a custom class to return detailed product information

22 0672323834 Ch21 4/19/02 3:36 PM Page 287

What Is Tiered Development?
A number of different application design paradigms exist. However, one of the most
important and influential is the notion of tiered development practices. Tiered develop-
ment refers to the idea of separating an application into logical and physical layers with
each layer serving a single purpose. There’s no limit to the number of layers an applica-
tion could have, so this style of development is often referred to as N-tier development
(where N can be any positive integer).

For instance, consider most of the examples you have seen in this book so far. These
examples are all good instances of two-tier design. The Web form or Windows form
serves as the presentation layer because its primary job is to display content to the user
and gather user input. Most of these examples connect directly to a data source. By stor-
ing the data, the data source provides the second tier in the application.

Two-tier application design works well for small applications that will require little
maintenance throughout the lifetime of the application. When designing Web applica-
tions prior to ASP.NET, performance was more of a consideration because all script in
ASP is interpreted. These performance considerations are mostly gone with ASP.NET
because everything, including the Web form itself, is compiled. However, the fact
remains that having SQL statements strewn throughout the presentation tier of your
application makes your code hard to read, manage, and upgrade.

Additionally, the two-tier development model leaves the business logic of your applica-
tion spread out in the presentation layer, almost certainly with the same business logic
repeated on multiple pages. (Business logic refers to the business rules modeled by your
application. For instance, not allowing a user to purchase over 100 items in a single order
would be a good example of a business rule.) If the business logic in your application
changes, it would be difficult for anyone but the original programmer to locate and
change all of the necessary business logic code instances.

The larger the application, the more these problems are exacerbated.

A solution to this problem is to insert an additional tier between the presentation layer
and the database layer. The job of this layer is to encapsulate business logic and perform
data access. In Microsoft .NET, this tier is implemented as an assembly. In the next few
sections, you’ll see how to implement a simple middle tier for some previous examples
in this book.

288 Hour 21

22 0672323834 Ch21 4/19/02 3:36 PM Page 288

Optimizing Data Access Using Tiered Development 289

21

How Many Tiers Are Enough?
This is an easy question to answer, but difficult to gauge sometimes, in prac-
tice. Your application should have as many tiers as conditions require.

For instance, consider the scenario of upgrading a two-tier application to a
three-tier application by moving business logic and data access from the pre-
sentation layer to the new middle layer. An alternate way to do this is to
split this new middle layer into two layers. One layer implements only busi-
ness logic; the other layer only performs the physical database access for the
business logic layer.

Many large applications are designed with this methodology. Though it
requires some extra work, the effort is rewarded with a replaceable data-
base layer. In other words, if you need to switch your database back end
from Oracle to Microsoft SQL Server 2000 (in case your application grows
larger and needs to scale out, for instance), you only need to write a new
database access layer and use it to replace the old one.

However, this example is unnecessarily complex in order to explain the con-
cepts in this chapter.

FIGURE 21.1
The .NET tiered devel-
opment model.

OracleMicrosoft SQL
2000

Other OLE DB
Sources

Data Layer

Business Logic/
Data Tier

Presentation
Layer

Microsoft .NET Assembly

Web
Form

Application

Windows
Forms

Application

.NET Tiered Development

22 0672323834 Ch21 4/19/02 3:29 PM Page 289

Implementing Tiered Development
As mentioned, tiered development is implemented in Microsoft .NET by using an assem-
bly. An assembly is analogous to a component in Microsoft’s previous development plat-
forms. An assembly contains objects and methods and compiles to a DLL. The assembly
can be referenced and used by your Web or Windows form.

In the next few sections, you’re going to see how to implement an additional tier in some
of the examples from Hour 11, specifically the product list screen and the product details
screen. The original examples are not provided in this chapter, so now might be a good
time to go back and review the purpose and implementation of these screens in Hour 11.

Planning Your Approach
As you recall, the product list screen displayed a list of all products in the Northwind
database and the product details screen displayed detailed product information for a sin-
gle product. As mentioned earlier, all data access and business logic (if any) will be
removed from the Web forms and placed into an assembly. The Web forms will then call
the assembly to get data, rather than directly calling the database itself.

Creating Your Own Assembly
To create a new assembly in your application, perform the following steps:

1. In your Web project directory, create a new directory called components. This
directory will contain the code that makes up the assembly.

2. Create a new file called ProductsDB.vb. This file will contain the code implement-
ing the middle tier.

290 Hour 21

The classes that will be necessary for our middle layer are organized into
namespaces. A namespace is just a code container; an organizational device.
You’re already familiar with namespaces—remember that
System.Data.SqlClient is just a namespace with various classes implement-
ing data access to SQL Server.

3. Place the code from Listing 21.1 into the ProductsDB.vb file to create the new
namespace.

22 0672323834 Ch21 4/19/02 3:36 PM Page 290

LISTING 21.1 Providing a Product Listing Through the ProductsDB Assembly

Imports System
Imports System.Configuration
Imports System.Data
Imports System.Data.SqlClient

Namespace ADO24HRS

End Namespace

In the next section, you’ll see how to add some classes into this namespace that will per-
form the data access for the product list page.

Creating Your Own Classes
The next step is to add a class to the ADO24HRS namespace in the ProductsDB.vb file. The
new class, named ProductsDB, can be seen in Listing 21.2. This class name does not
have to match the filename. However, because all of the objects you will be working
with are products, ProductsDB is a logical choice.

The first Web form we will use to implement this middle tier is the product list Web
form. If you recall, its job is to retrieve a list of all products in the database and then dis-
play them using a DataList control. Therefore, the name of the method that will perform
the data access is called GetAllProducts. This method is also present in Listing 21.2. As
you can see, it performs the same data access tasks currently being performed from the
product list Web form.

LISTING 21.2 Providing a Product Listing Through the ProductsDB Assembly

Imports System
Imports System.Configuration
Imports System.Data
Imports System.Data.SqlClient

Namespace ADO24HRS

Public Class ProductsDB

Public Function GetAllProducts() As SqlDataReader

‘Create Instance of Connection and Command Objects
Dim conn as New SqlConnection(_

Optimizing Data Access Using Tiered Development 291

21

22 0672323834 Ch21 4/19/02 3:36 PM Page 291

ConfigurationSettings.AppSettings(“ConnectionString”))
Dim cmd as New SqlCommand(“Products_GetAll”, conn)

‘Mark the Command as a Stored Procedure
cmd.CommandType = CommandType.StoredProcedure

‘Return Results
conn.Open()
Return cmd.ExecuteReader(CommandBehavior.CloseConnection)

End Function

End Class

End Namespace

292 Hour 21

LISTING 21.2 continued

Instead of having a connection string present every time you make a call to
the database, it makes a lot of sense to place the connection string into
some sort of global constant for your application. In the case of this compo-
nent layer in a Web forms application, the connection string is stored in a
section of the Web.Config file called AppSettings and then retrieved from
that single location each time it is used. This makes it much easier to make
changes to the connection string.

Compiling the ADO24HRS Namespace
Before we can use this new assembly, it must be compiled. This can be done most easily
through the use of a batch file (or, if you are using Visual Studio .NET, just build your
project). Place the following code into a file named mk.bat in the same component direc-
tory as your ProductsDB.vb file:

vbc /t:library /out:..\bin\ProductsDB.dll /r:System.dll /r:System.Web.dll
➥/r:System.Xml.dll /r:System.Data.dll ProductsDB.vb

The preceding line of code calls the Visual Basic .NET compiler (vbc.exe) and compiles
the ProductsDB.vb file into a usable assembly. It compiles the file directly to the /bin
directory of the Web forms application.

After you’ve placed the preceding code into the mk.bat file, execute the batch file either
from a DOS prompt or by double-clicking on the file from Windows Explorer. You will
not see any error messages if you double-click on the batch file from Explorer.

22 0672323834 Ch21 4/19/02 3:36 PM Page 292

After running the mk.bat file, check the bin directory of your Web project and make sure
a file named ProductsDB.dll is present. This is your compiled assembly.

Wiring Up the Product List Page to the ProductsDB Assembly
With the assembly now in place and accessible by the pages in your application, you can
remove the old data access code from the product list and replace it with the code in
Listing 21.3. Alternatively, you can just create a new Web form in your application and
place the code from Listing 21.3 in the new Web form.

LISTING 21.3 Retrieving Product Data through an Assembly

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadGridData(products)

End Sub

Private Sub LoadGridData(_
myDataList as System.Web.UI.WebControls.DataList)

‘Declare new instance of ProductsDB
Dim products as New ADO24HRS.ProductsDB()

myDataList.DataSource = products.GetAllProducts()
myDataList.DataBind()

End Sub
</script>

</HEAD>

Optimizing Data Access Using Tiered Development 293

21

In order to use the compiled assembly, a bin folder must be present in the
application root for your Web forms project. In most cases, this means that
the bin directory must be located in the main directory of your Web project.

22 0672323834 Ch21 4/19/02 3:36 PM Page 293

<BODY>

<h1>Product List</h1>
<hr>

<form runat=”server” id=form1 name=form1>

<asp:DataList id=”products” RepeatColumns=”2”
AlternatingItemStyle-backcolor=”#DDDDDD”
SelectedItemStyle-backcolor=”CadetBlue”
runat=”server”>

<ItemTemplate>
<table border=”0” width=”300”>
<tr>

<td width=”25”>

</td>
<td width=”72” valign=”middle” align=”right”>
<a href=’productdetails.aspx?productID=

➥<%# DataBinder.Eval(Container.DataItem, “ProductID”) %>’>
<img src=’/ADO24HOURS<%# DataBinder.Eval(

➥Container.DataItem, “ImagePath”) %>’ width=”72” height=”72” border=”0”>

</td>
<td width=”150” valign=”middle”>
<a href=’ProductDetails.aspx?productID=

➥<%# trim(DataBinder.Eval(Container.DataItem, “ProductID”)) %>’>
<%# DataBinder.Eval(Container.DataItem,

➥”ProductName”) %>

Price:

<%# DataBinder.Eval(Container.DataItem,
➥”UnitPrice”, “{0:c}”) %>

Units In Stock:
<%# DataBinder.Eval(Container.DataItem,

➥”UnitsInStock”) %>

</td>
</tr>

</table>
</ItemTemplate>

</asp:DataList>

</form>
<hr>

</BODY>
</HTML>

294 Hour 21

LISTING 21.3 continued

22 0672323834 Ch21 4/19/02 3:36 PM Page 294

As you can see, the code in Listing 21.3 is not much different from the original example
in Hour 11. Instead of using ADO.NET directly, the new middle layer performs all data
access. As you can see in lines 20–24 of Listing 21.3, the Web form now only needs to
create an instance of the ProductsDB class and then call the GetAllProducts() method
of that class. This method returns a SqlDataReader, which is indistinguishable from a
SqlDataReader created directly in the Web form. You can use it to bind to the DataList.
When this page is run, it will look much like the one in Figure 21.2.

Optimizing Data Access Using Tiered Development 295

21

Notice that you’re returning a SqlDataReader object from the new data
access layer. If you recall, the SqlDataReader is a forward-only, read-only
view of data that maintains a connection to the database for as long as it is
open. Because you’re opening a database connection for the SqlDataReader
in an assembly, you must take special action to ensure that the connection is
closed when the SqlDataReader is done. If you look at the Return statement
in the GetAllProducts() method, you’ll notice that we’re calling the
ExecuteReader() method with a special option.
CommandBehavior.CloseConnection makes sure the database connection is
closed after the SqlDataReader is done with its connection.

Using Custom Objects Instead of Single Rows of Data
If you look at the Web form in Listing 21.3 in the preceding section, you’ll notice that
the Web form links to a page that will provide more details for the selected product. This
is referred to as a master-detail set of Web form screens. When implementing the prod-
uct detail screen, you have a number of options.

FIGURE 21.2
The appearance of the
product list Web form
loaded with data from
an assembly.

22 0672323834 Ch21 4/19/02 3:36 PM Page 295

You can retrieve a single row of data from your data source as in a SqlDataReader or a
DataSet. However, this creates some unnecessary overhead. Why generate an entire
DataSet or DataReader object for just a single row of data?

A more efficient method of retrieving data in this case is to create a custom class in your
assembly, and then use an instance of that class to send data back to the Web form. This
will require some special coding in your stored procedure, data layer, and Web form.

The first change you’ll notice is that the stored procedure (seen in Listing 21.4) doesn’t
actually return any records. It returns a set of six values to the data layer using output
parameters. For a review of stored procedures and output parameters, please see Hour 15,
“Working with Stored Procedures.”

LISTING 21.4 Retrieving Product Data Through an Assembly

CREATE PROCEDURE Product_Get
(

@ProductID int,
@ProductName nvarchar(40) OUTPUT,
@QuantityPerUnit nvarchar(20) OUTPUT,
@UnitPrice money OUTPUT,
@UnitsInStock smallint OUTPUT,
@Discontinued bit OUTPUT,
@ImagePath nvarchar(50) OUTPUT

)

AS

SELECT
@ProductName = ProductName,
@QuantityPerUnit = QuantityPerUnit,
@UnitPrice = UnitPrice,
@UnitsInStock = UnitsInStock,
@Discontinued = Discontinued,
@ImagePath =ImagePath

FROM
Products

WHERE
ProductID = @ProductID

The next step is to add a method to your data layer in order to access the data. Add the
GetProductDetails() method in Listing 21.6 to the ProductsDB class in the
ADO24HRS namespace from Listing 21.2. The only difference between this data access
method and other methods you’ve seen is that this one doesn’t return a DataSet or a
SqlDataReader. It returns an object of type ProductDetails. This object is defined by

296 Hour 21

22 0672323834 Ch21 4/19/02 3:36 PM Page 296

the code in Listing 21.5. The class consists of six variables that will be used to package
the results from the stored procedure and transfer to the Web form. Make sure to add the
code from Listing 21.5 to your ADO24HRS namespace as well.

LISTING 21.5 The ProductDetails Custom Class

Public Class ProductDetails

Public ProductName As String
Public QuantityPerUnit As String
Public UnitPrice As Decimal
Public UnitsInStock As Int16
Public Discontinued as Boolean
Public ImagePath As String

End Class

LISTING 21.6 Retrieving Product Data Through an Assembly

Public Function GetProductDetails(ByVal productID As Integer) _
As ProductDetails

‘Create Instance of Connection and Command Objects
Dim conn as New SqlConnection(_

ConfigurationSettings.AppSettings(“ConnectionString”))
Dim cmd as New SqlCommand(“Product_Get”, conn)

‘Mark the Command as a Stored Procedure
cmd.CommandType = CommandType.StoredProcedure

‘ Add Parameters to SPROC
Dim parameterProductID As SqlParameter = _

New SqlParameter(“@ProductID”, SqlDbType.Int, 4)
parameterProductID.Value = productID
cmd.Parameters.Add(parameterProductID)

Dim parameterProductName As SqlParameter = _
New SqlParameter(“@ProductName”, SqlDbType.NVarChar, 40)

parameterProductName.Direction = ParameterDirection.Output
cmd.Parameters.Add(parameterProductName)

Dim parameterQuantityPerUnit As SqlParameter = _
New SqlParameter(“@QuantityPerUnit”, SqlDbType.NVarChar, 20)

parameterQuantityPerUnit.Direction = ParameterDirection.Output
cmd.Parameters.Add(parameterQuantityPerUnit)

Optimizing Data Access Using Tiered Development 297

21

22 0672323834 Ch21 4/19/02 3:36 PM Page 297

Dim parameterUnitPrice As SqlParameter = _
New SqlParameter(“@UnitPrice”, SqlDbType.Money, 8)

parameterUnitPrice.Direction = ParameterDirection.Output
cmd.Parameters.Add(parameterUnitPrice)

Dim parameterUnitsInStock As SqlParameter = _
New SqlParameter(“@UnitsInStock”, SqlDbType.SmallInt, 2)

parameterUnitsInStock.Direction = ParameterDirection.Output
cmd.Parameters.Add(parameterUnitsInStock)

Dim parameterDiscontinued As SqlParameter = _
New SqlParameter(“@Discontinued”, SqlDbType.SmallInt, 2)

parameterDiscontinued.Direction = ParameterDirection.Output
cmd.Parameters.Add(parameterDiscontinued)

Dim parameterImagePath As SqlParameter = _
New SqlParameter(“@ImagePath”, SqlDbType.NVarChar, 50)

parameterImagePath.Direction = ParameterDirection.Output
cmd.Parameters.Add(parameterImagePath)

‘ Open the connection and execute the Command
conn.Open()
cmd.ExecuteNonQuery()
conn.Close()

‘Create and Populate ProductDetails Struct using
‘Output Params from the SPROC
Dim myProductDetails As ProductDetails = New ProductDetails()

myProductDetails.ProductName = _
Convert.ToString(parameterProductName.Value).Trim()

myProductDetails.QuantityPerUnit = _
Convert.ToString(parameterQuantityPerUnit.Value).Trim()

myProductDetails.UnitPrice = _
Convert.ToDecimal(parameterUnitPrice.Value)

myProductDetails.UnitsInStock = _
Convert.ToInt16(parameterUnitsInStock.Value)

myProductDetails.Discontinued = _
Convert.ToBoolean(parameterDiscontinued.Value)

myProductDetails.ImagePath = _
Convert.ToString(parameterImagePath.Value).Trim()

Return myProductDetails

End Function

Now the data layer for the product details Web form is done! All that remains is to add
the necessary code to the Web form that will actually display the information. In the next

298 Hour 21

LISTING 21.6 continued

22 0672323834 Ch21 4/19/02 3:36 PM Page 298

example, you’ll create the product details Web form, and wire it up to the
GetProductDetails() method in the ProductsDB class. Listing 21.7 contains the code
for the product details Web form.

LISTING 21.7 Retrieving Product Data Through an Assembly

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

‘Get OrderID
Dim ProductID As Integer = Int32.Parse(Request.Params(“ProductID”))

LoadData(ProductID)

End Sub

Private Sub LoadData(productID as Int32)

‘Declare new instance of ProductsDB
Dim products as New ADO24HRS.ProductsDB()

‘Declare new instance of custom class
Dim myProductDetails as ADO24HRS.ProductDetails

‘Fill custom class with data
myProductDetails = products.GetProductDetails(productID)

lblProductName.Text = myProductDetails.ProductName
lblQuantityPerUnit.Text = myProductDetails.QuantityPerUnit
lblUnitPrice.Text = myProductDetails.UnitPrice.ToString()
lblUnitsInStock.Text = myProductDetails.UnitsInStock.ToString()
ProductImage.Src = “/ADO24HOURS” + myProductDetails.ImagePath

if(myProductDetails.Discontinued) then
lblDiscontinued.Visible = false

end if

End Sub
</script>

Optimizing Data Access Using Tiered Development 299

21

22 0672323834 Ch21 4/19/02 3:36 PM Page 299

</HEAD>
<BODY>

<h1>View Product Details</h1>
<hr>

<form runat=”server”>

<table cellpadding=5>
<tr>
<td>

</td>
<td valign=”center”>
<asp:label id=”lblProductName” runat=”server” />

Quantity Per Unit: <asp:label id=”lblQuantityPerUnit” runat=”server” />

In Stock:
<asp:label id=”lblUnitsInStock” runat=”server” />

Price Per Unit:<asp:label id=”lblUnitPrice” runat=”server” />

<asp:label id=”lblDiscontinued” Color=”red” runat=”server” />

</td>
</tr>

</table>
Here would typically go a detailed product description.
</form>
<hr>

</BODY>
</HTML>

Accessing the product data is done a little bit differently than in the preceding example
in this hour because you’re accessing the public members of a class, rather than binding
directly to a SqlDataReader object. In the LoadData() method in Listing 21.7, a new
instance of the ProductsDB class is created. Then an instance of the ProductDetails
class is created. Finally, the data from the GetProductDetails() method is loaded into
the ProductDetails class. Then the individual members of the class are used to assign
values to the correct labels on the page. Figure 21.3 shows the Web form when loaded in
a Web browser.

300 Hour 21

LISTING 21.7 continued

22 0672323834 Ch21 4/19/02 3:36 PM Page 300

Figure 21.4 represents where the data moves in each of the examples in this chapter. This
can be hard to keep track of, at first. However, the benefits to code readability and man-
ageability far outweigh the extra time and effort necessary to implement additional phys-
ical layers in your application.

Optimizing Data Access Using Tiered Development 301

21

FIGURE 21.3
The appearance of the
product detail Web
form.

FIGURE 21.4
A visual representation
of data movements in
the examples from this
chapter.

Product
Info

Returned

Microsoft SQL
2000

Product_Get()

GetProductDetails() Method

ProductDetails() Class

Members
Product Name
Quantity Per Unit
Unit Price
Units In Stock
Discontinued
Image Path

ProductsDB

Product DetailsReturned

Original Request

Product Details

Returned

Original Request

Web
Form

Windows
Forms

Application

Instance of
ProductDetails Class

Summary
In this hour, you’ve seen an introduction to tiered development methodologies using
ASP.NET and ADO.NET. First, you saw how to implement an additional application
layer using a simple SqlDataReader example to display a list of products. Then, you saw

22 0672323834 Ch21 4/19/02 3:29 PM Page 301

how to return a custom class with database values, rather than using a single-row
DataTable. In the next hour, you’ll see how to handle an application’s database modifi-
cations using three-tier development practices.

Q&A
Q Because N-tier development requires additional layers, will I see a decrease in

performance for my application?

A No, there’s no noticeable decrease in performance associated with implementing
another tier in your application using the methods in this chapter. This model has
been proven to work well, even under heavy load from an application.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. What is the purpose of adding additional layers to your application?

2. Name the option you can use when calling the ExecuteReader() method of the
Command object to make sure that the DataReader closes its connection to the data-
base when it is done.

Exercise
Upgrade the orders.aspx and orderdetails.aspx examples from Hour 11 to use a middle
tier to access data. Remember that both of these examples use a SqlDataReader to
retrieve information from the database, so your middle-tier code will be very similar to
the first example (product list) in this chapter.

You should create a new class in the ADO24HRS namespace called OrdersDB in order to
implement the new screens. Keep in mind that a namespace can span several files (that
is, you can copy the ProductsDB.vb file created in this chapter to a file called
OrdersDB.vb, replace the product methods with ones for the order screens, and compile
it in the same way).

302 Hour 21

22 0672323834 Ch21 4/19/02 3:37 PM Page 302

HOUR 22
Modifying Data in an
N-Tier Application

In the preceding hour, you saw how to implement three-tier data access into
your applications to improve the manageability and readability of your code.
In this hour, those concepts will be reinforced as you see some ways to
update and add new data to your data source using three-tier development
methods.

In this hour, you’ll learn how to

• Build a Product Update screen

• Build a Product Add screen

Updating Product Data
In the preceding hour, you saw how to create a set of screens that displays a
list of products and enables you to click on a particular product to see the
detailed product information. The next few sections of this hour reinforce
the same three-tier style of development by implementing an administrative
section.

23 0672323834 Ch22 4/19/02 2:26 PM Page 303

The stored procedure that will actually update the product information in the database is
straightforward and provided in Listing 22.1. As you can see, it accepts the product val-
ues as parameters and passes those parameters to an UPDATE query. When the query is
done, the number of records updated by the query is passed back to the calling method.
This can be used to ensure that the update had no errors. Because we’re updating a single
product at a time, the number of rows modified should always be “1” if the query is suc-
cessful.

LISTING 22.1 The Product_Update Stored Procedure

CREATE PROCEDURE Product_Update
(

@ProductID int,
@ProductName nvarchar(40),
@QuantityPerUnit nvarchar(20),
@UnitPrice money,
@UnitsInStock smallint,
@ImagePath varchar(256),
@Discontinued bit,
@RowsAffected int OUTPUT

)
AS

UPDATE
Products

SET
ProductName = @ProductName,
QuantityPerUnit = @QuantityPerUnit,
UnitPrice = @UnitPrice,
UnitsInStock = @UnitsInStock,
ImagePath = @ImagePath,
Discontinued = @Discontinued

WHERE
ProductID = @ProductID

With the stored procedure created, the next step is to create the necessary middle-tier
method that will perform the update. Place the code from Listing 22.2 into the
ProductsDB.vb file. For more details on creating a component layer, please see the rele-
vant sections in the preceding hour.

LISTING 22.2 The UpdateProducts Middle-Tier Method

Public Function UpdateProducts(ProductID as Int32, _
ProductName as string, _
QuantityPerUnit as string, _
UnitPrice as string, _

304 Hour 22

23 0672323834 Ch22 4/19/02 2:26 PM Page 304

UnitsInStock as Int16, _
ImagePath as string, _
Discontinued as Boolean) as Int32

‘Create Instance of Connection and Command Objects
Dim conn as New SqlConnection(_

ConfigurationSettings.AppSettings(“ConnectionString”))
Dim cmd as New SqlCommand(“Product_Update”, conn)

‘Mark the Command as a Stored Procedure
cmd.CommandType = CommandType.StoredProcedure

‘ Add Parameters to SPROC
Dim parameterProductID As SqlParameter = _

New SqlParameter(“@ProductID”, SqlDbType.Int, 4)
parameterProductID.Value = productID
cmd.Parameters.Add(parameterProductID)

Dim parameterProductName As SqlParameter = _
New SqlParameter(“@ProductName”, SqlDbType.NVarChar, 40)

parameterProductName.Value = ProductName
cmd.Parameters.Add(parameterProductName)

Dim parameterQuantityPerUnit As SqlParameter = _
New SqlParameter(“@QuantityPerUnit”, SqlDbType.NVarChar, 20)

parameterQuantityPerUnit.Value = QuantityPerUnit
cmd.Parameters.Add(parameterQuantityPerUnit)

Dim parameterUnitPrice As SqlParameter = _
New SqlParameter(“@UnitPrice”, SqlDbType.Money, 8)

parameterUnitPrice.Value = Convert.ToDecimal(UnitPrice)
cmd.Parameters.Add(parameterUnitPrice)

Dim parameterUnitsInStock As SqlParameter = _
New SqlParameter(“@UnitsInStock”, SqlDbType.SmallInt, 2)

parameterUnitsInStock.Value = Convert.ToInt16(UnitsInStock)
cmd.Parameters.Add(parameterUnitsInStock)

Dim parameterImagePath As SqlParameter = _
New SqlParameter(“@ImagePath”, SqlDbType.NVarChar, 50)

parameterImagePath.Value = ImagePath
cmd.Parameters.Add(parameterImagePath)

Dim parameterDiscontinued As SqlParameter = _
New SqlParameter(“@Discontinued”, SqlDbType.Bit, 1)

parameterDiscontinued.Value = Discontinued
cmd.Parameters.Add(parameterDiscontinued)

Dim parameterRowsAffected As SqlParameter = _

Modifying Data in an N-Tier Application 305

22
LISTING 22.2 continued

23 0672323834 Ch22 4/19/02 2:26 PM Page 305

New SqlParameter(“@RowsAffected”, SqlDbType.Int, 4)
parameterRowsAffected.Direction = ParameterDirection.Output
cmd.Parameters.Add(parameterRowsAffected)

conn.Open()
cmd.ExecuteNonQuery()
conn.Close()

Return Convert.ToInt32(parameterRowsAffected.Value)

End Function

306 Hour 22

LISTING 22.2 continued

After you’ve added the preceding code into the ProductsDB.vb file, don’t
forget that you must recompile the namespace. You must manually recom-
pile your namespace after each change.

As you can see, the UpdateProducts() method in Listing 22.2 accepts seven arguments
that describe a product. Lines 9–15 set up the Connection and Command objects. Then,
lines 17–51 create the set of stored procedure input parameters. The last parameter,
found in lines 53–56, sets up the output parameter that we’ll use to ensure our query was
successful.

With the middle tier and data layers firmly in place, you can easily work on the presen-
tation layer. Rather than create an entirely new product list screen, you can use the
Products.aspx Web form from the preceding hour in Listing 21.3 with a few changes. At
the end of the DataList’s ItemTemplate, place the code in Listing 22.3. This will create
a new link for each product on the product list screen. Clicking these links will navigate
to the ProductEditor.aspx Web form that you will create next. You can see the additional
link created in Figure 22.1. Notice that the hyperlink generated by the DataGrid passes
the ProductID to the producteditor.aspx page in the querystring. This is the mechanism
the product editor uses to identify which product is being modified.

LISTING 22.3 Adding an Additional Link to the Products.aspx DataList

<a href=’producteditor.aspx?productID=
➥<%# DataBinder.Eval(Container.DataItem, “ProductID”) %>’>

edit product

23 0672323834 Ch22 4/19/02 2:26 PM Page 306

The code for the ProductEditor.aspx Web form is provided in Listing 22.4. Notice that it
is much like the ProductDetails.aspx screen. Instead of displaying the detailed product
information in label Web controls, however, it uses editable text boxes. Note that the
LoadData methods for these two screens are almost identical. When the
ProductEditor.aspx Web form loads, it retrieves the product information using the exact
same techniques as the ProductDetails.aspx uses.

LISTING 22.4 The ProductEditor.aspx Web Form

<% @Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

‘Get ProductID and store in Viewstate
Dim ProductID As Integer = Int32.Parse(Request.Params(“ProductID”))
if ProductID <> “” then

ViewState(“ProductID”) = ProductID
end if

if IsPostBack then

Modifying Data in an N-Tier Application 307

22
FIGURE 22.1
Each product in the
Product List screen
now contains an addi-
tional link: edit
product.

23 0672323834 Ch22 4/19/02 2:26 PM Page 307

UpdateData(Convert.ToInt32(ViewState(“ProductID”)))

end if

LoadData(ProductID)

End Sub

Private Sub UpdateData(productID as Int32)

Dim iResults as Int32

Dim product as new ADO24HRS.ProductsDB()
iResults = product.UpdateProducts(_

productID, _
txtProductName.Text, _
txtQuantityPerUnit.Text, _
txtUnitPrice.Text, _
txtUnitsInStock.Text, _
txtImagePath.Text, _
chkDiscontinued.Checked)

if iResults = 1 then
lblOutput.Text = “Record successfully updated!”

else
lblOutput.Text = “There was a problem updating the record”

end if

End Sub

Private Sub LoadData(productID as Int32)

‘Declare new instance of ProductsDB
Dim products as New ADO24HRS.ProductsDB()

‘Declare new instance of custom class
Dim myProductDetails as ADO24HRS.ProductDetails

‘Fill custom class with data
myProductDetails = products.GetProductDetails(productID)

txtProductName.Text = myProductDetails.ProductName
txtQuantityPerUnit.Text = myProductDetails.QuantityPerUnit
txtUnitPrice.Text = myProductDetails.UnitPrice.ToString()
txtUnitsInStock.Text = myProductDetails.UnitsInStock.ToString()
ProductImage.Src = “/ADO24HOURS” + myProductDetails.ImagePath
txtImagePath.Text = myProductDetails.ImagePath.ToString()
chkDiscontinued.Checked = myProductDetails.Discontinued

308 Hour 22

LISTING 22.4 continued

23 0672323834 Ch22 4/19/02 2:26 PM Page 308

End Sub
</script>

</HEAD>
<BODY>

<h1>Edit Product Details</h1>
<hr>

<form runat=”server” id=form1 name=form1>

<asp:label id=”lblOutput” runat=”server” />

<table cellpadding=5>
<tr>
<td>

</td>
<td valign=”center”>
<table>
<tr>
<td>
Product Name:

</td>
<td>
<asp:TextBox id=”txtProductName” runat=”server” />

</td>
</tr>
<tr>
<td>
Quantity Per Unit:

</td>
<td>
<asp:TextBox id=”txtQuantityPerUnit” runat=”server” />

</td>
</tr>
<tr>
<td>
Units In Stock:

</td>
<td>
<asp:TextBox id=”txtUnitsInStock” runat=”server” />

</td>
</tr>
<tr>
<td>
Price Per Unit:

</td>

Modifying Data in an N-Tier Application 309

22
LISTING 22.4 continued

23 0672323834 Ch22 4/19/02 2:26 PM Page 309

<td>
<asp:TextBox id=”txtUnitPrice” runat=”server” />

</td>
</tr>
<tr>
<td>
Image Path:

</td>
<td>
<asp:TextBox id=”txtImagePath” runat=”server” />

</td>
</tr>
<tr>
<td>
Product Discontinued:

</td>
<td>
<asp:CheckBox id=”chkDiscontinued” runat=”server” />

</td>
</tr>
<tr>
<td>

</td>
<td>
<input type=”submit” value=”Submit Changes”>

</td>
</tr>

</table>
</td>

</tr>
</table>

</form>
<hr>

</BODY>
</HTML>

After you click on one of the new Edit Product links on the product listing screen, the
ProductEditor.aspx Web form from Listing 22.4 loads. It appears much like the screen in
Figure 22.2.

You can use the Product Editor to make changes to existing product information, such as
the product name, quantity in stock, and price. After you make changes to the selected
product and submit the form, the Web form gathers the product information and passes it

310 Hour 22

LISTING 22.4 continued

23 0672323834 Ch22 4/19/02 2:26 PM Page 310

to the UpdateProducts() method of the ProductsDB class, found in Listing 22.2. As you
saw earlier, that method then passes that product information to the Product_Update
stored procedure from Listing 22.1. The Product_Update method executes an UPDATE
SQL query, which saves the product data. After this is completed, the stored procedure
passes the number of rows affected by the query back to the UpdateProducts() method.
The UpdateProducts() method passes this value back to the Web form, which uses the
value to either confirm for the user that the product was updated successfully, or inform
the user that something went wrong.

Modifying Data in an N-Tier Application 311

22

FIGURE 22.2
The appearance of the
Product Editor.

Adding Product Data
Though the ProductEditor.aspx Web form can now be used to update product informa-
tion, there’s still no way to add new products into the database. In this section, you’ll see
how to modify the existing Product Editor to also handle the case where a user needs to
enter a new product. You could create an entirely new screen to handle product additions,
but because this new screen would be very similar to the existing Product Editor, it
makes sense to just modify the existing code to handle both cases.

The stored procedure Product_Add in Listing 22.5 performs the actual addition of new
product data into the database. Notice that the parameters are nearly the same as for the
Product_Update stored procedure in Listing 22.1. However, there are a few differences.
Because Product_Add is creating a new entry in the products table, a new ProductID is
generated instead of being passed in as an argument. This newly created ProductID is
then returned to the component layer. You can check that value to ensure that the new
product was actually inserted into the database. You know that if the value of the
ProductID is not greater than 0, the insert was unsuccessful.

23 0672323834 Ch22 4/19/02 2:26 PM Page 311

LISTING 22.5 The Product_Add Stored Procedure

CREATE PROCEDURE Product_Add
(

@ProductName nvarchar(40),
@QuantityPerUnit nvarchar(20),
@UnitPrice money,
@UnitsInStock smallint,
@ImagePath varchar(256),
@Discontinued bit,
@ProductID int OUTPUT

)
AS

INSERT INTO Products
(

ProductName,
QuantityPerUnit,
UnitPrice,
UnitsInStock,
ImagePath,
Discontinued

)
VALUES
(

@ProductName,
@QuantityPerUnit,
@UnitPrice,
@UnitsInStock,
@ImagePath,
@Discontinued

)

SELECT @ProductID = @@IDENTITY

With the stored procedure created, the next step is to create the component layer method
that will use the stored procedure in Listing 22.5 to add the new product record. The new
AddProduct() method is provided in Listing 22.6.

LISTING 22.6 The ProductEditor.aspx Web Form

Public Function AddProduct(_
ProductName as string, _
QuantityPerUnit as string, _
UnitPrice as string, _
UnitsInStock as Int16, _

312 Hour 22

23 0672323834 Ch22 4/19/02 2:26 PM Page 312

ImagePath as string, _
Discontinued as Boolean) as Int32

‘Create Instance of Connection and Command Objects
Dim conn as New SqlConnection(_

ConfigurationSettings.AppSettings(“ConnectionString”))
Dim cmd as New SqlCommand(“Product_Add”, conn)

‘Mark the Command as a Stored Procedure
cmd.CommandType = CommandType.StoredProcedure

‘ Add Parameters to SPROC
Dim parameterProductName As SqlParameter = _

New SqlParameter(“@ProductName”, SqlDbType.NVarChar, 40)
parameterProductName.Value = ProductName
cmd.Parameters.Add(parameterProductName)

Dim parameterQuantityPerUnit As SqlParameter = _
New SqlParameter(“@QuantityPerUnit”, SqlDbType.NVarChar, 20)

parameterQuantityPerUnit.Value = QuantityPerUnit
cmd.Parameters.Add(parameterQuantityPerUnit)

Dim parameterUnitPrice As SqlParameter = _
New SqlParameter(“@UnitPrice”, SqlDbType.Money, 8)

parameterUnitPrice.Value = Convert.ToDecimal(UnitPrice)
cmd.Parameters.Add(parameterUnitPrice)

Dim parameterUnitsInStock As SqlParameter = _
New SqlParameter(“@UnitsInStock”, SqlDbType.SmallInt, 2)

parameterUnitsInStock.Value = Convert.ToInt16(UnitsInStock)
cmd.Parameters.Add(parameterUnitsInStock)

Dim parameterImagePath As SqlParameter = _
New SqlParameter(“@ImagePath”, SqlDbType.NVarChar, 50)

parameterImagePath.Value = ImagePath
cmd.Parameters.Add(parameterImagePath)

Dim parameterDiscontinued As SqlParameter = _
New SqlParameter(“@Discontinued”, SqlDbType.Bit, 1)

parameterDiscontinued.Value = Discontinued
cmd.Parameters.Add(parameterDiscontinued)

Dim parameterProductID As SqlParameter = _
New SqlParameter(“@ProductID”, SqlDbType.Int, 4)

parameterProductID.Direction = ParameterDirection.Output
cmd.Parameters.Add(parameterProductID)

Modifying Data in an N-Tier Application 313

22
LISTING 22.6 continued

23 0672323834 Ch22 4/19/02 2:26 PM Page 313

conn.Open()
cmd.ExecuteNonQuery()
conn.Close()

Return Convert.ToInt32(parameterProductID.Value)

End Function

Finally, you’ll need to make a few edits to the ProductEditor.aspx Web form in order to
enable the form to handle adding a new product. The two changes are in Listings 22.7
and 22.8. Add the AddNew() method in Listing 22.7 either just before or just after the
existing UpdateData() method. This is the method that will call the component layer
AddProduct() method from Listing 22.6.

Likewise, replace the old Page_Load() event on the ProductEditor.aspx Web form with
the one in Listing 22.8. Page_Load() has been modified to handle the case where the
ProductID passed to it is 0. If the ProductID is 0, the form assumes it should load a
blank form and enable the user to add a new product record to the database.

LISTING 22.7 The ProductEditor.aspx Web Form

Private Sub AddNew()

Dim iResults as Int32

Dim product as new ADO24HRS.ProductsDB()
iResults = product.AddProduct(_

txtProductName.Text, _
txtQuantityPerUnit.Text, _
txtUnitPrice.Text, _
txtUnitsInStock.Text, _
txtImagePath.Text, _
chkDiscontinued.Checked)

if iResults > 1 then
lblOutput.Text = “Record successfully added!”

else
lblOutput.Text = “There was a problem adding the record.”

end if

End Sub

314 Hour 22

LISTING 22.6 continued

23 0672323834 Ch22 4/19/02 2:26 PM Page 314

LISTING 22.8 The ProductEditor.aspx Web Form

Sub Page_Load(Source as Object, E as EventArgs)

‘Get ProductID and store in Viewstate
Dim ProductID As Integer = Int32.Parse(Request.Params(“ProductID”))
if ProductID <> “” then

ViewState(“ProductID”) = ProductID
end if

if IsPostBack then
if ProductID <> 0 then

UpdateData(Convert.ToInt32(ViewState(“ProductID”)))
else

AddNew()
end if

end if

if ProductID <> 0 then
‘Load existing product information
LoadData(ProductID)

else
‘Prepare form for new data
ProductImage.Visible = False
header.InnerText = “Add New Product”

end if

End Sub

The last task you need to perform is to add a button or hyperlink anywhere inside the
server-side form tags in products.aspx. A sample button is provided in Listing 22.9.

LISTING 22.9 The Create New Product Button Added to Products.aspx

<asp:button id=”cmdNewProduct” OnClick=”cmdNewProduct_OnClick”
Text=”Create New Product” runat=”server” />

Then, when the user clicks on the new button, redirect them to the ProductEditor.aspx
Web form with the ProductID set to 0. This sample code is provided in Listing 22.10.

LISTING 22.10 The Create New Product Button Added to Products.aspx

Private Sub cmdNewProduct_OnClick(Source as Object, E as EventArgs)
Response.Redirect(“ProductEditor.aspx?ProductID=0”)

End Sub

Modifying Data in an N-Tier Application 315

22

23 0672323834 Ch22 4/19/02 2:26 PM Page 315

Now, when the ProductEditor.aspx Web form is loaded using this button, your screen will
look like the one in Figure 22.3, ready to enter a new product.

316 Hour 22

FIGURE 22.3
The appearance of the
Product Editor screen
ready to accept a new
product.

Summary
In this hour, you’ve seen how to engineer a set of screens for adding and updating prod-
uct information, using ADO.NET and three-tier development practices. First you saw
how to implement a new ProductEditor.aspx Web form to handle the update capabilities.
Then you saw how to add additional functionality to create new products.

Q&A
Q Where can I find more information about building N-tier applications?

A At the time this book was published, there were no good N-tier .NET development
books. However, several exist for other platforms including COM and Visual Basic
6.0. One good book on the topic is Building N-Tier Applications with COM and
Visual Basic(r) 6.0 by Ash Rofail and Tony Martin, published by John Wiley &
Sons. If you’re familiar with the technology used, the N-tier concepts will be easy
to follow.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

23 0672323834 Ch22 4/19/02 2:26 PM Page 316

Quiz
1. Identity and briefly explain the purpose of each of the application layers used in

the examples in this hour.

2. What is the term used to describe the relationship between a screen that lists a set
of items, and a screen used to edit individual items from that list?

Exercise
Create a Web form that will enable users to update existing employee information or add
new employee records to the Employees table of the Northwind database. Use the exam-
ples provided in this hour and the last hour as a guide.

Modifying Data in an N-Tier Application 317

22

23 0672323834 Ch22 4/19/02 2:26 PM Page 317

23 0672323834 Ch22 4/19/02 2:26 PM Page 318

HOUR 23
Optimizing Data Access

As the number of users of an application (Web or Windows forms)
increases, the performance of the application is limited by its slowest part.
The slowest piece of an application at any given time is referred to as the
application’s “bottleneck.” There will almost always be a bottleneck in your
application because one component or another will always be slower than
the others. In this hour, you’ll see some effective techniques you can use to
ensure that the data access portion of your application isn’t the bottleneck.

In this hour, you’ll learn

• Some tips to improving your ADO.NET code for faster data access

• How to use the tracing functionality in ASP.NET to locate bottlenecks
in your application

• How to use the SQL Query Analyzer to improve the speed of your
database queries

Optimizing ADO.NET Code
Several ways exist to increase the performance of ADO.NET code in your
Web or Windows forms applications. In this section, you’ll see some direct

24 0672323834 Ch23 4/19/02 2:26 PM Page 319

improvements you can make to your ADO.NET code to improve the speed of your data
access.

DataReader Versus DataSet
As you know, you have two different ways of retrieving data from your data source using
ADO.NET. You can use a DataAdapter object to fill a DataSet with data, and then work
with the data in the DataSet or display it on a form using a DataGrid or other mecha-
nism for display. In a number of cases, you need a DataSet: You might need to perform
calculations or otherwise work on several items within the DataSet at once. However, if
you’re just displaying data, the DataReader object is a more appropriate choice.

The DataReader opens a read-only, forward-only view of your data, with no more than
one row of data in memory at one time. By using a DataReader to bind to your controls,
you will incur the lowest amount of system overhead. By using a DataReader object
instead of the DataSet, you can definitely improve the performance of your site. For
small sets of data, this difference is barely noticeable. However, as the amount of data
increases, the performance gains realized by the DataReader become more evident. In a
quick test using 500 rows of data, the DataSet took twice as long as the DataReader to
retrieve the result set and display it on the Web form. In the same test using 1,000 rows
of data, the DataSet took several times longer than the DataReader and consumed a
much greater amount of memory. However, keep in mind that certain actions are unavail-
able when using a DataReader, such as automatic paging using the DataGrid.

Managing Database Connections
Automatic connection pooling is provided by the data providers. A different connection
pool is created for each connection string used in an application. In addition to this auto-
matic connection pooling, you can speed up your code by keeping your connection to the
database open during several queries that happen in rapid succession rather than opening
and closing the connection between each call to the database.

Choose Your Data Provider Wisely
Your choice of data provider can have very significant effects on the performance of your
application. Always choose a managed provider to connect to your data source, if one is
available. One example of a managed provider is the System.Data.SqlClient name-
space, which is a managed provider for Microsoft SQL Server versions 7.0 and up.

If no managed provider is available, your next best choice for performance is probably to
use the System.Data.OleDb managed provider to access your data source through OLE
DB. Though this adds one level of indirection in accessing your data when compared to

320 Hour 23

24 0672323834 Ch23 4/19/02 2:26 PM Page 320

using a direct managed provider such as the one for SQL, using OLE DB still provides
relatively fast data access.

Lastly, if no OLE DB provider is available for your data source, you can use the ODBC
managed provider available separately from the Microsoft .NET Framework SDK. You
can download it for free from the download section at http://www.microsoft.com.
ODBC is the slowest option of those listed here, but it also supports a much wider range
of data sources.

Use “SELECT *” Sparingly
To simplify your database queries, you might be tempted to use “SELECT *” to return all
available database columns in a query. Though this command makes your code easier to
read, you could return a large amount of data that you don’t need. Specify only the col-
umn names that you plan to use.

Automatically Generated Commands
For applications that require high performance, do not use automatically generated com-
mands. The DataAdapter needs to make additional calls to the server in order to generate
the commands. This additional overhead can needlessly slow down your application.

ASP.NET Tracing
ASP.NET provides an extremely handy tool for discovering bottlenecks in your applica-
tion. Specify trace=”true” in the Page directive of your Web form as in the following
line:

<% @Page debug=”true” trace=”true” Language=”VB” %>

The next time you load your Web form, you will notice that ASP.NET has automatically
printed out a wealth of information for you below your form. In addition to the entire
control tree for your form, all server variables and request values, you can see exactly
how long each stage of the page’s life cycle took. You can see this in Figure 23.1.

The last two columns in the Trace Information section provide the exact (probably more
exact than you care to know) amount of time the page object took to load, by stage. So,
you can see from Figure 23.1 that the page took approximately 2.86 seconds to load, and
approximately 2.78 seconds was spent in the PreRender event.

It’s possible to add entries into this list of trace information. By calling Trace.Write()
and passing it the category name and your message, not only can you check the value of
a particular variable at any given time, but you can also use it to time your events. Look

Optimizing Data Access 321

23

24 0672323834 Ch23 4/19/02 2:26 PM Page 321

at the code in Listing 23.1. At the beginning of the LoadDataGrid() method, a message is
sent to the Trace object denoting the start of data access. After all data access is com-
plete, another message is sent.

322 Hour 23

FIGURE 23.1
Trace information pro-
vided automatically by
ASP.NET.

Similarly, the DataBind() method of the DataGrid is wrapped, as well. Now, when you
load the Web form, it will display these trace entries. You can see the new entries in
Figure 23.2.

LISTING 23.1 Using Trace Functionality to Locate Bottlenecks in an ASP.NET
Application

<% @Page debug=”true” trace=”true” Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadDataGrid(orders)

End Sub

Private Sub LoadDataGrid(_

24 0672323834 Ch23 4/19/02 2:26 PM Page 322

myDataGrid as System.Web.UI.WebControls.DataGrid)

Trace.Write(“LoadDataGrid”, “Start Data Access”)

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT * FROM Suppliers”, conn)

Dim adapter as SqlDataAdapter = new SqlDataAdapter(cmd)
Dim dsSuppliers as New DataSet()

conn.Open()
adapter.Fill(dsSuppliers)
conn.Close()

Trace.Write(“LoadDataGrid”, “End Data Access”)

Trace.Write(“LoadDataGrid”, “Begin Data Bind”)

orders.DataSource = dsSuppliers
orders.DataBind()

Trace.Write(“LoadDataGrid”, “End Data Bind”)

End Sub
</script>

</HEAD>
<BODY>

<h1>Tracing Data Access</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”orders” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

You’ve seen most of the code in Listing 23.1 many times. However, notice the
Trace=”true” property specified in the page directive on line 1. This turns on tracing for
the Web form. As mentioned before, this will automatically generate a great deal of
information located below your form. One such section, shown in Figure 23.2, is named
Trace Information. By using the Trace object shown on line 20, you can display your

Optimizing Data Access 323

23

LISTING 23.1 continued

24 0672323834 Ch23 4/19/02 2:26 PM Page 323

own messages in this section. In addition to enabling you to find bottlenecks in your
application, the Trace object is also a terrific way to debug by outputting variable values.

324 Hour 23

FIGURE 23.2
Using trace informa-
tion to locate bottle-
necks in an
application.

From Figure 23.2, you can see that accessing the data in the Web form took .002115 sec-
onds and the binding of the data lasted for .002404 seconds. Tracing can help you effi-
ciently discover which methods are performing slowly.

Most often, you’ll discover that the source of a slow data access method is actually a
badly performing database query. In the next section, you’ll see how to improve the per-
formance of your database queries using the SQL Query Analyzer tool.

Improving Your Queries with the SQL Query
Analyzer

As you’ve seen from some of the examples in this book thus far, the Query Analyzer is a
handy tool that enables you to send queries to the database and display the results. This
makes it an effective debugging tool, particularly in debugging queries embedded in
stored procedures.

However, the Query Analyzer also offers several options that will help you to greatly
increase the performance of your queries.

24 0672323834 Ch23 4/19/02 2:26 PM Page 324

Before attempting to use the Query Analyzer, let’s create a large test table.

Loading the Database with Sample Data
Add the LoadTestData stored procedure in Listing 23.2 to your Northwind database.
This table will be used for testing purposes in this hour. LoadTestData creates a table
containing a number of common fields. It then proceeds to add @rowcount number of
data rows to the table, passed in as the only parameter.

LISTING 23.2 An Example of the RequiredField Control

CREATE PROCEDURE LoadTestData
(

@rowcount bigint
)
AS

if exists (select * from dbo.sysobjects
where id = object_id(N’[dbo].[TestData]’) and

OBJECTPROPERTY(id, N’IsUserTable’) = 1)
drop table [dbo].[TestData]

CREATE TABLE [dbo].[TestData] (
[TestID] [int] IDENTITY (1, 1) NOT NULL ,
[Name] [varchar] (40) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[Address] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[Address2] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[City] [varchar] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[State] [char] (2) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[Zip] [varchar] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[Description] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]

declare @identity bigint
select @identity = 0

WHILE (@identity < @rowcount)

BEGIN

Optimizing Data Access 325

23

A note to more experienced readers: The Query Analyzer does things you
should be doing anyhow... but if you haven’t, it’s a great way to get them
done.

24 0672323834 Ch23 4/19/02 2:26 PM Page 325

INSERT INTO TestData
(

[Name],
Address,
City,
State,
Zip,
[Description]

)
VALUES
(

‘Jason Lefebvre’,
‘11 Longfellow St.’,
‘Pawtucket’,
‘RI’,
‘Zip’,
‘The quick brown fox jumps over the lazy dog. The quick brown fox jumps

➥over the lazy dog. The quick brown fox jumps over the lazy dog.’
)
select @identity = @@IDENTITY
END

After the LoadTestData stored procedure from Listing 23.2 is in the Northwind database,
open an instance of the SQL Query Manager. On my machine, I loaded three million
rows to ensure a good test. This created approximately 1.7 gigabytes of data. You’ll prob-
ably want to create significantly fewer rows—on the order of 100,000 rows or so.

Showing the Query Execution Plan
Now that you have the sample data loaded into your database, enter a simple query that
returns the name, address, and city of the record at TestID of 70000. You’ll find that the
query does not perform very well. In fact, this query took almost two full minutes to
complete! This would definitely appear to slow down our ADO.NET code.

Fortunately, the Query Analyzer can shed some light on why the query is running slowly.
Click on the Query menu item and then select Display Estimated Execution Plan. Then,
run the query again. You’ll notice an additional tab labeled Execution Plan at the bottom
of the screen. After the query is done running, you can click on that tab to see how SQL
Server spent its time processing your query. By hovering your mouse over an item in the
plan, you can see detailed information for that part of the query. You can see this in
Figure 23.3.

326 Hour 23

LISTING 23.2 continued

24 0672323834 Ch23 4/19/02 2:26 PM Page 326

In this instance, the query is spending almost all of its time performing a table scan. This
usually means that there is a problem with a table’s index. Fortunately, the Query
Analyzer can help us fix those as well.

Analyzing Table Indexes
Follow these steps to have the Query Analyzer examine the indexes of a table.

1. Choose the Query menu again and select the Index Tuning Wizard. Click Next in
the introductory screen that loads (shown in Figure 23.4).

Optimizing Data Access 327

23

FIGURE 23.3
Viewing a SQL Server
execution plan.

FIGURE 23.4
The Index Tuning
Wizard.

24 0672323834 Ch23 4/19/02 2:26 PM Page 327

2. Accept all defaults on the next two screens you’re prompted with by clicking Next.

3. As shown in Figure 23.5, the wizard then prompts you to select the tables you
would like to tune. Check the box to the left of “TestData” and select Next. The
Index Tuning Wizard then analyzes the table.

328 Hour 23

FIGURE 23.5
Choosing a table to
analyze.

After the Index Tuning Wizard is done analyzing a table, it will load a list of recommen-
dations. Accept all recommendations by clicking Finish, and then rerun the earlier query.
It should perform significantly faster than last time.

Simulating Application Traffic
Often, small changes to your code can have a large effect on the performance of your
application. Unfortunately, it’s difficult to know exactly where these bottlenecks will
occur. One of the best ways of finding out how your application will perform with a large
set of concurrent users is to simulate that exact situation. Microsoft provides a free tool
called the Microsoft Web Application Stress Tool for generating user load. You can
download it from http://webtool.rte.microsoft.com/.

Data Caching
Data caching is another feature provided by ASP.NET that can significantly increase the
speed of your data access code, by not retrieving the same data repetitively. In ASP.NET,
the cache is implemented using the Cache object. Because it works just like any

24 0672323834 Ch23 4/19/02 2:26 PM Page 328

dictionary object, it’s easy to use. The following line of code will store a DataSet in the
Cache object with the name “Categories”:

Cache(“Categories”) = dsCategories

It can be read out of the cache later with the following code:

myDataSet = Ctype(Cache(“Categories”), DataSet)

To implement data caching in your Web application, first check to see if the DataSet is
stored in the cache. If it is, use the cached version. Otherwise, load the DataSet data
from the database and then store the DataSet in the cache for the next call. Listing 23.3
demonstrates how to store a DataSet in the cache.

LISTING 23.3 Using the ASP.NET Cache Object

public sub GetCategoryData()

‘if the dataset exists in the cache
if Page.Cache(“Categories”) <> “” then

‘Return the cached DataSet
return Ctype(Page.Cache(“Categories”), DataSet)

‘otherwise, retrieve DataSet from database
else

‘Create ADO.NET connection and command objects
SqlConnection conn = new SqlConnection(_

ConfigurationSettings.AppSettings(“ConnectionString”))
SqlCommand cmd = new SqlCommand(“SELECT * “ + _

“FROM Categories”, conn)

‘Create DataAdapter and DataSet objects
Dim myAdapter as SqlDataAdapter = new SqlDataAdapter(cmd)
Dim ds as DataSet = new DataSet()

‘Open connection to database
conn.Open()

‘Fill the DataSet
myAdapter.Fill(ds, “Categories”)

‘Close connection to database
conn.Close()

‘Place the dataset in the cache
context.Cache(“AllDomains”) = ds

‘Return the dataset
Return ds

end sub

Optimizing Data Access 329

23

24 0672323834 Ch23 4/19/02 2:26 PM Page 329

Summary
In this hour, you learned some practical techniques for improving the speed and effec-
tiveness of your application’s data access. First, you saw some general techniques for
tweaking ADO.NET to achieve faster data access. Then, you learned how to use the
Trace object in ASP.NET to locate potential bottlenecks in your application. By using
the SQL Query Analyzer, you can find out exactly why a database query is running
slowly, and also some ways to improve the speed of the query. Lastly, data caching was
used to reduce the number of repetitive calls to the database.

Q&A
Q Where can I learn more about tweaking application performance?

A At the time this book was published, there were very few resources for improving
the performance of Microsoft .NET applications. However, one way to improve
application performance is to make small changes to your code and then test, not-
ing the performance gain or loss. Don’t be afraid to get your hands dirty and have
fun. Also, though not yet published at the time this book was published,
Performance Tuning Microsoft .NET Applications from Microsoft Press seems very
promising, written by a team of professionals at Microsoft who improve applica-
tion performance for a living.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. For best performance, of the DataAdapter and DataReader objects, which would

you use to bind database data to a pageable DataGrid object to display the results
of a query on a form?

2. Name one way you can improve the responsiveness of your queries using the
Microsoft SQL Query Analyzer.

Exercise
Choose a previous exercise from any of the hours in this book. Analyze the code gener-
ated for the exercise and look for ways the code could be improved, using the concepts
from this chapter. If you’re using ASP.NET, use the Trace object to keep track of how
much time your improvements have saved.

330 Hour 23

24 0672323834 Ch23 4/19/02 2:26 PM Page 330

HOUR 24
Transmitting DataSets
Using Web Services

One of the most interesting and talked-about features of the Microsoft .NET
Framework is the ability to quickly and easily create Web services. A Web
service enables developers to access remote methods and data using open
standard protocols for transport and packaging. Web services use port 80
(the standard HTTP port) and XML to send and package data respectively.

By utilizing Web services, you can transmit data from any given host on the
Internet to any other given host because Web services use TCP/IP to trans-
port data. This enables you to build truly distributed applications without
having to worry much about making sure the two hosts can communicate
successfully. Best of all, Web services are easy to create and consume. If
you can build a Web form, you can build a Web service.

In this hour, you’ll learn how to

• Create a Web service that transmits a DataSet

• Create a Web form that consumes the DataSet

25 0672323834 Ch24 4/19/02 2:26 PM Page 331

Sending a DataSet Using Web Services
To create a Web service, create a file in your Web project entitled suppliers.asmx. The
.asmx extension tells the .NET Framework that this file should be treated as a Web ser-
vice. Copy and paste the code from Listing 24.1 (or Listing 24.2 if you prefer C#) into
the file and save. That’s it! You’ve created your first Web service, which you can view in
a browser by navigating directly to the suppliers.asmx URL.

Let’s take a moment to the look at the Web service itself. Notice that the very first line of
the file is a WebService directive. Up to this point, you have only seen a Page directive
in that location. Notice also that the class of the Web service is provided in the
WebService directive.

Next, several necessary namespaces are imported, just the same as in any Web form in
this book. Then the Suppliers class is defined. The class inherits from the WebService
class. The only difference is the WebMethod attribute specified before the publicly defined
method. This specifies that the method is accessible as a Web method. The method is
then defined. A DataSet is created and loaded with data from the Suppliers table in the
Northwind database.

LISTING 24.1 A Web Service That Returns All Suppliers in the Northwind
Database in Visual Basic .NET

<%@ WebService Language=”VB” Class=”Suppliers” %>

Imports System.Web.Services
Imports System.Data
Imports System.Data.SqlClient

Public Class Suppliers
Inherits WebService

<WebMethod ()> _
public function GetAllSuppliers() as DataSet

Dim conn as New SqlConnection(“Initial Catalog=Northwind;” + _
“Server=(local);UID=sa;PWD=;”)

Dim cmd as New SqlCommand(“SELECT * FROM Suppliers”, conn)

Dim adapter as SqlDataAdapter = New SqlDataAdapter(cmd)
Dim dsSuppliers as New DataSet()

conn.Open()
adapter.Fill(dsSuppliers, “Suppliers”)
conn.Close()

332 Hour 24

25 0672323834 Ch24 4/19/02 2:26 PM Page 332

Return dsSuppliers

End function

End Class

LISTING 24.2 A Web Service That Returns All Suppliers in the Northwind
Database in C#

<%@ WebService Language=”C#” Class=”Suppliers” %>

using System.Web.Services;
using System.Data;
using System.Data.SqlClient;

public class Suppliers: WebService
{

[WebMethod()]
public DataSet GetAllSuppliers()
{

SqlConnection conn = new SqlConnection(“Initial Catalog=Northwind;” +
“Server=(local);UID=sa;PWD=;”);

SqlCommand cmd = new SqlCommand(“SELECT * FROM Suppliers”, conn);

SqlDataAdapter adapter = new SqlDataAdapter(cmd);
DataSet dsSuppliers = new DataSet();

conn.Open();
adapter.Fill(dsSuppliers, “Suppliers”);
conn.Close();

return dsSuppliers;
}

}

The GetAllSuppliers() method in Listings 24.1 and 24.2 is the same data access code
that you’ve seen many times throughout this book. A DataSet of all the suppliers in the
Northwind database is generated. The DataSet is then returned as the output of the func-
tion. Web services transport data using XML. Because DataSets are represented inter-
nally as XML, you do not need to do anything else! The DataSet will automatically
transmit.

When you navigate to the suppliers.asmx URL, you will see a screen like the one in
Figure 24.1. It contains some information about Web services in general and shows you

Transmitting Datasets Using Web Services 333

24

LISTING 24.1 continued

25 0672323834 Ch24 4/19/02 2:26 PM Page 333

all the public methods supported by the current Web service. Note that in this case, the
only public method is GetAllSuppliers().

334 Hour 24

FIGURE 24.1
An automatically gen-
erated information
screen for your Web
service.

By clicking on the GetAllSuppliers() method, you will navigate to a screen like the
one in Figure 24.2. This screen gives more detailed information about the
GetAllSuppliers() method, including a sample SOAP request and response. These
define exactly what type of data the Web service expects to receive and send in a call to
this method.

If you click on the Invoke button to test the Web service, you will navigate to a screen
like the one in Figure 24.3. This is the actual information returned by the Web service. If
you look closely at the data, you’ll see that it is the XML representation of a dataset.
Because Web services transmit data packaged in XML, it’s pretty handy that datasets are
XML entities!

Now that you’ve created the Web service and ensured that it works by performing the
tests, it’s time to create a Web form that will use the DataSet returned from a remote
machine to bind to a DataGrid.

25 0672323834 Ch24 4/19/02 2:26 PM Page 334

Transmitting Datasets Using Web Services 335

24

FIGURE 24.2
Automatically gener-
ated information for
calling your Web ser-
vice.

FIGURE 24.3
Invoking the
GetAllSuppliers()

Web service.

25 0672323834 Ch24 4/19/02 2:26 PM Page 335

Consuming a DataSet from a Web Service
Consuming a DataSet using Web services is trickier than creating the Web service itself.
There are a number of actions you must perform in order.

First, for your code to access the remote objects and methods, you must build a proxy
class. A proxy class is a local set of methods that match the remote methods. Its purpose
is to handle the work of actually calling the Web service and receiving the data. In other
words, when you call the Web service in your code, you are actually calling the methods
in the proxy class. The proxy class connects to the remote Web service on your behalf
and automatically parses the payload of XML data returned from the service into values
that your application can use directly.

To create a proxy class, go to a command prompt and run the following line of code to
generate a Visual Basic .NET proxy class:

wsdl /language:vb http://localhost/ado24hours/ch24/suppliersvb.asmx
➥namespace:Northwind

or this one to generate a C# proxy class:

wsdl /language:cs http://localhost/ado24hours/ch24/suppliersCS.asmx
➥namespace:Northwind

336 Hour 24

What Is SOAP?
SOAP (Simple Object Access Protocol) is currently a hot topic in the develop-
ment world, and for good reason. After all, it’s the underlying protocol to
Web services, which according to Microsoft is much of the drive behind its
.NET strategy.

Generally speaking, SOAP is a protocol designed to facilitate the transfer of
data, wrapped in XML over HTTP. SOAP defines the format of the Web ser-
vice request, as seen at the bottom of Figure 24.1. In addition, SOAP defines
the organization and format of the data returned, as you can see by invok-
ing a Web service as in Figure 24.3.

Though it’s always a good idea to understand how things work “under the
hood,” you don’t need to understand SOAP to use Web services. The
Microsoft .NET Framework handles all the details for you. Because SOAP is
an XML-based (and thus human-readable) protocol, you can examine the
SOAP request and response in detail to find out what went wrong.

25 0672323834 Ch24 4/19/02 2:26 PM Page 336

After you’ve run the utility, it generates either a .cs or .vb file, depending on the lan-
guage you’ve chosen. The next step is to compile the proxy class. This is done using the
standard C# or Visual Basic .NET compiler. To compile the proxy class in C#, type the
following line into a command prompt:

csc /Target:library Suppliers.cs

To compile using Visual Basic .NET, use the following:

vbc /Target:library suppliers.vb /r:system.dll r:system.data.dll
➥/r:system.xml.dll /r:system.web.services.dll

After you’ve compiled the proxy class into a DLL assembly, place that DLL into the
/bin directory of your Web application. Now the remote Web method is accessible to
any Web form in your project.

The last remaining step is to create a Web form that will make use of the remote method.
The GetAllSuppliers method returns a list of suppliers, so you can bind this list to a
DataGrid for display on the Web form. The DataSet object returned from the Web ser-
vice is no different than any returned from a direct call to our data source.

In Listing 24.3, notice that you must import the Northwind namespace in order to have
access to the Suppliers class. An instance of the Suppliers class is created in the
LoadDataGrid() method. Then the GetAllSuppliers() method is called just as if it
were a local method.

LISTING 24.3 Consuming the GetAllSuppliers() Web Service

<% @Page debug=”true” Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”Northwind” %>

Transmitting Datasets Using Web Services 337

24

The wsdl.exe utility connects to the remote machine to create the proxy
class. You must have TCP/IP connectivity to port 80 of the machine hosting
the Web service for the utility to work.

The wsdl.exe utility connects to the Web service, analyzes its properties and methods,
and constructs the local proxy class mentioned earlier.

25 0672323834 Ch24 4/19/02 2:26 PM Page 337

<HTML>
<HEAD>

<LINK rel=”stylesheet” type=”text/css” href=”Main.css”>
<!-- End Style Sheet -->

<script language=”VB” runat=”server” >
Sub Page_Load(Source as Object, E as EventArgs)

LoadDataGrid(orders)

End Sub

Private Sub LoadDataGrid(_
myDataGrid as System.Web.UI.WebControls.DataGrid)

Dim mySuppliers as new Suppliers()

orders.DataSource = mySuppliers.GetAllSuppliers()
orders.DataBind()

End Sub
</script>

</HEAD>
<BODY>

<h1>Consuming Suppliers DataSet</h1>
<hr>

<form runat=”server” id=form1 name=form1>
<asp:DataGrid id=”orders” runat=”server”></asp:DataGrid>

</form>
<hr>

</BODY>
</HTML>

If you are using Visual Studio .NET to consume a DataSet from a Web service, you must
perform one additional step. You must also add the Web reference to your project. To do
this, right-click on References and choose Add Web Reference as shown in Figure 24.4.

This will load the Add Web Reference browser as shown in Figure 24.5. Enter the URL
of your suppliers.asmx Web service into the Address box. After you click Add Reference,
you’ll be able to reference the methods of the supplier’s Web service.

338 Hour 24

LISTING 24.3 continued

25 0672323834 Ch24 4/19/02 2:26 PM Page 338

FIGURE 24.5
The Add Web
Reference browser.

Transmitting Datasets Using Web Services 339

24

FIGURE 24.4
Adding a Web refer-
ence to a Visual Studio
.NET project.

When the Web form in Listing 24.3 loads, you will see a screen like the one in
Figure 24.6.

25 0672323834 Ch24 4/19/02 2:26 PM Page 339

Summary
Web services are an important part of the Microsoft .NET Framework. You can use them
to transmit large amounts of data between any two connected hosts on the Internet or
local network, thus enabling easily distributed applications. In this hour, you saw how to
create a Web service that returns a DataSet of all suppliers in the Northwind database.
Then you saw how to integrate that Web service into a local application.

Q&A
Q Where can I find more information about Web services?

A Quite a number of good books have been published recently on the subject of Web
services, as the topic grows in popularity every day. An excellent book on the topic
is Microsoft .NET Web Services by Robert Tabor, from Sams Publishing.

Q Can any object be sent over Web services?

A Yes, but not necessarily automatically. To transmit custom classes or data types,
you will need to tell the framework how to convert the object to XML. This is
referred to as XML serialization. The Microsoft .NET Framework automatically
serializes almost all simple data types. For more information, see XML serializa-
tion in the Microsoft .NET Framework SDK documentation.

Q Are Web services reliable?

A The answer is “it depends.” Web services use XML and HTTP, both of which are
battle-tested and proven protocols themselves. From this perspective, you can rely

340 Hour 24

FIGURE 24.6
Consuming the
DataSet returned by
the
GetAllSuppliers()

Web service.

25 0672323834 Ch24 4/19/02 2:26 PM Page 340

on the fact that you’ll have few problems with Web services themselves, as long as
they are accessible.

However, Web services are only as reliable as their weakest link. If you are invok-
ing a Web service located on a server in your company’s domain, it is likely to be
very reliable—and if the Web service does go down, most likely your organization
has an IT staff you can notify. However, consider the number of times transient
Internet conditions have prevented you from accessing a favorite Web site. There
are many points of failure between any two machines on the Internet that are
entirely out of your control. Therefore, any Web services provided by hosts on the
Internet are by their very nature unreliable and not fit for use in mission-critical
applications.

Remember that when the Nimda virus reached its peak number of infections, the
amount of additional Internet traffic generated by the virus caused sites to be
unavailable or slow to load for several days. This poor performance would be
reflected directly by any application making use of a remote Web service.

Workshop
These quiz questions are designed to test your knowledge of the material covered in this
chapter. The answers to the quiz questions can be found in Appendix A, “Answers to
Quizzes.”

Quiz
1. What is the purpose of a proxy class?

2. What is the file extension used by a Web service in the Microsoft .NET
Framework?

Exercise
Choose a Northwind table of your choice and expose it as a DataSet through a Web ser-
vice. Then, consume the Web service from a Web form.

Transmitting Datasets Using Web Services 341

24

25 0672323834 Ch24 4/19/02 2:26 PM Page 341

25 0672323834 Ch24 4/19/02 2:26 PM Page 342

APPENDIX A
Hour 1

Quiz Answers
1. b. The DataSet is the object that can contain several DataTables and

store relationship and constraint information.

2. True.

3. The System.Data namespace contains these classes.

Hour 2
Quiz Answers

1. True.

2. The easiest way to add a DataTable to a DataSet is to call the Add()
method of the DataTable collection of the DataSet object.

26 0672323834 AppA 4/19/02 2:46 PM Page 343

Hour 3
Quiz Answers

1. a. The INSERT command enables you to add new records to a database table.

2. The WHERE portion of a SQL query uses an expression to filter the records
returned by the query.

Hour 4
Quiz Answers

1. The foreign key column may only contain values from the primary key column of
the parent table. In other words, if the CustomerID column of a customer table and
order table are the primary and foreign key respectively, the CustomerID column of
the order table may only contain values from the CustomerID column of the cus-
tomer table.

2. This depends entirely on your data source. In most cases, you will get an error
message telling you not to delete a parent object without first deleting its children.
Microsoft SQL Server 2000 supports “cascading deletes.” When active, SQL
Server will automatically delete the child rows for you.

Hour 5
Quiz Answers

1. The SqlConnection object is used to connect to Microsoft SQL Server version 7.0
and higher using a managed provider that “talks” directly to SQL Server. The
OleDbConnection object connects to OLE DB sources.

2. False. Connections to the database are not automatically closed.

Hour 6
Quiz Answer

1. The Fill() method of the DataAdapter object is used to place query results into a
DataSet.

2. First, you must create an instance of the Connection object and properly configure
it. Then you must associate this connection with the Command object. One way of

344 Appendix A

26 0672323834 AppA 4/19/02 2:46 PM Page 344

doing this is to set the Connection object to the Connection property of the
Command object. Then, after you open your connection, you can execute your query
and retrieve the results.

3. False. You can’t mix objects from one managed provider with another to retrieve
data.

Hour 7
Quiz Answers

1. The ExecuteNonQuery() object is used to execute commands against the data
source that will not return any records. Therefore, it is ideal to use in situations
where you want to modify or delete database data.

2. False. If you execute a query using ExecuteNonQuery() that will return data, it will
result in the data from your database query being lost, but no error will occur.

Hour 8
Quiz Answers

1. True. There is never any more than one database record in memory while the
DataReader is open and retrieving data. This makes it very lightweight compared
to the DataAdapter, particularly when a large number of records are being
returned.

2. The DataAdapter stores the results of a database query into a DataSet object. The
DataReader opens a pipe directly from the database to the data’s destination.

Hour 9
Quiz Answers

1. c. ListBox controls use the DisplayMember and DataSource properties to bind
data.

2. False. The complete opposite. It is the BindingContexts object that sits on top of
all the CurrencyManagers for a form. Multiple forms have multiple
BindingContexts objects.

3. True. However, it is usually easier to bind controls to data in a DataSet that con-
tains the relationship as opposed to having to programmatically load from each and
join them in your code.

Quiz Answers 345

A

26 0672323834 AppA 4/19/02 2:46 PM Page 345

4. c. (databinding).Text property. Specify down to the individual column that is
to be bound to the control.

5. True. You can bind to both traditional data sources as well as almost any structure
that contains data. There just has to be a way to populate the data somehow.

6. a, b, and c. All of these. In fact, any collection that implements the Ilist interface.

Hour 10
Quiz Answers

1. The GetXml() method returns the DataSet object in XML form.

2. A DiffGram is an XML document containing both the original data source values
and any updated values from the DataSet, as well. This enables you to serialize a
DataSet to XML form, and then restore it and still be able to apply the changes to
the data back to the data source.

Hour 11
Quiz Answers

1. The DataGrid list control is used to display data in a table.

2. The DataList is used to display organized groups of information about a single
entity.

3. True.

4. True.

Hour 12
Quiz Answers

1. True. The Repeater control has a set of templates that can be used to format data
using HTML.

2. The RepeatColumn property of the DataList is used to specify the number of
columns generated by the control.

3. False. Though it is possible to implement paging using the Repeater control, it is
not native to the control and thus cannot be done automatically. To implement pag-
ing, use the DataGrid object.

346 Appendix A

26 0672323834 AppA 4/19/02 2:46 PM Page 346

Hour 13
Quiz Answers

1. a. Processing error conditions from a Try block. Any exception in the Try block
will transfer control to the Catch block for determination.

2. False. If utilized, this capability can retain errors on each row in the dataset.

3. True. In general, it is good practice to close a connection. Doing so in a Finally
block is good practice if the open connection was in the corresponding Try block.

4. a, b, and c. You have the flexibility to set errors at all three levels. What’s more, if
you set an error at the row level, you can test the table for errors at higher levels
(for example, at the table level using the HasErrors method).

5. False. You can utilize the DiffGram structure to encapsulate the data, schema, and
data row error information.

6. c. RowUpdated is the most widely used event because it reflects the outcome of the
updates against the data source after they have been completed. This usage is espe-
cially common when looking for optimistic concurrency violations.

Hour 14
Quiz Answers

1. a and b. Both locks on data resources and database connections must be maintained
in pessimistic concurrency.

2. a. In general, you will need to compare original values (that you read from the data
source) to current values in the data source before the data can be updated. If any
of the comparison fails (indicating that the row was updated by someone else), you
have encountered an optimistic concurrency violation.

3. False: Pessimistic concurrency is not designed for fast scalable applications in
.NET because of the expensive need to hold connections and locks.

4. c. DiffGrams are an excellent XML structure to use when having to implement
optimistic concurrency between varying systems. All that you need to test for opti-
mistic concurrency violations is embedded in these block structures.

Quiz Answers 347

A

26 0672323834 AppA 4/19/02 2:46 PM Page 347

Hour 15
Quiz Answers

1. True. A stored procedure can contain any valid set of SQL statements for your data
source.

2. Parameters enable you to pass data into and out of a stored procedure, in addition
to the ability to return the results of a database query in a resultset.

Hour 16
Quiz Answers

1. Tblimp.exe is the application that imports type libraries into your managed code.

2. ADO.NET is strongly typed and disconnected. ADO is not strongly typed and by
default maintains a connection to the database as long as the recordset object is
open.

Hour 17
Quiz Answers

1. a. When you open a connection to the database. If there is a matching connection
string in the connection pool, it will draw on it. Otherwise, it will create a new one
(and establish the minimum pool size entries).

2. False. In .NET, connection pooling is on as the default (pooling = “true”).

3. c. Close the connection to the database. This will release the connection back to
the connection pool for subsequent use. If you do not explicitly close the connec-
tion, it will not be available to use.

4. a. The entire connection string. Even the smallest difference in the coding of a con-
ceptually equivalent connection string will cause it not to match an entry in the
connection pool.

5. d. .NET CLR Data—performance object and its associated pool connection coun-
ters.

348 Appendix A

26 0672323834 AppA 4/19/02 2:46 PM Page 348

Hour 18
Quiz Answers

1. The Commit() method of the SqlTransaction object finalizes a transaction and
commits all database changes made during the life of the transaction. To achieve
the same when working with T-SQL, you would use COMMIT TRAN.

2. The BeginTransaction() method of the Connection object is used to start a trans-
action.

Hour 19
Quiz Answers

1. b. The optimistic concurrency model, which means that other users can update data
that has been selected by your application and your application must check for this
before committing your updates.

2. False. You must explicitly activate this capability by using the CommandBuilder
object.

3. b. Refresh metadata. This is done using the .Refreshschema() method. You would
then clear out (.Remove) the DataSet and fill it again for further processing.

4. False. The SelectCommand to be used with CommandBuilder must not span multiple
tables.

5. c. Return at least one primary key or unique column. The UPDATE and DELETE state-
ments must be able to locate the exact data row for update/delete to ensure
integrity.

Hour 20
Quiz Answers

1. b. The /d[ataset] directive tells the XSD tool to generate a typed DataSet class
code from the supplied .xsd schema file.

2. False. You can generate typed DataSets both manually with the XSD tool and
dynamically in Visual Studio .NET.

3. a. You can use the Imports reference in your code and supply the /r: reference for
the typed dataset class (.dll) you generated.

Quiz Answers 349

A

26 0672323834 AppA 4/19/02 2:46 PM Page 349

4. a. Annotations are available to add more user-friendly references to DataSet
objects and do not change the physical DataSet schema.

Hour 21
Quiz Answers

1. The purpose of adding additional layers to your application is to improve the read-
ability and manageability of your code.

2. The option is called CommandBehavior.CloseConnection.

Hour 22
Quiz Answers

1. The examples in this hour were divided into three layers. The Web form was the
presentation layer in the application, collecting and displaying product information.
The second layer is our business logic/data access tier. In this application, this tier
is provided by our compiled assembly that contains the ProductsDB class. Lastly,
the SQL database is the last tier, and stores the product data.

2. The term master-detail is used to describe the relationship between a list of items
and the corresponding screen that enables you to edit those individual items.

Hour 23
Quiz Answers

1. This is a trick question. Because you would be unable to page through data with a
DataReader object, you should use the DataAdapter to return a DataSet.

2. First, you can use the Query Analyzer to display SQL Server’s execution plan for
your query. You can use this plan to discover how you could better structure the
query. Additionally, you can also use the Query Analyzer to analyze the indexes of
your table. Often, the Query Analyzer will suggest index improvements that can
greatly improve the speed of your queries.

350 Appendix A

26 0672323834 AppA 4/19/02 2:46 PM Page 350

Hour 24
Quiz Answers

1. The purpose of a proxy class is to create a set of local methods that perform the
footwork involved with retrieving data from a remote Web service. Without a proxy
class, you would be unable to compile the remote methods into your application

2. The Web service file extension is .asmx in the Microsoft .NET Framework.

Quiz Answers 351

A

26 0672323834 AppA 4/19/02 2:46 PM Page 351

26 0672323834 AppA 4/19/02 2:46 PM Page 352

A

Abs(expr) function, 36
Access

databases
connecting to in C# or

Visual Basic .NET,
60

data sources, connect-
ing to, 59

Northwind, download-
ing, 28

ODBC (Open Database
Connectivity)
connections, 62

downloading Northwind
database, 28

Permissions screen, 20
accessing

ADO recordsets from
ADO.NET, 218-220

COM interoperability,
221-222

DataSets, filling with
ADO recordset
223-225

Server.CreateObject()
method, 223

type libraries, import-
ing, 222-223

data
optimizing, 319
tiered development,

287-301
actions, ReadXML()

method, 126
ActiveX,

Northwind.DataAccess
ActiveX DLL, code for
legacy usage, 219-221

adapters, data
adding, 106-108, 112,

278-279
configuring, 174
SelectCommand

property, explicitly
setting, 256

Symbols

* (asterisk) wildcard, 30
@ (at symbol), stored proce-

dures, 203
@EmployeeID variable, 252
@@IDENTITY variable,

209
\ (backslash), C# strings, 59
[] (brackets), 257
∞ (infinity symbol), 40
; (semicolon), 56
‘‘ (single quotation marks),

T-SQL (Transact-SQL)
strings, 30

{0:c} string, 141
{0:d} string, 141

INDEX

27 0672323834 Index 4/19/02 2:22 PM Page 353

Add Dataset dialog box, 281
Add Existing Item com-

mand (Project menu), 280
Add Web Reference brows-

er, 338-339
Add() method, 16
adding

buttons to forms, 282
classes to ADO24HRS.css

file, code, 155
code to Button method,

109
counters to Performance

Monitor console, 234
data

adapters and connec-
tions, 106-108, 112,
278-279

to DataTable object,
17-25

with INSERT state-
ment, 31-32

DataGrid control, 116-118
DataSets, 106-108
entries to trace informa-

tion, 321
labels to forms, 282
links to Products.aspx

Web form DataList,
code, 306

ListBox control, 116-118
product 311-316
records to SQL

(Structured Query
Language) databases

with C# code, 81-82
with VB .NET code,

78-81
rows to dtEmployees

table, 17-18
text boxes to forms, 282
typed DataSet class

instances to forms, 281

Web references to Visual
Studio .NET projects,
339

AddNew() method, 314
AddProduct() method,

312-314
administrators, ODBC Data

Source Administrator, 61
ADO

and ADO.NET, compar-
ing, 7-8, 216-218

recordsets, accessing from
ADO.NET, 218-225

upgrading to ADO.NET,
216-218

ADO.NET
ADO

comparing with
ADO.NET, 7-8

recordsets, accessing,
218-223

code
commands, automati-

cally generated, 321
data providers,
choosing, 320-321
connection pooling,

229
database connections,

managing, 320
DataReader and

DataSet objects,
comparing, 320

optimizing, 319
records, retrieving, 92
“SELECT *” com-

mand, 321
test harness, creating,

20-25
connection errors, 173,
216-218

DataSet object, 8

error handling, 167
DataAdapter events,

179-180
designing, 168
exceptions, 168-169
FillError events, 180
On Error construct,

171-173
RowError property

(DataSet object),
178-181

RowUpdated events,
180

RowUpdating events,
180

Throw statement, 173
Try/Catch/Finally

structure, 169-177
XML (eXtensible

Markup Language)
persisted row errors,
181

Microsoft .NET
Framework, 5-7

object model hierarchy, 9
objects, relationships, 15
SOAP (Simple Object

Access Protocol),
downloading, 8

System.Data namespace,
8-9

System.Data.OleDb name-
space, 10-11

System.Data.SqlClient
namespace, 10-11

upgrading from ADO,
216-218

ADO24HRS
.css file

classes, code to add,
155

contents, modifying,
152

354 Add Dataset dialog box

27 0672323834 Index 4/19/02 2:22 PM Page 354

namespace, compiling for
assemblies, 292-293

Advanced SQL Generation
Options dialog box, 260-
261

aliases, Virtual Directory
Creation Wizard, 19

AlternatingItemTemplate,
156

analyzers, SQL Query
Analyzer

databases, 29, 324-328
stored procedures, 29,

201-203
analyzing

table indexes, 327-328
Web services with

wsdl.exe utility, 337
annotations, DataSet class

(typed), 275-277
ANSI-SQL 92 and higher,

timestamp columns, 192
applications

bottlenecks, finding,
322-324

class browser, 4-5
connection strings, global

constants, 292
Get Customer Forms

complex DataGrid
binding, 119

simple binding, 110
N-tier

development, 288
product 303-316

style sheets, 155
traffic, simulating, 328
two-tier, 288
typed DataSet class,

testing, 283

Windows Forms,
Try/Catch/Finally
structure, 174-177

architects, Visual Studio
.NET Enterprise
Architect, automatically
generated commands, 255

arguments
exception, error handling,

170
XMLReadMode, retriev-

ing XML (eXtensible
Markup Language),
126-127

ASP.NET
Cache object, code, 329
list controls, formatting,

151-155
DataGrid, 162-165
DataList, 158-161
Repeater, 156-158

server controls,
System.Web.UI.Control
base class, 104

tracing applications, find-
ing bottlenecks, 322-324

assemblies
ADO24HRS namespace,

compiling, 292-293
classes, creating, 291-295
compiled, bin folders, 293
creating, 290-301
custom objects, 295-301
products

code to retrieve,
293-300

list Web form, loaded
with 295

ProductsDB
product list page,

wiring to, 293-295
product listings, code,

291-292

asterisk (*) wildcard, 30
at symbol (@), stored proce-

dures, 203
Auto code (XmlReadMode

argument), 127
AutoGenerateColumns

property (DataGrid list
control), 162

automatically generated
code, refreshing, 260

automatically generated
commands, 255, 321

CommandBuilder object,
257-263

criteria, 256-257
displaying, code, 259
optimistic concurrency

model, 256
automatically generated

Web service information,
334-335

B

backslash (\), C# strings, 59
base classes,

System.Web.UI.Control or
System.Windows.Forms.
Control, 104

Basic.NET code,
dtEmployees table, adding
rows, 17

BeginTransaction() method,
240-241, 245

behavior of connection
pooling in Performance
Monitor, 236

bin folders, compiled assem-
blies, 293

bin folders

How can we make this index more useful? Email us at indexes@samspublishing.com

355

27 0672323834 Index 4/19/02 2:22 PM Page 355

binding
complex data binding in

Windows Forms
data adapters or

connections, adding,
112

DataGrid control,
adding, 116-118

DataSets, 113-115, 118
ListBox control,

adding, 116-118
projects, creating in VS

.NET, 111
testing, 118

complex DataGrid, Get
Customer Forms applica-
tion, 119

data
DataReader object to

Web controls, code,
94-95

to list controls,
103-106

database queries to
DataGrid Web control,
72, 74

DataReader object results
to Web controls, 94-95

Get Customer Forms
application, simple
binding, 110

ListBox control to DataSet
classes, 117-118

simple data binding in
Windows Forms,
106-110

text boxes
to DataSets, 109-110
to typed DataSet class,

282-283

BindingContext object,
binding data to list
controls, 104-105

blocks
Catch, error handling, 170
DiffGram, 181
Finally, error handling,

170
books, Microsoft .NET Web

Services, 340
bottlenecks in applications,

finding, 322-324
bound DataGrid Web

control, 126
bound Web controls in Web

forms, 92-93
BoundColumn control, 141
boxes. See text boxes
brackets [], 257
browsers. See Web browsers
built-in SQL (Structured

Query Language) func-
tions

dates, 35-36
mathematical, 36-37
strings, 34-35

Button method, adding
code, 109

ButtonColumn property
(DataGrid list control),
162

buttons
adding to forms, 282
Create New Product, code,

315
creating, 108
dataset refreshing, 175
Get Customer, 108
Invoke, 334
Play, 28
Refresh, 176
Validate, 178

C

C#
code

DataReader object
instances, getting, 94

dtEmployees table,
adding rows, 18

test harness, creating,
22-23

DataReader object, retriev-
ing database fields, 98-
99

DataSet object contents,
viewing, 69-71

Microsoft
Access databases,

connecting to, 60
SQL Servers, connect-

ing, 58
Oracle databases,

connecting to, 60
proxy classes, compiling,

337
SQL (Structured Query

Language) databases,
records

code to add, 81-82
code to delete, 85-86
code to update, 88-89

strings, \ (backslash), 59
Web services, Northwind

Database suppliers, 333
XML (eXtensible Markup

Language), retrieving
from SQL Server 2000,
130-131

caching 328-329
calling stored procedures,

code, 206-211
canceling transactions, 246

356 binding

27 0672323834 Index 4/19/02 2:22 PM Page 356

capitalizing T-SQL
(Transact-SQL) keywords,
29

cascading style sheets.
See CSS

case sensitivity, T-SQL
(Transact-SQL), 29

Catch block, error
handling, 170

categories, lists (code)
generating, 136-137
returning 137-138

Categories_Get stored
procedure, 138

characters, special, 257
child columns, foreign keys,

46
Choose Your Data

Connection dialog box,
106, 112, 174, 279

classes. See also DataSet
class

adding to ADO24HRS.css
file, code, 155

browser application, 4-5
creating for assemblies,

291-295
DataAdapter, Windows

Form Designer, 260
hierarchies for data

binding, 105-106
library (Microsoft .NET

Framework), 4
Main Header, adding to

ADO24HRS.css file,
155-156

namespaces, 4, 290
Product Details custom,

code, 297
proxy

compiling, 337
creating, 336

Suppliers, creating
instances, 337

System.Data.SqlDbType
class, 6

System.Web.UI.Control
base class, 104

System.Web.UI.Web-
Controls namespace, 111

System.Windows.Forms.
Control base class, 104

client-side Windows Forms
controls
(System.Windows.Forms.
Control base class), 104

clients, concurrency
optimistic, 185-186
pessimistic, 186-187

Close() method
Connection object, 57-58
DataReader object, 95

closing
connections to connection

pools, 231
database connections, 95

CLR (Common Language
Runtime),
Try/Catch/Finally struc-
ture (ADO.NET error
handling), 169-171

code, 35
ADO.NET, 20-25, 92,

319-321
ADO24HRS.css file,

adding classes, 155
applications, finding

bottlenecks, 322-323
ASP.NET Cache object,

329
Auto (XmlReadMode

argument), 127
automatically generated,

259-260

Basic.NET, dtEmployees
table, adding rows, 17

Button method, 109
C#

DataReader object, 94,
98-99

DataSet object con-
tents, viewing, 69-71

dtEmployees table,
adding rows, 18

Microsoft Access data-
bases, connecting to,
60

Oracle databases, con-
necting to, 60

SQL (Structured Query
Language) databases,
modifying records,
81-89

test harness creating,
22-23

XML (eXtensible
Markup Language),
retrieving from SQL
Server 2000, 130-131

category lists
code to return 137-138
generating, 136-137

Code Editor tab (Windows
Form Designer), 260-263

columns
specifying in SQL

(Structured Query
Language) state-
ments, 30

updating with
UPDATE statement,
33

Command object, instanti-
ating, 67

Connection object
instances, creating, 61
instantiating, 67

code

How can we make this index more useful? Email us at indexes@samspublishing.com

357

27 0672323834 Index 4/19/02 2:22 PM Page 357

constructors, overloading,
68

Customers Get stored
procedure, 204-205

Customers table
DataSet XML

(eXtensible Markup
Language), generat-
ing typed DataSet
class, 272

timestamp column, 193
Customers.VB, 273
CustOrdDS.xsd XML

Schema file, 114-115
data values, comparing

original and current,
189-191

DataAdapter object,
instantiating, 68

databases
order lists, 141-149
queries, 44-47
values, retrieving with

ExecuteScalar()
method, 72-73

DataGrid list control,
152-153

example, 139-140
formatting, 159-162
paging, 163-164
stylesheets, 154

DataReader object, data
binding to Web controls,
94-95

DataSets
contents, viewing,

127-128
creating from XML

(eXtensible Markup
Language) files, 125

populating, 108, 118

datasets, updating,
257-258

DataTables objects, adding
relationships, 47-51

DiffGram
XmlReadMode argu-

ment, 127
XmlWriteMode object,

129
dtEmployees table, adding

rows
with Basic.NET, 17
with C#, 18

Employee table, deleting
rows, 34

employees’ names, chang-
ing with UPDATE state-
ment, 32

Fragment (XmlReadMode
argument), 127

GetAllSuppliers() Web
Service, consuming,
337-338

IgnoreSchema
XmlReadMode argu-

ment, 127
XmlWriteMode object,

129
InferSchema

(XmlReadMode argu-
ment), 127

Join operator, 44
Microsoft SQL Servers,

connecting to
with C#, 58
with Visual Basic

.NET, 59
Northwind database

Employees table, delet-
ing records, 83-85

DataAccess ActiveX
DLL, legacy usage,
219-221

On Error construct, 172
optimistic concurrency,

187-188
Product Add stored proce-

dure, 311-312
product retrieving through

assemblies, 293-300
Product Update stored

procedure, 304
ProductDetails custom

class, 297
productdetails.aspx, down-

loading, 149
ProductEditor.aspx Web

Form, 307-315
Products.aspx Web form

Create New Product
button, 315

DataList, adding links,
306

ProductsDB assembly,
product listings, 291-292

ReadSchema
(XmlReadMode argu-
ment), 127

Repeater list control, tem-
plates, 156-158

Required Field control,
325-326

RowError condition,
adding to Customers
DataSet, 178

SELECT statement, 28
sizes of constructors, over-

loading, 68
SQL (Structured Query

Language)
databases, deleting

records, 84-85
displaying in

CommandBuilder
object, 259

358 code

27 0672323834 Index 4/19/02 2:22 PM Page 358

stored procedures
calling, 206-211
CustomerID parameter,

203-204
example, 200-201
executing, 204-205

symbols, 35
testing in Web forms,

18-25
transactions

rolling back, 242-252
starting, 240-241

Try/Catch/Finally struc-
ture, 170-171

TSEQUAL update, opti-
mistic concurrency, 194

two-tier development (data
sources), 78

typed DataSet class,
populating, 282

UPDATE statement, 32
UpdateProducts middle-

tier method, 304-306
VB .NET

DataReader object,
93-97

DataSet object, 70-71,
128-129

Microsoft Access
databases, connecting
to, 60

Oracle databases, con-
necting to, 60

SQL (Structured Query
Language) databases,
modifying records,
78-88

test harness creating,
21-22

Web forms, 23-24

Visual Basic
legacy (Northwind

database), data access
component, 218-219,
223-225

pooling, 233-234
strings, defining,

230-231
typed DataSets class,

274-275
Web services, returning

Northwind Database
suppliers

in C#, 333
in Visual Basic,

332-333
Windows Form Designer,

VS .NET, automatically
generated commands,
260-263

WriteSchema
(XmlWriteMode object),
129

XML (eXtensible Markup
Language) documents,
123

XML Schema file
Customers table typed

DataSet, 269-271
definition, 271-272
Orders table typed

DataSet, 270-271
Code Editor tab (Windows

Form Designer), generated
code, 260-263

collections
DataRelationCollection,

46-52
Parameters, 207

columns
appearances, defining, 141
BoundColumn control,

141
child, 46
DataColumn object, 9,

16-17
DataFormatString proper-

ty, 141
foreign key, sharing

names, 47
HyperLinkColumn, 142
join operations, 44
LastName, 33
names

sharing, 47
special character, 257

parent, 46
primary key, sharing

names, 47
specifying, code, 30
timestamp, optimistic

concurrency, 192-194
updating with UPDATE

statement, code, 33
<columns> section, 141
COM interoperability,

accessing ADO recordsets
from ADO.NET, 221-222

Command object, 10
Connection object, using

together, 66-67
creating, 66
retrieving, 65-68
ExecuteNonQuery()

method, 77
deleting data from

databases, 83-86
inserting data into

databases, 78-83
modifying data in

databases, 86-89
instantiating, code, 67

Command object

How can we make this index more useful? Email us at indexes@samspublishing.com

359

27 0672323834 Index 4/19/02 2:22 PM Page 359

CommandBuilder object,
256

automatically generated
commands, 257-263

SelectCommand, 257
commands

automatically generated,
255-263, 321

Data menu, Generate
Dataset, 113, 174

DELETE, 257-258
File menu, New, 106, 111,

174
INSERT, 257-258
Project menu, Add

Existing Item, 280
Query menu

Display Estimated
Execution Plan, 326

Index Tuning Wizard,
327

Refresh, 259
Schema menu, Generate

DataSet, 281
“SELECT *”, 321
SelectCommand,

CommandBuilder object,
257

SqlCommandBuilder, code
to update datasets, 258

UPDATE, 258
CommandType property,

executing stored proce-
dures, 206

Commit() method, transac-
tions, 246, 249

committing transactions,
246

Common Language
Runtime (CLR),
Try/Catch/Finally struc-
ture (ADO.NET error
handling), 169-171

comparing
ADO and ADO.NET, 7-8,

216-218
data values, original and

current, code, 189-191
DataReader

and DataAdapter
objects, 91-93

and DataSet objects,
320

DataSet values against
databases for optimistic
concurrency, 188-192

optimistic and pessimistic
concurrency, 184-187

compiled assemblies, bin
folders, 293

compiling
ADO24HRS namespace

for assemblies, 292-293
proxy classes, 337
Visual Basic 6.0 compo-

nents, 219
complex binding, data to list

controls, 104
complex data binding in

Windows Forms, 111-118
complex DataGrid binding,

Get Customer Forms
application, 119

components
transactions, 240
Visual Basic 6.0, compil-

ing, 219
concurrency

definition, 183
models, isolation levels,

183
optimistic, 181-195
pessimistic, clients,

186-187

configuring
data adapters or connec-

tions, 174
Web sites, 20

connecting to Microsoft
SQL Servers

with C# code, 58
with Visual Basic .NET

code, 59
connecting to data sources,

55
Connection object, 56-58
connection pooling, 62-63
ODBC (Open Database

Connectivity), 61-62
OLE DB data sources,

59-60
SQL (Structured Query

Language) servers, 58-59
connection counter levels,

connection pooling, 235
Connection Lifetime key-

word, 229
Connection object, 10

Command object, using
together, 66-67

data sources, connecting
to, 56-58

instances, creating, 61
instantiating, code, 67
properties, 56-57
transactions, 240-249

connection pools
ADO.NET data provider,

229
behavior in Performance

Monitor, 236
Connection Lifetime key-

word, 229
Connection Reset key-

word, 230
connections, closing, 231

360 CommandBuilder object

27 0672323834 Index 4/19/02 2:22 PM Page 360

connection-string key-
words, 229-230

counters, adding to
Performance Monitor
console, 234

data sources, 62-63
database connections,

reusing, 228
Enlist keyword, 230
entries, creating, 229-230
Max Pool Size keyword,

230
Min Pool Size keyword,

230
.NET

data provider, 228
Framework, 227

OLE DB .NET data
provider, 232-236

Pooling keyword, 230
sizes, 231

Connection Reset keyword,
230

connection strings
defining, code, 230-231
global constants, 292
Initial Catalog property, 58
keywords, 229-230
OLE DB

data providers, 57
Web site, 59

options, 58
Password property, 58
properties, 56-58
Server property, 58
User ID property, 58
user information, specify-

ing, 57
connections

to connection pools,
closing, 231

data
adding, 106-108, 112,

278-279
configuring, 174

to databases
closing, 95
managing, 320
reusing, 228

errors, 173
ODBC (Open Database

Connectivity) to
Microsoft Access
databases, 62

ConnectionString property,
57

consoles, IIS administrative
console, managing, 19

constants (global), connec-
tion strings, 292

constraints, DataSet object,
40, 45

constructors, overloading,
67-68

constructs (On Error),
ADO.NET error handling,
171-173

consuming DataSets
returned by

GetAllSuppliers() Web
service, 340

from Web services, 336-
339

contact names (valid),
retrieving from Customers
table, 283

controls. See also list
controls

ASP.NET servers,
System.Web.UI.Control
base class, 104

bound in Web forms,
92-93

BoundColumn, 141

DataGrid
adding, 116-118
bound to XML

(eXtensible Markup
Language) 126

class hierarchies for
data binding, 106

code example, 139-140
column appearance,

defining, 141
database order list,

code, 141-149
databases queries,

binding, 72-74
definition, 106
list controls, 138-145
properties, 111
Web, 23

DataList, 146-149
DataReader object, data

binding code, 94-95
label Web, 23
ListBox

adding, 116-118
Northwind Employees

table, code to delete
records, 83-85

Repeater
category lists, code,

136-138
list controls, 135-138

Required Field, code,
325-326

System.Web.UI.Control
base class, 104

System.Windows.Forms.
Control base class, 104

text box, definition or
class hierarchies for data
binding, 105

typed DataSet class,
adding to display
281-282

controls

How can we make this index more useful? Email us at indexes@samspublishing.com

361

27 0672323834 Index 4/19/02 2:22 PM Page 361

Windows Forms (client-
side) System.Windows.
Forms.Control base
class, 104

Cos(expr) function, 36
Count() SQL function, 72
counters

adding to Performance
Monitor console, 234

connection counter levels,
connection pooling, 235

Create Database Diagram
Wizard, 41-42

Create New Product button,
code, 315

Create Relationship screen,
43

creating
assemblies, 290-301
buttons, 108
classes or assemblies,

291-295
Command objects, 66
Connection object

instances, 61
connection pool entries,

229-230
database tables, 42
DataSets, 113-115

object schemas, 15-17
from XML (eXtensible

Markup Language)
files, 124-127

DSN (Data Source Name)
for ODBC (Open
Database Connectivity)
data source, 61-62

labels, 108
projects in VS .NET, 106,

111, 278
proxy classes, 336
stored procedures with

Enterprise Manager, 202

Suppliers class instances,
337

table relationships, 40-43
test harness for ADO.NET

code, 20-25
text boxes, 108
Web forms, 337
Web services, 332
Web sites, 18-20

criteria for automatically
generated commands,
256-257

cross-platform style sheets,
reference guides (Web
site), 155

.cs file extension, 337
CSS (cascading style sheets)

ADO24HRS.css file
classes, code to add,

155
contents, modifying,

152
ASP.NET list controls,

formatting, 151-155
cross-platform style sheets

(reference guides), Web
site, 155

.css file extension, 152
DataGrid list control

code, 152-153
stylesheets, 154

MainHeader class, adding
to ADO24HRS.css file,
156

stylesheets, Web forms,
155

.css file extension, 152
CurrencyManager object,

binding data to list
controls, 104-105

custom classes
(ProductDetails), code, 297

custom objects, replacing
single rows of 295-301

Customer_GetByID stored
procedure, 207

Customer Inquiry form,
execution (successful),
177-179

CustomerID parameter,
stored procedures code,
203-204

customers
Get Customer Forms

application
complex DataGrid

binding, 119
simple binding, 110

orders relationship, XML
Schema editor, 116

Customers DataSet, code to
add RowError condition,
178

Customers Get stored
procedure, code, 204-205

Customers table
and Orders table, relation-

ships, 271
timestamp column, code,

193
typed Dataset (XML

Schema file), code,
269-272

valid contact names,
retrieving, 283

Customers.VB source code,
273

Customers.xsd file (Visual
Studio .NET Component
Designer), 280

CustomersOrders relation,
Edit Relation dialog box,
114

362 controls

27 0672323834 Index 4/19/02 2:22 PM Page 362

CustOrdDS.xsd
schema file, 113-114
XML Schema file,

114-115

D

data
adapters

adding, 106-108, 112,
278-279

configuring, 174
SelectCommand prop-

erty, explicitly set-
ting, 256

adding with INSERT
statement, 31-32

ASP.NET Cache object,
code, 329

binding
DataReader object to

Web controls, code,
94-95

to list controls,
103-106

caching, 328-329
complex binding in

Windows Forms,
111-118

concurrency, definition,
183

connections
adding, 106-108, 112,

278-279
configuring, 174

DataTable object, adding
or deleting, 17-25

deleting
with DELETE state-

ment, 32-34
with

ExecuteNonQuery()
method, 83-86

ExecuteNonQuery()
method, 77-78

filtering with SELECT
statement, 29

hierarchical formats, 123
INSERT statement, 78
inserting into databases,

78-83
manipulation errors, 173
modifying, 77, 86-89
movements, visual

representations, 301
multiuser access, 184
N-tier applications, 303
OLE DB data providers,

57
products

adding, 311-316
retrieving through

assemblies, code,
293-300

updating, 303-311
providers, choosing,

320-321
refreshing with buttons,

175
retrieving from data

sources
Command object, 65-

68
Command objects and

Connection objects,
using together, 66-67

constructor overload,
67-68

databases, 6-7, 72-73

DataSet object, filling
with DataAdapter
Fill() method, 68-71

methods (DataReader
object), 100

retrieval errors, 173
with SELECT state-

ment, 28-31
simple binding in

Windows Forms,
106-111

single rows of, replacing
with custom objects,
295-301

source manipulation
errors, 173

two-tier development (data
sources), 78

typed DataSet class,
displaying with controls,
281-282

types, comparing ADO
and ADO.NET, 216-218

updating, with UPDATE
statement, 32-34

values (original and cur-
rent), code to compare,
189-191

data access
component (Northwind

database), 218-219,
223-225

layer, SqlDataReader
object, 295

objects (ADO.NET),
disconnected, 216

optimizing, 319
tiered development,

287-30

data access

How can we make this index more useful? Email us at indexes@samspublishing.com

363

27 0672323834 Index 4/19/02 2:22 PM Page 363

Data Adapter Configuration
Wizard, 106, 112, 174

Advanced SQL
Generation Options
dialog box, 260-261

Choose Your Data
Connection dialog box,
279

Generate the SQL
Statements dialog box,
279-280

statements, generating,
260

typed DataSet class, 279
View Wizard Results

dialog box, 260
Data menu commands,

Generate Dataset, 113, 174
data providers

ADO.NET, connection
pooling, 229

.NET, connection pooling,
227

OLE DB .NET, 231-236
Data Source

Administrator (ODBC), 61
Name (DSN), creating for

ODBC (Open Database
Connectivity) data
source, 61-62

data sources
connecting to, 55-62
Connection object, 57-58
retrieving, 65-73
OLE DB

Microsoft Access
databases, 59-60

Oracle databases, 60
ODBC (Open Database

Connectivity), creating
DNS (Data Source
Name), 61-62

SqlDataReader, 100
two-tier development, 78

Data tab (Toolbox), 106,
112, 278

Data Toolbox
SqlDataAdapter object,
Visual Studio .NET Form,
107, 278

DataAdapter
class (Windows Form

Designer), 260
events, 179-180
object, 10, 68-71, 91-93

Database property, 57
databases. See also connec-

tion pools; transactions
Access

Northwind database,
downloading, 28

ODBC (Open Database
Connectivity) con-
nections, 62

ADO.NET objects,
relationships, 15

connections
closing, 95
managing, 320
reusing, 228

data
deleting, 83-86
ExecuteNonQuery()

method, 77-78
INSERT statement, 78
loading, 325-326
modifying, 77, 86-89
new, inserting, 78-83
retrieving, 6-7
two-tier development

(data sources), 78
data sources, 55-62
DataColumns object,

adding to DataTable
objects, 16-17

DataReader object, data
retrieval methods, 100

DataRows object, adding
rows to dtEmployees
table, 17-18

DataSet object, 13-17,
188-192

DataTable object, 13-25
diagrams, Create Database

Diagram Wizard, 41-42
dtEmployees table, adding

rows
with Basic.NET code,

17
with C# code, 18

fields, retrieving
with C# code, 98-99
with VB .NET code,

96-97
LoadTestData stored

procedure, 325-326
management systems,

locking granularity, 187
Microsoft Access

connecting to in C# or
Visual Basic .NET,
60

data sources, connect-
ing to, 59

ODBC (Open Database
Connectivity) con-
nections, 62

Northwind
data access component,

Visual Basic 6.0
legacy, 218-219, 223-
225

DataAccess ActiveX
DLL, code for legacy
usage, 219-221

retrieving from data
sources, 66

diagram, 41

364 Data Adapter Configuration Wizard

27 0672323834 Index 4/19/02 2:22 PM Page 364

downloading, 28
Employees table, modi-

fying, 45, 207-212
stored procedures,

adding, 200
viewing in Enterprise

Manager, 201
ODBC (Open DataBase

Connectivity), 7, 61-62
OLE DB (Object Linking

and Embedding for
DataBases), 7, 57

Oracle, connecting to in
C# or Visual Basic .NET,
60

order lists, code, 141-149
queries

binding to DataGrid
Web control, 72-74

code, 44-47
Query Execution Plan,

326-327
records

DataReader object,
96-100

retrieving with
ADO.NET code, 92

relational, relationships,
14

Required Field control,
code, 325-326

schemas, 14, 31
SQL (Structured Query

Language), records
C# code, 81-89
code to delete, 84-85
VB .NET code, 78-88

SQL Server 2000, retriev-
ing XML (eXtensible
Markup Language) with
C#, 130-131

tables
creating, 42
indexes, analyzing,

327-328
primary keys, 14
relationships, 43

transactions, saving, 250
values, retrieving, 72-73

DataBind() method, 71, 322
DataBinder.Eval() method,

137, 162
(Databindings) node of text

box property, 283
DataColumn object, 9,

16-17
DataConnection object, 107,

174
DataFormatString property,

141
DataGrid object

binding (complex), Get
Customer Forms applica-
tion, 119

controls
adding, 116-118
class hierarchies for

data binding, 106
code example, 139-140
column appearance,

defining, 141
database order list,

code, 141-149
definition, 106
properties, 111

DataSet object, displaying,
71

list controls, 138-145,
152-154, 162-165

recordset objects, display-
ing, 225

Web controls, 23
bound to XML

(eXtensible Markup
Language) 126

databases queries,
binding, 72-74

DataGridPageChangedEvent-
Args object, 165

DataList object
list controls, 146-149,

158-161
Products.aspx Web form,

code to add links, 306
DataReader object, 10-11

Close() method, 95
data

binding to Web con-
trols, code, 94-95

retrieval methods, 100
and DataAdapter object,

comparing, 91-93
and DataSet object,

comparing, 320
database fields, retrieving

with C# code, 98-99
with VB .NET code,

96-97
database records, 96-100
GetOrdinal() method, 96,

99-100
IEnumerable interface, 96
instances, getting

with C# code, 94
with VB .NET code,

93-94
instantiating, 93-94
limitations, 100-101
Read() method, 96-100
results, binding to Web

controls, 94-95

DataReader object

How can we make this index more useful? Email us at indexes@samspublishing.com

365

27 0672323834 Index 4/19/02 2:22 PM Page 365

DataRelation object, 45
DataRelationCollection,

46-52
DataTables objects,

relationships, 46-47
employees and projects,

displaying, 52
DataRelationCollection,

46-52
DataRows object, 9, 17-18
DataSet class

adding, 106-108
consuming from Web

services, 336-339
contents, viewing,

127-128
creating, 113-115,

124-127
DiffGram, definition or

code (XmlWriteMode
object), 129

filling with ADO recordset
223-225

IgnoreSchema code
(XmlWriteMode object),
129

ListBox control, binding,
117-118

populating, code, 108, 118
ReadXml() method, 125
recordset objects, filling,

225
returned by

GetAllSuppliers() Web
service, consuming, 340

sending with Web ser-
vices, 332-334

serializing to XML
(eXtensible Markup
Language) files, 127-129

text boxes, binding,
109-110

transmitting with Web
services, 331

types, 267-283
values, comparing against

databases for optimistic
concurrency, 188-192

WriteSchema code
(XmlWriteMode object),
129

writing to XML
(eXtensible Markup
Language) files, 128-129

XmlWriteMode object,
129

/d[ataset] directive, XSD.exe
(XML Schema Definition
tool), 273

DataSet object, 8-9, 13-15
constraints, 40, 45
contents, viewing

in C#, 69-71
in VB .NET, 70-71

database queries, code,
45-47

and DataReader object,
comparing, 320

DataRelation object, 45-52
DataTable object, 16-17,

47-51
displaying in DataGrid

object, 71
filling with, 68-71
functionality, 46
instantiating, 15
Join operator, 44-45
relationships, 39-44, 47-52
RowError property, error

handling, 178-181
schemas, creating, 15-17

datasets
Customers DataSet, code

to add RowError condi-
tion, 178

refreshing with buttons,
175

filling, 175
generating for forms, 175
instances, adding to forms,

174
updating, code, 257-258

DataSource property, 111
DataTable object, 9, 13

adding to DataSet object,
16

adding or deleting, 17-25
DataColumns object,

adding, 16-17
dtEmployees table, adding

rows, 17-18
paging through with

DataGrid object, 165
relationships, 46-51

DateAdd(datepart, number,
date) function, 35

Datediff(datepart, start-
date, enddate) function,
36

dates, SQL (Structured
Query Language) func-
tions (built-in), 35-36

Day() function, 36
declaring stored procedure

parameters, 207
defining

column appearances, 141
connection strings, code,

230-231
XML Schema file, code,

271-272
definitions

concurrency, 183
DataGrid controls, 106
deserialization, 127
DiffGram, 129
list controls, 105
namespaces, 290

366 DataRelation object

27 0672323834 Index 4/19/02 2:22 PM Page 366

serialization, 127
text box controls, 105

DELETE
command, 257-258
statement, 32-34

deleting
data

from databases, 83-86
to DataTable object,

17-25
with DELETE

statement, 32-34
records from SQL

(Structured Query
Language) databases,
84-86

rows from Employee
table, code, 34

deserialization, definition,
127

designers
Forms Designer, 109
Visual Studio .NET

Component Designer,
Customers.xsd file, 280

Windows Form Designer,
260-26

designing ADO.NET error
handling, 168

development. See tiered
development

diagrams
Northwind database, 41
Create Database Diagram

Wizard, 41-42
dialog boxes

Add Dataset, 281
Advanced SQL

Generation Options,
260-261

Choose Your Data
Connection, 106, 112,
174, 279

Edit Relation, 113-114
Generate the SQL

Statements, 107, 112,
174, 279-280

IP Address and Domain
Name Restrictions, 20

New Project, 106, 111,
174, 278

View Wizard Results, 260
DiffGram

blocks, 181
code

XmlReadMode argu-
ment, 127

XmlWriteMode object,
129

definition, 129
optimistic concurrency

violations, 181
XML (eXtensible Markup

Language)
format, optimistic con-

currency, 194-195
persisted row errors,

181
Direction property, stored

procedures, 207
directions for stored proce-

dure parameters, setting,
207

directives
WebService, 332
XSD.exe (XML Schema

Definition tool), 273-274
directories

24Hours virtual, 20
virtual, 19-20
Virtual Directory Creation

Wizard, 19
disconnected data access

objects (ADO.NET), 216
display controls. See list

controls

Display Estimated
Execution Plan command
(Query menu), 326

displaying
automatically generated

commands, code, 259
database schemas in

Microsoft SQL
Enterprise Manager, 31

DataSet object in
DataGrid object, 71

employees and projects,
52

SQL (Structured Query
Language) code in
CommandBuilder object,
259

DisplayMember/DataMember
property, 111

DLLs
(Northwind.DataAccess
ActiveX DLL) code for
legacy usage, 219-221

documents, XML
(eXtensible Markup
Language), tags, 123-124

DOS prompt, connection
pooling (Visual Basic
code), 234-235

downloading
Microsoft .NET

Framework, 11
Microsoft Web

Application Stress Tool,
328

.NET Framework Class
Browser, 4

Northwind database, 28
ODBC .NET provider, 61
productdetails.aspxm

code, 149
SOAP (Simple Object

Access Protocol), 8

downloading

How can we make this index more useful? Email us at indexes@samspublishing.com

367

27 0672323834 Index 4/19/02 2:22 PM Page 367

DSN (Data Source Name),
creating for ODBC (Open
Database Connectivity)
data source, 61-62

dtEmployees table, adding
rows, 17-18

E

edit product link (Product
List screen), 307

Edit Product links, 310
Edit Relation dialog box,

113-114
EditItemStyle, 162
editors

Code Editor tab (Windows
Form Designer), generat-
ed code, 260-263

Product Editor screen,
311, 316

ProductEditor.aspx Web
Form, code, 307-315

XML Schema, 113-116
Employee_Add stored pro-

cedure, 252
Employees table

(Northwind database)
adding to Northwind

database Employees
table, 207-212

constraints, 45
dtEmployees table, rows,

adding, 17-18
employees, adding,

207-212
GetAllEmployees()

method, 221-225
LastName column, 33

names, changing with
UPDATE statement,
32-33

projects, displaying, 52
records, retrieving, 28
rows, code to delete, 34

Enlist keyword, 230
Enterprise Manager

database schemas, display-
ing, 31

Northwind database, 201
stored procedures,

creating, 202
entries

adding to trace informa-
tion, 321

in connection pools,
creating, 229-230

Eraserver Web site, 11
error handling

ADO.NET, 167-181
Catch block, 170
connections, 173
manipulating, 173
exception argument, 170
Finally block, 170
messages (SQL),

Customer Inquiry form,
177

validation, Customer
Inquiry form, 178

XML (eXtensible Markup
Language) persisted
rows, 181

events, 179-180, 314
exceptions

ADO.NET error handling,
168

arguments, error handling,
170

mechanisms, ADO.NET
error handling, 169

Refresh Failed, Customer
Inquiry form, 176

validating, Customer
Inquiry form, 179

ExecuteNonQuery()
method, 77-89, 212

ExecuteReader() method,
204-205, 295

ExecuteScalar() method,
code to retrieve database
values, 72-73

ExecuteXmlReader()
method, 131

executing stored proce-
dures, 204-206

execution plans, viewing
SQL (Structured Query
Language), 327

Exp(expr) function, 36
explicitly setting

SelectCommand property,
256

eXtensible Markup
Language. See XML

extensions of files
.cs, 337
.css, 152
.vb, 337

F

F5 key, 28
fields of databases, retriev-

ing
with C# code, 98-99
with VB .NET code, 96-97

File menu commands, New,
106, 111, 174

368 DSN

27 0672323834 Index 4/19/02 2:22 PM Page 368

files
ADO24HRS.css file

classes, code to add,
155

contents, modifying,
152

.cs extension, 337

.css extension, 152
Customers.xsd, Visual

Studio .NET Component
Designer, 280

CustOrdDS.xsd, schema,
113-115

ProductsDB.vb, recompil-
ing namespaces, 306

.vb, 337
XML (eXtensible Markup

Language)
DataSets, 124-129
Schema, 269-272

XSD.exe (XML Schema
Definition tool)

/d[ataset] directive, 273
/l[anguage] directive,

273
/n[amespace] directive,

273
DataSet class, typed,

273-275
Fill() method, 68-71,

223-225
FillError events, 180
filling

DataSet objects, 68-71
datasets, 175

filtering data with SELECT
statement, 29

Finally block, error han-
dling, 170

finding application bottle-
necks, 322-324

folders, bin (compiled
assemblies), 293

FooterTemplate, 156
FOR XML AUTO mode

(XML information
retrieval), 130

FOR XML EXPLICIT
mode (XML information
retrieval), 130

FOR XML RAW mode
(XML information
retrieval), 130

foreign keys
child columns, 46
columns, sharing names,

47
formats

DiffGram XML
(eXtensible Markup
Language), optimistic
concurrency, 194-195

hierarchical for 123
formatting ASP.NET list

controls
CSS (cascading style

sheets), 151-155
DataGrid, 162-165
DataList, 158-161
Repeater, 156-158

forms. See also Web forms;
Windows Forms

buttons, adding, 282
Customer Inquiry, execu-

tion (successful),
177-179

datasets
generating, 175
instances, adding, 174

Get Customer Forms
application

complex DataGrid
binding, 119

simple binding, 110
labels, adding, 282

products
detail Web form, 301
list Web form, loaded

with data from
assembly, 295

text boxes, adding, 282
typed DataSet class

instances, adding, 281
Visual Studio .NET Form,

Data Toolbox
SqlDataAdapter object,
107, 278

Forms Designer, 109
Fragment code

(XmlReadMode argu-
ment), 127

frameworks, .NET, 227, 321
functionality, DataSet

object, 46
functions

Abs(expr), 36
Cos(expr), 36
Count() SQL, 72
DateAdd(datepart, num-

ber, date), 35
Datediff(datepart,

startdate, enddate), 36
Day(), 36
Exp(expr), 36
Getdate(), 30
Left(), 34-35
Len(string), 35
Log(expr), 36
lower(), 35
Lower(string), 35
LTrim(string), 35
mathematical (built-in),

36-37
Month(), 36
Pi(), 37
Rand([seed]), 37
Reverse(string), 35
Right(), 34-35

functions

How can we make this index more useful? Email us at indexes@samspublishing.com

369

27 0672323834 Index 4/19/02 2:22 PM Page 369

RTrim(string), 35
Sin(expr), 37
SQL (Structured Query

Language) (built-in)
dates, 35-36
mathematical, 36-37
strings, 34-35

Sqrt(expr), 37
Square(expr), 37
Tan(expr), 37
upper(), 35
Upper(string), 35
Year(), 36

G

Generate Dataset command
Data menu, 113, 174
Schema menu, 281

Generate the SQL
Statements dialog box,
107, 112, 174, 279-280

GenerateCompanyData-
Table() method, 52

GenerateProjectDataTable()
method, 52

generating
automatically generated

commands, 255, 321
CommandBuilder

object, 257-263
criteria, 256-257
displaying, code, 259
optimistic concurrency

model, 256
DataSet class, typed, 268-

272, 280-281
Get Customer button, 108

Get Customer Forms appli-
cation

complex DataGrid bind-
ing, 119

simple binding, 110
Get..Command() methods,

259
GetAllEmployees() method,

221-225
GetAllProducts() method,

291, 295
GetAllSuppliers()

method, 333-334, 337
Web Service, 335-340

GetAndBindData() method,
transactions, 245, 249

GetBoolean() method, 100
GetByte() method, 100
GetChar() method, 100
Getdate() function, 30
GetDateTime() method, 100
GetDecimal() method, 100
GetDouble() method, 100
GetEnumerator method, list

controls, 135
GetErrors method, 178
GetFloat() method, 100
GetGuid() method, 100
GetInt16() method, 100
GetInt32() method, 100
GetInt64() method, 100
GetOrdinal() method, 96,

99-100
GetPage method, 165
GetString() method, 100
GetXml() method, 128
global constants, connection

strings, 292
granularity, locking (data-

base management system),
187

H

handlers,
SqlRowUpdatedEvent-
Handler (optimistic
concurrency), 192

harness, test
ADO.NET code, 20-25
C# code, 22-23
VB .NET code, 21-22

HasErrors property, 178
<head> tag, 152
HeaderTemplate, 156
hierarchies

ADO.NET object model, 9
classes, 105-106
data formats, 123

HTML (Hypertext Markup
language)

<head> tag, 152
<TABLE> tag, 154
<TD> tag, 154

HyperLinkColumn, 142,
162

hyperlinks
code to add to

Products.aspx Web form
DataList, 306

Edit Product, 310
edit product (Product List

screen), 307

I

Icollection property, 111
IDs, User ID connection

string property, 58
IEnumerable interface

(DataReader object), 96,
134-135

370 functions

27 0672323834 Index 4/19/02 2:22 PM Page 370

Ienumerable property, 111
IgnoreSchema code

XmlReadMode argument,
127

XmlWriteMode object,
129

IIS administrative console,
managing virtual directo-
ries and Web sites, 19

IList property, 111
importing

System.Data namespace
into Web forms, 92

System.Data.SqlClient
namespace into Web
forms, 92

type libraries, 222-223
Index Tuning Wizard,

327-328
InferSchema code

(XmlReadMode argu-
ment), 127

infinity symbol (∞), 40
information

automatically generated
for Web services,
334-335

user, specifying, 57
Initial Catalog connection

string property, 58
INNER JOIN, 145
input parameters of stored

procedures, code, 203-204
INSERT

command, 257-258
statement, 31-32, 78

INSERT INTO keyword, 32
inserting data into databas-

es, ExecuteNonQuery()
method, 78-83

installing
Microsoft .NET

Framework, 11
Web sites on Windows

2000, 18
instances

of Connection object,
creating, 61

of DataReader object,
getting

with C# code, 94
with VB .NET code,

93-94
datasets, adding to forms,

174
Suppliers class, creating,

337
typed DataSet class,

adding to forms, 281
instantiating

Command object, code, 67
Connection object, code,

67
DataAdapter object, code,

68
DataReader object, 93-94
DataSet objects, 15

Intensity Software Web site,
downloading .NET
Framework Class
Browser, 4

interfaces
IEnumerable (DataReader

object), 96, 134-135
System.Web.UI.WebContr

ols namespace, 111
Internet Services Manager.,

18
InvalidOperationException,

transactions, 241
Invoke button, 334

invoking GetAllSuppliers()
Web service, 335

IP Address and Domain
Name Restrictions dialog
box, 20

isolation levels, concurrency
models, 183

ItemTemplate, 156

J

join operations, table
columns, 44

Join operator
database queries, code, 44
DataSet object, 44-45
syntax, 44

K

keys
F5, 28
foreign, 46-47
primary, 14, 46-47

keywords
Connection Lifetime, 229
Connection Reset, 230
connection-string, 229-230
Enlist, 230
INSERT INTO, 32
Max Pool Size, 230-231
Min Pool Size, 230-231
new, 16
Pooling, 230
Provider, 57
T-SQL (Transact-SQL),

capitalizing, 29
VALUES, 32

keywords

How can we make this index more useful? Email us at indexes@samspublishing.com

371

27 0672323834 Index 4/19/02 2:22 PM Page 371

L

labels
adding to forms, 282
creating, 108
Web controls, 23

/l[anguage] directive,
XSD.exe (XML Schema
Definition tool), 273

languages. See HTML;
XML

LastName column, 33
layers

data access,
SqlDataReader object,
295

presentation, updating
product 306

Left() function, 34-35
legacies, Visual Basic 6.0

(Northwind database),
data access component,
218-225

Len(string) function, 35
levels of isolation, concur-

rency models, 183
libraries

.NET Framework class
library, 104

type, importing, 222-223
links. See hyperlinks
list controls, 133. See also

controls
ASP.NET, formatting,

151-155
class hierarchies for data

binding, 105
commonality of, 134
data

binding, 103-105
complex binding in

Windows Forms,
111-118

simple binding in
Windows Forms,
106-111

DataGrid control, 138
AutoGenerateColumns

property, 162
ButtonColumn

property, 162
code example,

139-140, 152-153
code to page, 163-164
column appearance,

defining, 141
database order list,

code, 141-149
EditItemStyle, 162
formatting, 162-165
HyperLinkColumn

property, 162
paging, 163-165
stylesheets, code, 154
TemplateColumn

property, 162
DataList control, 146-149,

159-162
definition, 105
GetEnumerator method,

135
IEnumerable interface,

134-135
properties, 111
purpose, 134
Repeater, 135-138,

156-158
System.Web.UI.Web-

Controls namespace, 159
ListBox control

adding, 116-118
binding to DataSet classes,

117-118

Northwind Employees
table, code to delete
records, 83-85

property specifications,
117

listings, products in
ProductsDB assembly,
291-292. See also code

lists
of categories

code to generate,
136-137

code to return 137-138
database orders, code,

141-149
Product List page, 149

LoadData() method, 300,
307

LoadDataGrid() method,
140, 223-225, 322, 337

loaded Web forms, 99
loading databases with

325-326
LoadTestData stored

procedure, 325-326
locating application bottle-

necks, 322-324
locking granularity,

database management
systems, 187

Log(expr) function, 36
lower() function, 35
Lower(string) function, 35
LTrim(string) function, 35

M

Main method, stacks, 169
MainHeader class, adding

to ADO24HRS.css file,
155-156

372 labels

27 0672323834 Index 4/19/02 2:22 PM Page 372

managed providers,
System.Data.OleDb, 320

management systems, data-
bases (locking granularity),
187

managers
Enterprise Manager, 31,

201
Internet Services Manager,

18
SQL Server Service

Manager, 176
managing

database connections, 320
virtual directories, 19
Web sites, 19

manipulating errors, 173
markup languages.

See XML
mathematical built-in func-

tions, SQL (Structured
Query Language), 36-37

Max Pool Size keyword,
230-231

mechanisms, exceptions for
ADO.NET error handling,
169

members,
DisplayMember/Data-
Member property, 111

messages, SQL (Structured
Query Language) errors,
(Customer Inquiry form),
177

methods
Add(), 16
AddNew(), 314
AddProduct(), 312-314
BeginTransaction(), 240-

241, 245
Button, 109
Close()

Connection object,
57-58

DataReader object, 95
Commit(), transactions,

246, 249
Connection object, 57
data retrieval (DataReader

object), 100
DataBind(), 71, 322
DataBinder.Eval(), 137,

162
ExecuteNonQuery, 77,

212
deleting data from

databases, 83-86
inserting data into

databases, 78-83
modifying data in

databases, 86-89
ExecuteReader(),

204-205, 295
ExecuteScalar(), code to

retrieve database values,
72-73

ExecuteXmlReader(), 131
Fill(), 68-71, 223-225
GenerateCompanyData.-

Table(), 52
GenerateProjectDataTable

(), 52
Get..Command(), 259
GetAllEmployees(),

221-225
GetAllProducts(), 291,

295
GetAllSuppliers(),

333-334, 337
GetAndBindData(),

transactions, 245, 249
GetBoolean(), 100
GetByte(), 100
GetChar(), 100
GetDateTime(), 100

GetDecimal(), 100
GetDouble(), 100
GetEnumerator, list con-

trols, 135
GetErrors, 178
GetFloat(), 100
GetGuid(), 100
GetInt16(), 100
GetInt32(), 100
GetInt64(), 100
GetOrdinal(), 96, 99-100
GetPage, 165
GetString(), 100
GetXml(), 128
LoadData(), 300, 307
LoadDataGrid(), 223-225,

322, 337
Main, stacks, 169
MoveToNextAttribute(),

131
Open(), 57, 241
Page Load, 52, 71
Page_Load(), 140
Product Update, 311
Read(), 96-100
ReadString(), 131
ReadXml(), 125-127
Rollback(), transactions,

242-246
Save(), transactions,

246-249
Server.CreateObject(),

222-225
String.Format(), 141
Throw(), transactions,

245
Trace.Write(), 321
UpdateProducts middle-

tier, code, 304-306
UpdateProducts(), 306,

311
WriteXML(), 125
WriteXmlSchema, 283

methods

How can we make this index more useful? Email us at indexes@samspublishing.com

373

27 0672323834 Index 4/19/02 2:22 PM Page 373

Microsoft
Access. See Access
.NET Framework. See

.NET Framework
SQL Enterprise Manager.

See Enterprise Manager
SQL Server. See SQL

Server
Web Application Stress

Tool, downloading, 328
Web site, downloading

ODBC .NET provider,
61

Microsoft .NET Web
Services, 340

middle-tier methods,
UpdateProducts, code,
304-306

Min Pool Size keyword,
230-231

models
ADO.NET object, hierar-

chy, 9
concurrency, isolation

levels, 183
.NET tiered development,

289
optimistic concurrency,

automatically generated
commands, 256

modes, XML (eXtensible
Markup Language) infor-
mation retrieval, 130

modifying database 77,
86-89

monitors, Performance
Monitor

connection pools, 232, 236
counters, adding to the

console, 234
Month() function, 36
movements of visual

representations, 301

MoveToNextAttribute()
method, 131

MSSQL$NetSDK:General
Statistics performance
objects, connection pool-
ing, 235

multiuser data access, 184

N

names
of columns, 47, 257
DSN (Data Source Name),

creating for ODBC
(Open Database
Connectivity) data
source, 61-62

LastName column, 33
of tables, special charac-

ters, 257
valid contacts, retrieving

from Customers table,
283

/n[amespace] directive,
XSD.exe (XML Schema
Definition tool), 273

namespaces
ADO24HRS, compiling

for assemblies, 292-293
classes, 4
definition, 290
recompiling, 306
System.Data, 5, 8-9, 92
System.Data.OleDb, 10-

11, 58, 225
System.Data.OleDbClient,

6-7
System.Data.SqlClient, 6,

58-59, 225, 290, 320
importing into Web

forms, 92
objects, 10-11

System.Web.UI.WebControls,
list controls, 159

navigating DataSet object
relationships, 47-52

.NET
CLR Data performance

objects, connection pool-
ing, 234-235

data providers, connection
pooling, 227-228

tiered development model,
289

.NET Framework, 3
ADO.NET, 4-11
Class Browser, download-

ing, 4
classes

browser application,
4-5

browser entry for
SqlCommand object,
67

library, base classes,
104

connection pooling, 227
downloading, 11
Eraserver Web site, 11
SDK, downloading, 321
System.Data.SqlDbType

class, 6
New command (File menu),

106, 111, 174
new keyword, 16
New Project dialog box,

106, 111, 174, 278
nodes (Databindings) of text

box property, 283
Northwind database

data
access component,

Visual Basic 6.0 lega-
cy, 218-219, 223-225

retrieving from data
sources, 66

374 Microsoft

27 0672323834 Index 4/19/02 2:22 PM Page 374

DataAccess ActiveX DLL,
legacy usage code, 219-
221

diagram, 41
downloading, 28
Employees table

constraints, 45
employees, adding,

207-212
records, code to delete,

83-85
stored procedures, adding,

200
viewing in Enterprise

Manager, 201
N-tier applications

modifying, 303
development, 288
product data

adding, 311-316
updating, 303-311

O

Object Linking and
Embedding for DataBases
(OLE DB), 7

objects
ADO.NET, 9, 15
ASP.NET Cache, code,

329
BindingContext, binding

data to list controls,
104-105

Command, 10, 65-68,
77-89

CommandBuilder,
256-263

Connection, 10, 57-61, 66
CurrencyManager, binding

data to list controls,
104-105

custom, replacing single
rows of 295-301

data access (ADO.NET),
disconnected, 216

Data Toolbox
SqlDataAdapter (Visual
Studio .NET Form), 107,
278

DataAdapter, 10
filling DataSet object

with Fill() method,
68-71

instantiating, code, 68
records, retrieving with

ADO.NET code, 92
DataColumn, 9, 16-17
DataConnection, 107, 174
DataGrid

displaying DataSet
object, 71

Web control, binding
databases queries,
72-74

DataGridPageChanged-
EventArgs, 165

DataReader, 10-11, 91-101
DataRelation, 45-52
DataRow, 9, 17-18
DataSet, 8-9, 13-15

constraints, 40, 45
contents, viewing, 69-

71
database queries, code,

45-47
DataRelation object,

45-52
DataTable object,

|16-17, 46-51
displaying in DataGrid

object, 71
filling with

DataAdapter Fill()
method, 68-71

functionality, 46
instantiating, 15
Join operator, 44-45
relationships, 39-44,

47-52
RowError property,

error handling,
178-181

schemas, creating,
15-17

DataTable, 9, 13
adding to DataSet

object, 16
adding or deleting,

17-25
DataColumns object,

adding, 16-17
dtEmployees table,

adding rows, 17-18
relationships, 46-51

deserialization, definition,
127

MSSQL$NetSDK:General
Statistics performance,
connection pooling, 235

.NET CLR Data perfor-
mance, connection pool-
ing, 234-235

OdbcConnection, DSN
(Data Source Name), 61

OleDbConnection, 56
recordsets, filling DataSets

and displaying in
DataGrids, 225

serialization, definition,
127

SqlCommand
.NET Framework class

browser entry, 67
SqlConnection object,

using together, 66
SqlConnection, 56, 66

objects

How can we make this index more useful? Email us at indexes@samspublishing.com

375

27 0672323834 Index 4/19/02 2:22 PM Page 375

SQLDataAdapter,
106-107, 174

SqlDataReader, data
access layer, 295

SqlTransaction, 241
System.Data namespace,

8-9
System.Data.OleDb name-

space, 10-11
System.Data.SqlClient

namespace, objects,
10-11

Trace, 323
XmlWriteMode, 129

ODBC (Open Database
Connectivity), 7, 61-62

OdbcConnection object,
DSN (Data Source Name),
61

OLE DB (Object Linking
and Embedding for
DataBases), 7

Access databases, 59-60
connection strings, Web

site, 59
data providers, 57
data sources, connecting

to, 59
.NET data provider,

connection pools, 231-
235

Oracle databases, 60
OleDbConnection object, 56
On Error construct

ADO.NET error handling,
171-173

code, 172
OnRowUpdated subroutine,

192
Open Database

Connectivity (ODBC), 7,
61-62

Open() method, 57, 241
operators, Join, 44-45
optimistic concurrency, 183

clients, 185-186
coding, 187-188
DataSet values, comparing

against databases,
188-192

DiffGram XML format,
194-195

model, automatically
generated commands,
256

multiusers, 185-186
and pessimistic con-

currency, comparing,
184-187

SqlRowUpdatedEvent-
Handler handler, 192

timestamp columns,
192-194

TSEQUAL update syntax,
194

violations, DiffGram, 181
XML (eXtensible Markup

Language), 194-195
ZERO records, 192

optimizing
ADO.NET code, 319-321
data access, 319

Oracle databases, connect-
ing to in C# or Visual
Basic .NET, 60

order lists of databases,
code, 141-149

orders
and customers relation-

ship, XML Schema
editor, 116

CustomersOrders relation,
Edit Relation dialog box,
114

Orders table
and Customers table,

relationships, 271
typed Dataset, XML

Schema file, code,
270-271

output parameters, stored
procedures, 204

overloading constructors,
67-68

P

Page Load() event, 314
Page_Load() method, 52,

71, 140
pages, Product List, 149
paging, DataGrid list

control
code, 163-164
through DataTable, 165

parameters, stored proce-
dures, 206-212

CustomerID, code, 203-
204

input, code, 203-204
output, 204

Parameters collection, 207
parent columns, primary

keys, 46
parsers, XML (eXtensible

Markup Language), 124
Password connection string

property, 58
performance

MSSQL$NetSDK:General
Statistics performance
objects, connection pool-
ing, 235

376 objects

27 0672323834 Index 4/19/02 2:22 PM Page 376

.NET CLR Data perfor-
mance objects, connec-
tion pooling, 234-235

Performance Monitor
connection pools, 232, 236
counters, adding to the

console, 234
permissions, Access

Permissions screen, 20
pessimistic concurrency

clients, 186-187
and optimistic con-

currency, comparing,
184-187

Pi() function, 37
platforms, cross-platform

style sheets (reference
guides Web site), 155

Play button, 28
Pooling keyword, 230
pooling. See connection

pools
populating DataSets, code,

108, 118, 282
presentation layer

data courses, two-tier
development, 78

product updating, 306
primary key columns, 14

names, sharing, 47
parent, 46

procedures. See stored pro-
cedures

Product Add stored proce-
dure, code, 311-312

Product Editor screen, 311,
316

Product List
page, 149
screen, edit product link,

307

Product_Update method,
311

Product Update stored pro-
cedure, code, 304

ProductDetails custom class,
code, 297

productdetails.aspx, code to
download, 149

ProductEditor.aspx Web
Form, code, 307-310,
312-315

products
data

adding, 311-316
retrieving through

assemblies, code,
293-300

updating, 303-311
detail Web form, 301
Edit Product links, 310
list page, wiring to

ProductsDB assembly,
293-295

list Web form, loaded with
data from assembly, 295

listings in ProductsDB
assembly, code, 291-292

Product List screen, edit
product link, 307

Products.aspx Web form
Create New Product

button, code, 315
DataList, code to add

links, 306
ProductsDB assembly

product list page, wiring
to, 293-295

product listings, code,
291-292

ProductsDB.vs file, recom-
piling namespaces, 306

Profiler, connection pools,
232

Project menu commands,
Add Existing Item, 280

projects
creating in VS .NET, 106,

111, 278
and employees, display-

ing, 52
System.Data.SqlClient

namespace, 59
Visual Studio .NET,

adding Web references,
339

prompts, DOS, connection
pooling (Visual Basic
code), 234-235

properties
AutoGenerateColumns

(DataGrid list control),
162

ButtonColumn (DataGrid
list control), 162

CommandType, stored
procedures, 206

Connection object, 57
of connection strings,

56-58
ConnectionString, 57
Database, 57
DataFormatString, 141
DataGrid controls, 111
DataSource, 111
Direction, stored proce-

dures, 207
DisplayMember/DataMem

ber, 111
HasErrors, 178
HyperLinkColumn

(DataGrid list control),
162

Icollection, 111

properties

How can we make this index more useful? Email us at indexes@samspublishing.com

377

27 0672323834 Index 4/19/02 2:22 PM Page 377

Ienumerable, 111
IList, 111
Initial Catalog, 58
list controls, 111
ListBox control, specifica-

tions, 117
Password, 58
Provider, 57
RowError (DataSet

object), error handling,
178-181

SelectCommand, explicitly
setting, 256

Server, 58
stylesheets, Web browser

supporting, 155
TemplateColumn

(DataGrid list control),
162

text box, (Databindings)
node, 283

trace=”true,” 321-323
Transaction, 241
User ID, 58
Value, stored procedures,

207
protocols, SOAP (Simple

Object Access Protocol), 8,
336

Provider keyword or
property, 57

providers
of choosing, 320-321
managed,

System.Data.OleDb, 320
proxy classes

compiling, 337
creating, 336

Q

queries
databases

binding to DataGrid
Web control, 72-74

querying, code, 44-47
executing, 28
Query Execution Plan,

326-327
UPDATE, 304

Query Analyzer (SQL)
databases, 29, 324-328
stored procedures, 29,

201-203
Query Execution Plan,

326-327
Query menu commands

Display Estimated
Execution Plan, 326

Index Tuning Wizard, 327
QuickStart tutorials Web

site, 4
quotation marks, single (‘’),

T-SQL (Transact-SQL)
strings, 30

R

Rand([seed]) function, 37
Read() method

(DataReader object),
96-100

readers, XmlReader,
129-131

reading XML (eXtensible
Markup Language), 124

ReadSchema code
(XmlReadMode argu-
ment), 127

ReadString() method, 131
ReadXml() method,

125-127
recompiling namespaces,

306
records

adding to SQL (Structured
Query Language) data-
bases

with C# code, 81-82
with VB .NET code,

78-81
databases, DataReader

object, 96-100
deleting from SQL

(Structured Query
Language) databases

with C# code, 85-86
with VB .NET code,

83-85
Employees table

deleting, 83-85
retrieving, 28

retrieving with ADO.NET
code, 92

updating in SQL
(Structured Query
Language) databases

with C# code, 88-89
with VB .NET code,

87-88
ZERO, optimistic concur-

rency, 192
recordsets

ADO, accessing from
ADO.NET, 218-220

COM interoperability,
221-222

DataSets, filling with
ADO recordset 223-
225

378 properties

27 0672323834 Index 4/19/02 2:22 PM Page 378

Server.CreateObject()
method, 223

type libraries, import-
ing, 222-223

objects, filling DataSets
and displaying in
DataGrids, 225

table columns, join opera-
tions, 44

references
guides for cross-platform

stylesheets, Web site,
155

Web, adding to Visual
Studio .NET projects,
339

Refresh
button, 176
command, 259

Refresh Failed exception,
Customer Inquiry form,
176

refreshing
automatically generated

code, 260
dataset data with buttons,

175
relational databases, rela-

tionships, 14
relations, CustomersOrders

(Edit Relation dialog box),
114

relationships
adding to DataSet object,

39
ADO.NET objects, 15
between tables, creating,

40-43
child columns, 46
Create Relationship

screen, 43
customers and orders,

XML Schema editor,
116

Customers and Orders
tables, 271

database tables, 43
DataRelation object, 45

DataRelationCollection,
46-52

DataTables objects,
46-47

employees and pro-
jects, displaying, 52

DataSet object, 40-44
constraints, 45
database queries, code,

45-47
DataRelation object,

45-52
DataTables objects,

relationships, 46-51
functionality, 46
Join operator, 44-45
navigating, 47-52

DataTables objects, 46-51
infinity symbol (∞), 40
Join operator

database queries, code,
44

syntax, 44
parent columns, 46
relational databases, 14

removing. See deleting
Repeater list controls, 135

AlternatingItemTemplate,
156

category lists, code
generating, 136-137
returning 137-138

FooterTemplate, 156
formatting, 156-158
HeaderTemplate, 156
ItemTemplate, 156
SeparatorTemplate, 156
templates, code, 156-158

representations, visual (data
movements), 301

Required Field control,
code, 325-326

resources, Microsoft .NET
Web Services, 340

retrieving
data

Command object,
65-68

constructor overload,
67-68

from data sources, 65
database, retrieving

values, 72-73
DataSet object, filling,

68-71
errors, 173
methods (DataReader

object), 100
with SELECT state-

ment, 28-31
product data through

assemblies, code,
293-300

records with ADO.NET
code, 92

XML (eXtensible Markup
Language)

from SQL Server 2000
in C#, 130-131

with XmlReadMode
argument, 126-127

Return statement,
GetAllProducts() method,
295

returning rows, UPDATE
statement, 180

Reverse(string) function,
35

Right() function, 34-35
ROLLBACK TRAN SQL

statement, 252

ROLLBACK TRAN SQL statement

How can we make this index more useful? Email us at indexes@samspublishing.com

379

27 0672323834 Index 4/19/02 2:22 PM Page 379

Rollback() method, trans-
actions, 242-246

rolling back transactions,
242-252

routines, OnRowUpdated
subroutine, 192

RowError condition, adding
to Customers DataSet,
code, 178

RowError property
(DataSet object), error
handling, 178

DataAdapter events,
179-180

FillError events, 180
RowUpdated events, 180
RowUpdating events, 180
XML (eXtensible Markup

Language) persisted row
errors, 181

rows
adding to dtEmployes

table, 17-18
DataRow object, 9, 17-18
deleting from Employee

table, code, 34
single rows of replacing

with custom objects,
295-301

UPDATE statement,
returning in, 180

RowUpdated events, 180
RowUpdating events, 180
RTrim(string) function, 35

S

Save() method, transac-
tions, 246-249

saving transactions, 246-250

scenarios, binding to list
controls, 105-106

Schema menu commands,
Generate DataSet, 281

schema.owner.table, special
characters, 257

schemas
CustOrdDS.xsd

schema file, 113-114
XML Schema file,

114-115
databases, 14, 31
DataSet object, creating,

15-17
DataTable object, adding

DataColumns object,
16-17

XML Schema editor,
113-116

screens
Access Permissions, 20
Create Relationship, 43
Edit Product links, 310
Product Editor, 311, 316
Product List, edit product

link, 307
Web services information,

automatically generated,
334

SDK (.NET Framework),
downloading, 321

security, connection pools,
232-233

“SELECT *” command,
321

SELECT statement
changes in, 259-260
retrieving, 28-31
syntax, 28

SelectCommand,
CommandBuilder object,
257

semicolon (;), 56

sending DataSets with Web
services, 332-334

SeparatorTemplate, 156
serialization or deserializa-

tion, definition, 127
serializing DataSets to XML

(eXtensible Markup
Language) files, 127-129

Server connection string
property, 58

Server.CreateObject()
method, 222-225

servers
ASP.NET server controls,

System.Web.UI.Control
base class, 104

SQL Server
connecting to, 58-59
data adapters, creating,

106
data connections,

creating, 106
data sources, connect-

ing to, 58-59
execution plans,

viewing, 327
FOR XML AUTO

mode (XML informa-
tion retrieval), 130

FOR XML EXPLICIT
mode (XML
information retrieval),
130

FOR XML RAW mode
(XML information
retrieval), 130

mathematical func-
tions, 36

Northwind database,
28, 41

Server Service
Manager, 176

380 Rollback() method

27 0672323834 Index 4/19/02 2:22 PM Page 380

System.Data.SqlDbType
class, 6

table relationships, cre-
ating, 40-43

white spaces, 30
XmlReader, 130-131

services. See Web services
sharing column names, 47
simple data binding

buttons, creating, 108
data adapters or connec-

tions, adding, 106-108
data to list controls, 104
DataSets

adding, 106-108
populating, code, 108
text boxes, binding,

109-110
Get Customer Forms

application, 110
labels, creating, 108
projects, creating in VS

.NET, 106
testing, 110-111
text boxes, creating, 108

Simple Object Access
Protocol (SOAP), 8, 336

simulations, application
traffic, 328

Sin(expr) function, 37
single quotation marks (‘’),

T-SQL (Transact-SQL)
strings, 30

sites. See Web sites
sizes of connection pools,

231
slashes, \ (backslash), C#

strings, 59
SOAP (Simple Object

Access Protocol), 8, 336

software, Intensity Software
Web site, downloading
.NET Framework Class
Browser, 4

Solutions Explorer,
CustOrdDS.xsd schema
file, 113-114

source code, Customers.VB,
273

sources. See data sources
special characters, 257
specifications, ListBox

control properties, 117
SQL (Structured Query

Language), 27. See also
T-SQL

code, displaying in
CommandBuilder object,
259

connection string options,
58

Count() SQL function, 72
error messages, Customer

Inquiry form, 177
functions (built-in)

dates, 35-36
mathematical, 36-37
strings, 34-35

Initial Catalog connection
string property, 58

INSERT statement, 78
Password connection

string property, 58
Query Analyzer, data-

bases, 324-328
SELECT statement,

syntax, 28
statements

columns, code to specify,
30

generating automatically,
256

records, code, 78-89

SelectCommand
property, explicitly

setting, 256
UPDATE statement

columns, code to
update, 33

employees’ names,
changing, 32-33

syntax, 32
User ID connection string

property, 58
SQL Enterprise Manager

database schemas, display-
ing, 31

Northwind database, 201
stored procedures, creat-

ing, 202
SQL Query Analyzer

databases, 29, 324-328
stored procedures, 29,

201-203
SQL Server

connecting to
C# code, 58
Visual Basic .NET

code, 59
connection string property,

58
data

adapters or connec-
tions, creating, 106

sources, connecting to,
58-59

execution plans, viewing,
327

FOR XML AUTO mode
(XML information
retrieval), 130

FOR XML EXPLICIT
mode (XML information
retrieval), 130

SQL Server

How can we make this index more useful? Email us at indexes@samspublishing.com

381

27 0672323834 Index 4/19/02 2:22 PM Page 381

FOR XML RAW mode
(XML information
retrieval), 130

mathematical functions,
36

Northwind database
diagram, 41
downloading, 28

Service Manager, 176
System.Data.SqlDbType

class, 6
table relationships, creat-

ing, 40-43
white spaces, 30
XmlReader, 130-131

SqlCommand object
.NET Framework, class

browser entry, 67
SqlConnection object,

using together, 66
SqlCommandBuilder, code

to update datasets, 258
SqlConnection object, 56, 66
SQLDataAdapter object,

106-107, 174
SqlDataReader object

data access layer, 295
data sources, 100

SqlRowUpdatedEventHandler
handler, optimistic concur-
rency, 192

SqlTransaction object, 241
Sqrt(expr) function, 37
Square(expr) function, 37
stacks, Main method, 169
standards, XML Schema

definition language (Web
site), 268

statements
DELETE

deleting, 32-34
rows, code to delete

from Employee table,
34

generating with Data
Adapter Configuration
Wizard, 260

INSERT, 31-32, 78
Return, GetAllProducts()

method, 295
ROLLBACK TRAN SQL,

252
SELECT

changes in, 259-260
retrieving, 28-31
syntax, 28

SQL (Structured Query
Language)

columns, code to specify,
30

generating automatically,
256

records, code, 78-89
SelectCommand prop-

erty, explicitly set-
ting, 256

Throw, ADO.NET error
handling, 173

Try/Catch/Finally,
ADO.NET error han-
dling, 170

UPDATE
columns, code to

update, 33
updating, 32-34
employees’ names,

changing, 32-33
rows, returning, 180
syntax, 32

stored procedures, 199
@ (at symbol), 203
@@IDENTITY variable,

209
adding to Northwind data-

base, 200
benefits, 200
calling, code, 206-211
Categories_Get, 138
code example, 200-201
creating with Enterprise

Manager, 202
Customer GetByID, 207
CustomerID parameter,

code, 203-204
Customers Get, code,

204-205
code to return, 137-138
Direction property, 207
Employee_Add, 252
ExecuteNonQuery()

method, 212
executing

code, 204-205
CommandType property,

206
ExecuteReader()

method, 204-205
input parameters, code,

203-204
LoadTestData, 325-326
Northwind database

Employees table, adding
employees, 207-212

output parameters, 204
parameters, 206-207
Parameters collection, 207
Product Add, code, 311-

312
Product Update, code, 304
Query Analyzer, 202-203
testing, 201

382 SQL Server

27 0672323834 Index 4/19/02 2:22 PM Page 382

transactions
@EmployeeID vari-

able, 252
ROLLBACK TRAN

SQL statement, 252
rolling back to saved

points, code, 250-252
Value property, 207

String.Format() method,
141

strings
{0:c}, 141
{0:d}, 141
C#, \ (backslash), 59
connection

code to define, 230-231
global constants, 292
Initial Catalog property,

58
OLE DB data

providers, 57
OLE DB, Web site, 59
options, 58
Password property, 58
properties, 56-58
Server property, 58
User ID property, 58
user information, spec-

ifying, 57
Connection Lifetime key-

word, 229
Connection Reset key-

word, 230
connection-string key-

words, 229-230
ConnectionString property,

57
Enlist keyword, 230
Max Pool Size keyword,

230
Min Pool Size keyword,

230

Pooling keyword, 230
SQL (Structured Query

Language) functions
(built-in), 34-35

T-SQL (Transact-SQL), ‘ ‘
(single quotation marks),
30

Structured Query
Language. See SQL

structures,
Try/Catch/Finally

ADO.NET error handling,
169-171

code, 170-171
Windows Forms applica-

tion, 174-177
styles, EditItemStyle, 162
stylesheets,. See also CSS

application pages, 155
cross-platform, reference

guides (Web site), 155
DataGrid list control,

code, 154
properties, Web Browser

supporting, 155
Web forms, 155

subroutines,
OnRowUpdated, 192

suppliers (Northwind
Database), code to return,
332-333

Suppliers class, creating
instances, 337

symbols, codes, 35
syntax. See code
System.Data namespace, 5

DataColumn object, 9
DataRow object, 9
DataSet object, 9
DataTable object, 9
importing into Web forms,

92
objects, 8

System.Data.OleDb
managed provider, 320
namespace, 58, 225

Command object, 10
Connection object, 10
DataAdapter object, 10
DataReader object,

10-11
System.Data.OleDbClient

namespace, 6-7
System.Data.SqlClient

namespace, 6, 58-59, 225,
290, 320

Command object, 10
Connection object, 10
DataAdapter object, 10
DataReader object, 10-11
importing into Web forms,

92
System.Data.SqlDbType

class, 6
System.Web.UI.Control

base class, 104
System.Web.UI.WebControls

namespace
classes, 111
list controls, 159

System.Windows.Forms.
Control base class, 104

T

<TABLE> tag, 154
tables

automatically generated
commands, criteria, 256

columns
appearances, defining,

141
BoundColumn control,

141

tables

How can we make this index more useful? Email us at indexes@samspublishing.com

383

27 0672323834 Index 4/19/02 2:22 PM Page 383

child, 46
code to specify, 30
DataFormatString

property, 141
HyperLinkColumn,

142
join operations, 44
names, 47, 257
parent, 46

Customers
DataSet XML

(eXtensible Markup
Language)

and Orders, relation-
ships, 271

timestamp column,
code, 193

typed Dataset, XML
Schema file (code),
269-271

valid contact names,
retrieving, 283

database schemas, 14
in databases, creating, 42
DataColumns object,

adding to DataTable
object, 16-17

DataRows object, adding
rows to dtEmployees
table, 17-18

DataSet class (typed),
code to generate, 272

DataSet object, 14
DataTable object,

adding, 16
instantiating, 15
schemas, creating,

15-17
DataTable object, 9

adding to DataSet
object, 16

adding or deleting,
17-25

DataColumns object,
adding, 16-17

dtEmployees table,
adding rows, 17-18

relationships, 46-51
dtEmployees, rows,

adding, 17-18
Employees

constraints, 45
employees, adding,

207-212
records, code to delete,

83-85
records, retrieving, 28
rows, code to delete,

34
foreign key columns,

names, sharing, 47
indexes, analyzing,

327-328
LastName column, 33
names, special character,

257
Orders (typed Dataset),

XML Schema file
(code), 270-271

primary key columns,
sharing names, 47

primary keys, 14
queries, executing, 28
Query Analyzer, 29
relationships

creating, 40-43
infinity symbol (∞), 40

schema.owner.table,
special characters, 257

single rows of replacing
with custom objects,
295-301

timestamp columns
ANSI-SQL 92 and

higher, 192

Customers table, code,
193

optimistic concurrency,
192-194

Tabor, Robert, 340
tags

<head>, 152
<TABLE>, 154
<TD>, 154
<XML>, 123-124

Tan(expr) function, 37
<TD tag>, 154
TemplateColumn property

(DataGrid list control),
162

templates
AlternatingItemTemplate,

156
FooterTemplate, 156
HeaderTemplate, 156
ItemTemplate, 156
Repeater list control, code,

156-158
SeparatorTemplate, 156

test harness
ADO.NET code, 20-25
C# code, 22-23
VB .NET code, 21-22

testing
applications with typed

DataSet class, 283
code in Web forms, 18-25
complex data binding in

Windows Forms, 118
simple data binding in

Windows Forms, 110-
111

stored procedures with
Query Analyzer, 201-202

Web services, 334
Windows Forms applica-

tion, Try/Catch/Finally
structure, 176-177

384 tables

27 0672323834 Index 4/19/02 2:22 PM Page 384

text box property,
(Databindings) node, 283

text boxes
adding to forms, 282
binding

to DataSets, 109-110
to typed DataSet class,

282-283
controls, 105
creating, 108

three-tier development,
product data

adding, 311-316
updating, 303-311

Throw statement,
ADO.NET error handling,
173

Throw() method, transac-
tions, 245

tiered development
data access, 287

assemblies, creating,
290-301

implementing, 290
tiers, number of, 289
two-tier applications,

288
.NET tiered development

model, 289
N-tier, 288
three-tier, product data

adding, 311-316
updating, 303-311

tiers
number of, 289
three-tier development,

product data
adding, 311-316
updating, 303-311

two-tier applications, 288
UpdateProducts middle-

tier method, code,
304-306

timestamp columns
ANSI-SQL 92 and higher,

192
Customers table, code,

193
optimistic concurrency,

192-194
/t:library directive, 274
Toolbox

Data tab, 106, 112, 278
Windows Forms tab, 108,

116, 281
tools

Microsoft Web
Application Stress Tool,
downloading, 328

XML Schema Definition
(XSD.exe), typed
DataSet class, 273-275

Trace object, 323
Trace.Write() method, 321
trace=”true” property,

321-323
tracing information

applications, finding
bottlenecks, 322-324

entries, adding, 321
Trace object, 323
trace=”true” property,

321-323
traffic, simulating in appli-

cations, 328
Transact-SQL. See T-SQL
Transaction property, 241
transactions

component, 240
Connection object240-249
Employee_Add stored

procedure, 252
examples, 240
InvalidOperationException,

241

rolling back to saved
points, code, 246-252

saving, 250
stored procedures,

250-252
transmitting DataSets with

Web services, 331
Try/Catch/Finally statement

structure
ADO.NET error handling,

169-171
code, 170-171
Windows Forms applica-

tion, 174-177
TSEQUAL update syntax,

optimistic concurrency,
194

T-SQL (Transact-SQL), 27.
See also SQL

case sensitivity, 29
DELETE statement

deleting, 32-34
rows, code to delete

from Employee table,
34

INSERT statement, adding
31-32

keywords, capitalizing, 29
Microsoft SQL Server,

white spaces, 30
Northwind database,

downloading, 28
SELECT statement,

retrieving 28-31
SQL (Structured Query

Language) built-in func-
tions, 34

dates, 35-36
mathematical, 36-37
strings, 34-35

statements, code to specify
columns, 30

T-SQL

How can we make this index more useful? Email us at indexes@samspublishing.com

385

27 0672323834 Index 4/19/02 2:22 PM Page 385

strings, ‘‘ (single quotation
marks), 30

UPDATE statement, 32-34
tutorials, QuickStart Web

site, 4
24Hours virtual directory,

20
two-tier applications, 288
two-tier development (data

sources), 78
type libraries, importing,

222-223
typed DataSet class, 267

annotations, 275-277
applications, testing, 283
controls, adding to display

281-282
generating, 268-272,

280-281
instances, adding to forms,

281
populating, code, 282
text boxes, binding,

282-283
VB code, 274-275
VS .NET, 277-279
XML Schema definition

language standards, Web
site, 268

XSD.exe (XML Schema
Definition tool), 273-275

U

UPDATE
command, 258
query, 304
statement, 32-34, 180

UpdateProducts middle-tier
method, code, 304-306

UpdateProducts() method,
306, 311

updating
columns, code, 33
data, 32-34
datasets, code, 257-258
employees’ name changes,

32-33
product 303-311
records in SQL

(Structured Query
Language) databases

with C# code, 88-89
with VB .NET code,

87-88
upgrading ADO to

ADO.NET, 216-218
upper() function, 35
Upper(string) function, 35
User ID connection string

property, 58
user information, specify-

ing, 57
users, concurrency

optimistic, 185-186
pessimistic, 186-187

utilities, wsdl.exe, analyzing
Web services, 337

V

Validate button, 178
validations

exceptions (Customer
Inquiry form), 179

error-handling (Customer
Inquiry form), 178

Value property, stored
procedures, 207

values
of data (original and cur-

rent), code to compare,
189-191

of databases, retrieving
with ExecuteScalar()
method, code, 72-73

DataSets, comparing
against databases for
optimistic concurrency,
188-192

stored procedure parame-
ters, 207

VALUES keyword, 32
variables

@@IDENTITY, 209
@EmployeeID, 252

VB (Visual Basic)
components, compiling,

219
connections

pooling, 233-235
strings, defining,

230-231
legacy, data access compo-

nent, 218-219, 223-225
Web services, returning

Northwind database
suppliers, 332-333

.vb file, 337
VB .NET (Visual Basic

.NET)
Access databases, con-

necting to, 60
DataReader object

database fields, retriev-
ing, 96-97

instances, code to get,
93-94

DataSet object
contents, viewing,

70-71

386 T-SQL

27 0672323834 Index 4/19/02 2:22 PM Page 386

serializing to XML
(eXtensible Markup
Language) files,
128-129

Oracle databases, connect-
ing to, 60

SQL Servers, connecting,
59

SQL (Structured Query
Language) databases,
records

adding, 78-81
deleting, 83-85
updating, 87-88

test harness, code to cre-
ate, 21-22

typed DataSets class code,
274-275

Web form, code, 23-24
View Wizard Results dialog

box, 260
viewing

DataSet contents, 127-128
in C#, 69-71
in VB .NET, 70-71

SQL Server execution
plans, 327

violations, optimistic con-
currency (DiffGram), 181

virtual directories
IP Address and Domain

Name Restrictions dialog
box, 20

managing, 19
24Hours, 20

Virtual Directory Creation
Wizard, 19

Visual Basic. See VB
Visual Basic .NET. See VB

.NET
visual representations, data

movements, 301

VS .NET (Visual Studio
.NET)

Component Designer,
Customers.xsd file, 280

DataSet class, typed,
277-283

Enterprise Architect, auto-
matically generated com-
mands, 255

Form, Data Toolbox
SqlDataAdapter object,
107, 278

projects
creating, 106, 111
Web references,

adding, 339
Windows Form Designer,

automatically generated
commands, 260-263

W

Web browsers
Add Web Reference, 338-

339
class browser application,

4-5
.NET Framework, class

browser entry for
SqlCommand object, 67

stylesheet properties,
supporting, 155

Web controls. See controls
Web forms. See also forms;

Windows Forms
code, testing, 18-25
creating, 337
DataGrid Web controls, 23
DataList list control, code

to format, 161-162

label Web controls, 23
loaded, 99
ProductEditor.aspx, code,

307-315
Products.aspx

Create New Product
button, code, 315

DataList, code to add
links, 306

products
details, 301
lists, loaded with data

from assembly, 295
stylesheets, 155
System.Data namespace,

importing, 92
System.Data.SqlClient

namespace, 59, 92
transactions, rolling back,

245
VB .NET code, 23-24
Web controls, bound,

92-93
Web references, adding to

Visual Studio .NET pro-
jects, 339

Web services
analyzing with wsdl.exe

utility, 337
creating, 332
DataSets

consuming, 336-339
sending, 332-334
transmitting, 331

GetAllSuppliers()
consuming, code,

337-338
DataSets, consuming,

340
invoking, 335

information screens,
automatically generated,
334-335

Web services

How can we make this index more useful? Email us at indexes@samspublishing.com

387

27 0672323834 Index 4/19/02 2:22 PM Page 387

Northwind Database,
returning suppliers

in C# code, 333
in Visual Basic code,

332-333
testing, 334

Web sites
configuring, 20
creating, 18-20
cross-platform style

sheets, reference guides,
155

Eraserver, 11
installing on Windows

2000, 18
Intensity Software, down-

loading .NET
Framework Class
Browser, 4

managing, 19
Microsoft

.NET Framework, 4,
11, 321

ODBC .NET provider,
downloading, 61

Web Application Stress
Tool, downloading,
328

Northwind database,
downloading, 28

ODBC .NET provider,
downloading, 61

OLE DB connection
strings, 59

QuickStart tutorials, 4
SOAP (Simple Object

Access Protocol), 8
WebService directive, 332
white spaces, Microsoft

SQL Server, 30

wildcards, * (asterisk), 30
Windows 2000, installing

Web sites, 18
Windows Form Designer,

VS .NET code, automati-
cally generated com-
mands, 260-263

Windows Forms. See also
forms; Web forms

complex data binding,
111-118

controls, client-side, 104
simple data binding, 106-

111
tab (Toolbox), 108, 116,

281
Try/Catch/Finally struc-

ture, 174-177
wiring product list page to

ProductsDB assembly,
293-295

wizards
Create Database Diagram

Wizard, 41-42
Data Adapter

Configuration, 279-280
Data Adapter

Configuration Wizard,
106, 112, 174, 260-261,
279

Index Tuning Wizard,
327-328

Virtual Directory Creation
Wizard, 19

WriteSchema code
(XmlWriteMode object),
129

WriteXml() method, 125
WriteXmlSchema method,

283

writing DataSets to XML
(eXtensible Markup
Language) files, 128-129

wsdl.exe utility, analyzing
Web services, 337

X

XML (eXtensible Markup
Language), 194

Customer table (DataSet
XML), code to generate
typed DataSet class, 272

CustOrdDS.xsd XML
Schema file, 114-115

data in hierarchical for-
mats, 123

DataGrid Web control,
bound, 126

DataSets, viewing con-
tents, 127-128

deserialization, definition,
127

DiffGram, 129, 194-195
documents, tags, 123-124
files, DataSets, 124-129
IgnoreSchema code

(XmlWriteMode object),
129

information retrieval, 130
optimistic concurrency,

194-195
parser, 124
persisted row errors, 181
reading, 124
ReadXml() method,

125-126

388 Web services

27 0672323834 Index 4/19/02 2:22 PM Page 388

retrieving
from SQL Server 2000

in C#, 130-131
with XmlReadMode

argument, 126-127
Schema

code for definition,
271-272

Customers table typed
DataSet, code,
269-271

definition language
standards, Web site,
268

Definition tool
(XSD.exe), DataSet
class, typed, 273-275

editor, 113-116
Orders table typed

DataSet, code,
270-271

serialization, definition,
127

WriteSchema code
(XmlWriteMode object),
129

XmlReader, 129-131
XmlWriteMode object,

129
Web site, Schema defini-

tion language standards,
268

XmlReader, 129-131
XmlReadMode argument,

126-127
XmlWriteMode object, 129
XSD.exe (XML Schema

Definition tool)
/d[ataset] directive, 273
DataSet class, typed,

273-275

/l[anguage] directive, 273
/n[amespace] directive,

273

Y-Z

Year() function, 36

ZERO records, optimistic
concurrency, 192

ZERO records, optimistic concurrency

How can we make this index more useful? Email us at indexes@samspublishing.com

389

27 0672323834 Index 4/19/02 2:22 PM Page 389

	Sams Teach Yourself ADO.NET in 24 Hours
	Copyright © 2002 by Sams Publishing
	Contents at a Glance
	Contents
	About the Authors
	Tell Us What You Think!

	Introduction
	Conventions Used in This Book

	HOUR 1 Introducing the Microsoft .NET Framework and ADO.NET
	The Microsoft .NET Framework Class Library
	What Is ADO.NET?
	ADO.NET Versus ADO
	The System.Data Namespace
	The System.Data.SqlClient and System.Data.OleDb Namespaces
	Installing the Microsoft .NET Framework
	Summary
	Q&A
	Workshop

	HOUR 2 Working with DataSets and DataTables
	Crash Course on Database Schema
	DataSet Overview
	Creating DataSet Schema
	Adding and Removing Data
	Summary
	Q&A
	Workshop

	HOUR 3 Using T-SQL: A Crash Course
	Retrieving Data with SELECT
	Adding New Data with INSERT
	Modifying Data with UPDATE and DELETE
	Using the Built-in SQL Functions
	Summary
	Q&A
	Workshop

	HOUR 4 Adding Relationships to DataSets
	Database Relationships and Constraints
	The DataRelation Object
	The DataSet Relations Collection
	Summary
	Q&A
	Workshop

	HOUR 5 Connecting to a Data Source
	The Connection Object
	Connecting to Various Data Sources
	ODBC (Open Database Connectivity)
	Connection Pooling
	Summary
	Q&A
	Workshop

	HOUR 6 Retrieving Data from the Data Source
	The Command Object
	Filling a DataSet with the DataAdapter
	Retrieving a Single Value from the Database
	Summary
	Q&A
	Workshop

	HOUR 7 Modifying Database Data
	Using ExecuteNonQuery()
	Summary
	Q&A
	Workshop

	HOUR 8 Using the DataReader and DataAdapter
	DataReader Versus DataAdapter
	Instantiating the DataReader
	Binding DataReader Results to a Web Control
	Stepping Through Data with the DataReader
	Limitations of the DataReader
	Summary
	Q&A
	Workshop

	HOUR 9 Binding Data to List Controls
	Binding Data to Controls
	Simple Data Binding in Windows Forms
	Complex Data Binding in Windows Forms
	Summary
	Q&A
	Workshop

	HOUR 10 Working with XML
	What Is XML?
	Reading XML
	Creating a DataSet from an XML File
	Serializing DataSets to XML
	Using XmlReader
	Summary
	Q&A
	Workshop

	HOUR 11 Using the Built-In ASP.NET List Controls
	Some General Notes About List Controls
	Working with the Repeater
	Working with the DataGrid
	Working with the DataList
	Summary
	Q&A
	Workshop

	HOUR 12 Formatting ASP.NET List Controls
	A Quick Overview of CSS
	Formatting the Repeater
	Formatting the DataList
	Formatting the DataGrid
	Summary
	Q&A
	Workshop

	HOUR 13 Handling ADO.NET Errors
	Using Formal Error Handling (Ready, “Catch”!)
	Typical Errors to Handle
	Using RowError of the DataSet
	Summary
	Q&A
	Workshop

	HOUR 14 Managing ADO.NET Concurrency
	Optimistic Versus Pessimistic Concurrency
	Coding for Optimistic Concurrency
	Comparing DataSet Values Against the Database for Optimistic Concurrency
	Using a Timestamp for Optimistic Concurrency
	XML and Optimistic Concurrency
	Summary
	Q&A
	Workshop

	HOUR 15 Working with Stored Procedures
	What Are Stored Procedures?
	Executing a Stored Procedure
	Using Parameters
	Summary
	Q&A
	Workshop

	HOUR 16 ADO Upgrade Concerns
	General Upgrade Issues from ADO to ADO.NET
	Accessing an ADO Recordset from ADO.NET
	Summary
	Workshop

	HOUR 17 Using Connection Pooling
	What Is Connection Pooling?
	OLE DB .NET Data Provider
	Summary
	Q&A
	Workshop

	HOUR 18 Working with Transactions
	What Is a Transaction?
	Transactions and ADO.NET
	Transactions with Stored Procedures
	Summary
	Q&A
	Workshop

	HOUR 19 Using Automatically Generated Commands
	Automatically Generated Commands
	Using the CommandBuilder
	Summary
	Q&A
	Workshop

	HOUR 20 Working with Typed DataSets
	The Typed DataSet
	Generating a Typed DataSet
	Typed DataSets in Visual Studio .NET
	Summary
	Q&A
	Workshop

	HOUR 21 Optimizing Data Access Using Tiered Development
	What Is Tiered Development?
	Implementing Tiered Development
	Creating Your Own Assembly
	Summary
	Q&A
	Workshop

	HOUR 22 Modifying Data in an N-Tier Application
	Updating Product Data
	Adding Product Data
	Summary
	Q&A
	Workshop

	HOUR 23 Optimizing Data Access
	Optimizing ADO.NET Code
	ASP.NET Tracing
	Improving Your Queries with the SQL Query Analyzer
	Simulating Application Traffic
	Data Caching
	Summary
	Q&A
	Workshop

	HOUR 24 Transmitting DataSets Using Web Services
	Sending a DataSet Using Web Services
	Consuming a DataSet from a Web Service
	Summary
	Q&A
	Workshop

	APPENDIXA
	Hour 1
	Hour 2
	Hour 3
	Hour 4
	Hour 5
	Hour 6
	Hour 7
	Hour 8
	Hour 9
	Hour 10
	Hour 11
	Hour 12
	Hour 13
	Hour 14
	Hour 15
	Hour 16
	Hour 17
	Hour 18
	Hour 19
	Hour 20
	Hour 21
	Hour 22
	Hour 23
	Hour 24

	INDEX

