

800 East 96th St., Indianapolis, Indiana, 46240 USA

Dan Fox

ADO.NET
in 21 Days

Teach Yourself

00 3869 fm 5/20/02 1:24 PM Page i

Sams Teach Yourself ADO.NET
in 21 Days
Copyright 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-67232-386-9

Library of Congress Catalog Card Number: 2001099342

Printed in the United States of America

First Printing: July 2002

05 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of programs
accompanying it.

EXECUTIVE EDITOR

Michael Stephens

ACQUISITIONS EDITOR

Kim Spilker
Sondra Scott

DEVELOPMENT EDITOR

Shannon Leuma

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Elizabeth Finney

PRODUCTION EDITOR

Michael Henry

INDEXER

Sandra Henselmeier

PROOFREADER

Abby VanHuss

TECHNICAL EDITOR

Chris Thibodeaux
Doug Ellis

TEAM COORDINATOR

Lynne Williams

MULTIMEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

PAGE LAYOUT

Cheryl Lynch
Michelle Mitchell

00 3869 fm 5/20/02 1:24 PM Page ii

Contents at a Glance
Introduction 1

WEEK 1 At a Glance 5

Day 1 ADO.NET in Perspective 7

2 Getting Started 27

3 Working with DataSets 53

4 DataSet Internals 81

5 Changing Data 109

6 Building Strongly Typed Dataset Classes 131

7 XML and the DataSet 157

WEEK 1 In Review 185

WEEK 2 At a Glance 187

Day 8 Understanding .NET Data Providers 189

9 Using Connections and Transactions 215

10 Using Commands 245

11 Using Data Readers 269

12 Using Data Adapters 293

13 Working with SQL Server 329

14 Working with Other Providers 361

WEEK 2 In Review 399

WEEK 3 At a Glance 401

Day 15 Using ADO.NET in a Multi-Tier Application 403

16 ADO.NET in the Presentation Services Tier 417

17 ADO.NET in the Data Services Tier 449

18 Building a Data Factory 485

19 ADO.NET and XML Web Services 513

20 Performance and Interoperation 533

21 Futures and Wrap Up 553

WEEK 3 In Review 567

Index 569

00 3869 fm 5/20/02 1:24 PM Page iii

Table of Contents
Introduction 1

WEEK 1 At a Glance 5

DAY 1 ADO.NET in Perspective 7

Microsoft Data Access Technologies ..7
The Long Road to ADO.NET ..8
The Web Grows Up ..12

ADO.NET Design Goals ..14
It Efficiently Supports a Multi-Tiered Programming Model14
It Deeply Integrates XML Standards ..15
It Leverages Current ADO Knowledge ..15
It Combines Relational and Object-Oriented Paradigms16
It Reduces Programming Errors ..16

ADO.NET in .NET ..17
Managed Code Review ..17
The System.Data Namespace ..21
A Note About Language Choice ..25

Summary ..25
Workshop ..25

Quiz ..25
Exercise ..26

DAY 2 Getting Started 27

ADO.NET in Visual Studio .NET ..27
Using the Server Explorer ..28
Creating a Data Adapter ..31
Creating a DataSet ..35
Viewing the Code ..37
Creating the User Interface ..38

ADO.NET in Code ..46
Making a Connection ..46
Setting Up a Command ..47
Configuring a Data Adapter ..50

Summary ..51
Workshop ..51

Quiz ..51
Exercise ..52

Answers for Day 2 ..52
Exercise Answer ..52

00 3869 fm 5/20/02 1:24 PM Page iv

DAY 3 Working with DataSets 53

Understanding the ADO.NET DataSet ..54
Populating a DataSet ..57

Traversing a DataSet ..60
Selecting Data ..63

Manipulating Multiple DataSets ..66
Copying and Cloning ..67
Merging DataSets ..69

Using a DataView ..72
Creating a DataView ..73
Sorting and Filtering ..74
Finding Rows ..75
Capturing Changes ..75
Managing Multiple Views ..77

Summary ..78
Workshop ..79

Quiz ..79
Exercise ..79

Answers for Day 3 ..80
Exercise Answer ..80

DAY 4 DataSet Internals 81

Data Table Structure ..82
Dealing with Rows ..87
Manipulating Columns ..90

Constraints ..99
Applying Unique Constraints ..99
Specifying Primary Keys ..99
Using Foreign Key Constraints and Relations ..100

Extended Properties ..103
Summary ..105
Workshop ..105

Quiz ..106
Exercise ..106

Answers for Day 4 ..107
Exercise Answer ..107

DAY 5 Changing Data 109

Making Modifications ..110
Understanding Row States ..110
Understanding Row Versions ..113
Revisiting DataViews ..116
Retrieving Changes ..118

00 3869 fm 5/20/02 1:24 PM Page v

vi Sams Teach Yourself ADO.NET in 21 Days

Handling Changes ..125
Using AcceptChanges ..126
Using RejectChanges ..126

Summary ..127
Workshop ..128

Quiz ..128
Exercise ..128

Answers for Day 5 ..129
Exercise Answer ..129

DAY 6 Building Strongly Typed DataSet Classes 131

Strongly Typed DataSet Classes Defined ..132
Purpose and Goals ..133
Creating and Populating ..134
Versioning and Sharing ..146

DataSet Serialization ..148
Passing DataSets ..148
Persisting to Disk ..151

Summary ..154
Workshop ..154

Quiz ..154
Exercise ..155

Answers for Day 6 ..155
Exercise Answer ..155

DAY 7 XML and the DataSet 157

Writing Data as XML ..158
Affecting the XML Format ..161

Creating the XSD Schema ..163
Creating the Schema Dynamically ..168

Using a DataSet as XML ..179
Summary ..183
Workshop ..183

Quiz ..183
Exercise ..184

Answers for Day 7 ..184
Exercise Answer ..184

WEEK 1 In Review 185

WEEK 2 At a Glance 187

00 3869 fm 5/20/02 1:24 PM Page vi

Contents vii

DAY 8 Understanding .NET Data Providers 189

Provider Architecture ..190
Provider Functionality ..194

Data Adapter ..194
Connection ..196
Transaction ..197
Permissions ..198
Command ..201
Data Reader ..204
Parameter ..207
Error and Exception ..209

Summary ..211
Workshop ..212

Quiz ..212
Exercise ..212

Answers for Day 8 ..212
Exercise Answer ..212

DAY 9 Using Connections and Transactions 215

Opening Connections and Handling Events ..216
Opening Connections ..216
Handling Events ..217

Specifying Connection Strings ..219
Specifying Connection Strings with SqlClient ..220
Specifying Connection Strings with OleDb ..223

Storing Connection Strings ..224
Storing Connection Strings for Serviced Components225
Storing Connection Strings for ASP.NET Applications227

Pooling Connections ..229
Connection Pooling with SqlClient ..230
Connection Pooling with OleDb ..233

Using Transactions ..234
Transactions with SqlClient ..235
Transactions with OleDb ..238
Transactions in Serviced Components ..238

Summary ..241
Workshop ..241

Quiz ..242
Exercise ..242

Answers for Day 9 ..242
Exercise Answer ..242

00 3869 fm 5/20/02 1:24 PM Page vii

viii Sams Teach Yourself ADO.NET in 21 Days

DAY 10 Using Commands 245

Using Command Objects ..246
Using Stored Procedures Versus Dynamic SQL ..246
Retrieving Data ..248
Modifying Data ..257
Controlling the Command ..259

Handling Parameters ..260
Handling Input Parameters ..260
Handling Output Parameters and Return Values ..263

Summary ..265
Workshop ..265

Quiz ..265
Exercise ..266

Answers for Day 10 ..266
Exercise Answer ..266

DAY 11 Using Data Readers 269

Data Reader Characteristics ..270
Traversing a Data Reader ..273

Retrieving Single Values ..274
Retrieving Multiple Values ..279

Advanced Features ..282
Retrieving the Schema ..282
Using a Data Reader Polymorphically ..283
Returning Multiple Result Sets ..284

Summary ..289
Workshop ..290

Quiz ..290
Exercise ..290

Answers for Day 11 ..291
Exercise Aswer ..291

DAY 12 Using Data Adapters 293

Retrieving Data ..294
Schema Generation ..296
Table Mappings ..297
Advanced Retrieval ..301

Updating a Data Store ..307
The Update Process ..307
Isolation and Concurrency ..316
Command Builders ..324

Summary ..325

00 3869 fm 5/20/02 1:24 PM Page viii

Workshop ..325
Quiz ..325
Exercise ..326

Answers for Day 12 ..326
Exercise Answer ..326

DAY 13 Working with SQL Server 329

SqlClient Internals ..330
Using Tabular Data Stream ..330

Database Design ..332
Schema Design ..333
Stored Procedure Layer Design ..346
Index Design ..351
Security ..352

Alternative Data Access Techniques ..353
Server-Side Cursors ..353
SQLXML ..355

Summary ..358
Workshop ..358

Quiz ..358
Exercise ..359

DAY 14 Working with Other Providers 361

Accessing ODBC Data Sources ..362
Opening Connections ..364
Creating Commands ..366
Using the Odbc Provider ..367

Building a .NET Data Provider ..370
Deciding to Implement a Provider ..371
Exploring Alternatives to Implementing a Provider372
Choosing an Approach to Implementing a Provider373
Implementing a Provider: The ComputeBooks Provider374

Summary ..396
Workshop ..396

Quiz ..396
Exercise ..397

Answers for Day 14 ..397
Exercise Answer ..397

WEEK 2 In Review 399

WEEK 3 At a Glance 401

Contents ix

00 3869 fm 5/20/02 1:24 PM Page ix

DAY 15 Using ADO.NET in a Multi-Tier Application 403

The Multi-Tiered Architecture ..404
Relation to Physical Tiers ..407
Benefits of a Multi-Tier Approach ..410

ADO.NET in Context ..411
The External View ..411
The Internal View ..413

Summary ..414
Workshop ..415

Quiz ..415
Exercise ..415

DAY 16 ADO.NET in the Presentation Services Tier 417

Windows Forms Applications ..418
Using Data Binding ..418
Validating Controls ..429

Web Forms Applications ..431
Using Data Binding ..431
Storing Object State ..437
Validating Controls ..442

Summary ..446
Workshop ..446

Quiz ..446
Exercise ..447

Answers for Day 16 ..447
Exercise Answer ..447

DAY 17 ADO.NET in the Data Services Tier 449

Using an Abstract Base Class ..450
Creating a Base Class ..450
Handling Serviced Components ..457

Designing Data Access Classes ..461
Design Issues ..461
Abstracting Providers ..470
Returning Custom Objects ..476

Summary ..481
Workshop ..482

Quiz ..482
Exercise ..483

Answers for Day 17 ..483
Exercise Answer ..483

x Sams Teach Yourself ADO.NET in 21 Days

00 3869 fm 5/20/02 1:24 PM Page x

DAY 18 Building a Data Factory 485

Creating a Data Factory ..486
Abstracting the Provider ..488
Abstracting the Statement ..493
Using the DataFactory ..506
Measuring Performance ..509

Summary ..509
Workshop ..510

Quiz ..510
Exercise ..510

Answers for Day 18 ..510
Exercise Answer ..510

DAY 19 ADO.NET and XML Web Services 513

Exposing Data Through a Web Service ..514
XML Web Services Technology ..514
Building the Data Access Method ..515
Building the Web Service ..517

Consuming Data in a Web Service ..521
Using VS .NET ..522
Updating Data Through a Web Service ..530

Summary ..530
Workshop ..530

Quiz ..530
Exercise ..531

Answers for Day 19 ..531
Exercise Answer ..531

DAY 20 Performance and Interoperation 533

Performance and Scalability Optimizations ..534
Query Techniques ..534
Database Techniques ..536
Managed Code Techniques ..537

Interoperating with ADO ..545
Reading ADO Recordset Data ..545

Summary ..548
Workshop ..549

Quiz ..549
Exercise ..550

Answers for Day 20 ..550
Exercise Answer ..550

Contents xi

00 3869 fm 5/20/02 1:24 PM Page xi

DAY 21 Futures and Wrap Up 553

Programming SQL Server .NET ..554
Hosting the Common Language Runtime ..554
Accessing Data ..555

Using ObjectSpaces ..558
Creating the Persistent Class ..559
Creating the Mapping Files ..561
Querying the Customer ..562
Updating the Customer ..563

Summary and Final Thoughts ..565
Workshop ..565

Quiz ..565
Exercise ..566

WEEK 3 In Review 567

Index 569

00 3869 fm 5/20/02 1:24 PM Page xii

About the Author
Dan Fox is a Technical Director for Quilogy in Overland Park, Kansas. Quilogy
(www.quilogy.com) is a leading Microsoft Gold Certified Partner and Solution Provider.

Dan is a Microsoft Certified Solutions Developer, Systems Engineer, and Trainer who
has been a consultant, instructor, and managing consultant on a variety of projects. In his
role as a Technical Director, Dan provides technical guidance to Quilogy’s consultants
and customers.

Before joining Quilogy in 1995, Dan worked for Chevron in Houston, Texas, and the
National Association of Insurance Commissioners in Kansas City, Missouri. Dan got his
B.S. in computer science from Iowa State University in 1991.

Dan has been a columnist for .NET Magazine and a frequent contributor to the Visual
Basic Programmer’s Journal and Visual Studio Magazine and has written numerous arti-
cles for SQL Server Magazine, Advisor journals, MSDN Magazine, and InformIT.com.
He authored the books Building Distributed Applications with Visual Basic .NET and
Pure Visual Basic from Sams and coauthored a book on the Visual Basic 6 Distributed
Exam (70-175) for Certification Insider Press. He has spoken at TechEd and several
Developer Days conferences and Microsoft events.

Dan, with his ever-patient wife, Beth, and two young daughters, Laura and Anna, lives in
Shawnee, Kansas, where as another spring arrives hope is renewed for a Cubs victory in
the Fall Classic.

00 3869 fm 5/20/02 1:24 PM Page xiii

About the Technical Editors
Doug Ellis has worked in the software business for more than 15 years. He graduated
from Indiana University with a degree in accounting, and obtained his CPA and MBA
while working in various Fortune 500 finance roles. His finance background led him to
the accounting software market, where he assisted clients in selecting and implementing
various accounting packages. It was through these projects that Doug began to provide
custom database programming for multi-user applications. His experience expanded into
network implementation for Novell networks and Windows NT, leading him to obtain his
Microsoft Certified Professional status including SQL administration. Doug is currently a
Technology Manager for Cognos, an international business intelligence software devel-
oper focusing on the Fortune 2000 market. He has done extensive work with both
Microsoft SQL and SQL Server Analysis Services, Microsoft’s OLAP platform.

Chris Thibodeaux, MCSE+I, MCDBA, MCSD, is the Principal Consultant of
Empowering Solutions, Inc., a management and technology consultancy in southern
California. His primary areas of expertise are in both systems and database architecture.
Chris teaches SQL database design, Web database management, and Internet/intranet
security at a local community college near his home.

00 3869 fm 5/20/02 1:24 PM Page xiv

Dedication
To Beth, my best friend, who has (to quote John Adams) “always softened and warmed my heart” and

who “shall restore my benevolence as well as my health and tranquility of mind.”

Acknowledgments
First, I’d to thank the tag-team editors on this project at Sams, Sondra Scott and Kim
Spilker. Both helped to make the project go smoothly from the initial concept right up
until publication, and for that I am grateful. And as with the last book I wrote,
Development Editor Shannon Leuma did a wonderful job in making sure that the content
was consistent, well organized, and that the elements used in the book were the correct
ones. I’m also indebted to production editor Mike Henry and the two technical editors,
Doug Ellis and Chris Thibodeaux, all of whom made suggestions and corrections that
made both the written word and technical content better than I could have produced on
my own. Finally, the content of the book was shaped through numerous reviews of the
concept before I even signed on to the project. That feedback was instrumental in making
sure the book was targeted to the correct audience and covered the proper material.

Although this book, as almost every other, was a team effort, any errors are only mine
and so I welcome your e-mail at dfox@quilogy.com with corrections and suggestions.

As always, my family deserves most of the credit because they make sacrifices both large
and small when I undertake a project like this one. And so to Beth, Laura, and Anna, I
can only say thank you and pledge that you won’t be the cobbler’s family forever.

00 3869 fm 5/20/02 1:24 PM Page xv

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book. We do have a User Services group, however, where I will forward specific techni-
cal questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Michael Stephens
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web site
at www.samspublishing.com. Type the ISBN (0672323869) or the title of the book in the
Search field to find the page you’re looking for.

00 3869 fm 5/20/02 1:24 PM Page xvi

Introduction
It is a capital mistake to theorize before one has data.

—Sherlock Holmes, “Scandal in Bohemia”

Just as in Holmes’ chosen field of detection, retrieving and manipulating data is a prereq-
uisite for building modern business applications. This explains why ADO.NET,
Microsoft’s data access technology for the .NET Framework and Visual Studio .NET, is
perhaps the most talked and written about, critiqued, and, I’d venture to say, important
aspect of Microsoft’s newly released developer suite of tools.

Understanding ADO.NET is critical to successfully developing the full range of .NET
applications, from Windows Forms to ASP.NET Web Forms to XML Web Services, and
in a nutshell is why this book exists. To put it simply, this book can be used as a guide
for understanding not only the architecture and syntax of ADO.NET, but also how it can
be used to build modern multi-tier applications.

The Structure of This Book
As with all books in the Sams Teach Yourself in 21 Days series, this book consists of
three main sections (or weeks) of seven chapters (or days) each, and each week focuses
on a different aspect of ADO.NET. During Week 1, you’ll first get an overview of
ADO.NET and focus on its design goals and its place in the history of data access tech-
nologies. You’ll then drill down into the first of the two main ADO.NET components—
the DataSet. During this week, you’ll learn how to manipulate and employ the DataSet
using the disconnected programming model that ADO.NET exposes to make building
stateless and scalable applications easier.

Week 2 will focus on the members that make up the second major component of
ADO.NET: the .NET Data Providers that communicate with data stores such as SQL
Server and Oracle. Each day this week you’ll focus on a different aspect of .NET Data
Providers, and will be given plenty of hints and techniques for getting the most out of
each set of objects.

Finally, Week 3 will be centered around using ADO.NET in the context of a multi-tier
application. During the early part of the week, you’ll learn how ADO.NET fits into each
of the layers of a multi-tier application. The week will end with a discussion of perfor-
mance and a look at the future.

01 3869 intro 5/20/02 1:15 PM Page 1

2 Sams Teach Yourself ADO.NET in 21 Days

By laying out the book in this way, I hope to provide you with a balance of concrete and
theoretical information that enables you to start using ADO.NET immediately and appro-
priately.

Conventions Used in This
Book

As with all books in the Sams Teach Yourself in 21 Days series, I’ve used a few conven-
tions in this book that I hope will make it easier for you to learn about the topics we’re
discussing.

All the source code I’ve included in the book will appear in monospace font, and the
larger, complete code will be called out in numbered listings. As with other books from
Sams, you can download all the listings, as well as other relevant material, on the book’s
Web site at www.samspublishing.com by searching on my name, the title, or the ISBN.
(This is also the place to look for errata that is corrected after publication.)

To call special attention to a topic, I’ve used the following in-text features:

Notes offer you extra insight into a particular topic. They also indicate
where you can go to find additional information about the topic at hand.Note

Tips give you special advice about the topic we’re discussing.Tip

Cautions alert you to common mistakes and pitfalls of a subject we’re dis-
cussing.

Caution

Sidebars

Sidebars provide you with more information about a subject related to what we’re discussing.

01 3869 intro 5/20/02 1:15 PM Page 2

The New Term icon lets you know when I’m introducing a new term in the
chapter.

The Analysis icon (which usually follows a numbered code listing) indicates that
I’ll be discussing the code at length and offering insights as to how the particular

code applies to topics discussed in the chapter.

Each day ends with a Workshop section. This section contains a quiz to help you remem-
ber the key concepts discussed during that day, as well as an exercise designed to enable
you to try out your newly gained knowledge. I’ve left the instructions for each lab fairly
vague by design so that you’ll have to work through your own solution, although I also
provide a possible solution. The exercises are designed not to take much time so that
you’re not bogged down in writing code for my sample scenario, and can instead focus
on applying what you learn to your applications. After all, that’s why you want to learn
ADO.NET, right?

VB or C#?
This book includes code snippets and listings in either Visual Basic .NET (simply
referred to as VB) or Visual C# .NET (C#). The tack I’ve taken is to alternate roughly the
language used on each day. I include notes and parenthetical comments throughout the
text to indicate differences in the coding practices for each language when the difference
is significant enough that I thought it might cause confusion. I believe this approach is
effective because it highlights the fact that the syntax that pertains to ADO.NET is for
the most part identical between VB and C#. At the same time, it should serve to expose
each language’s adherents to the other language, and once again confirm that the most
important aspects of programming in .NET are understanding how the common language
runtime works and understanding the classes of the .NET Framework, such as those that
comprise ADO.NET.

The Audience for and
Purpose of This Book

I wrote this book primarily for developers who have developed applications using ADO
2.x or other Microsoft data access technologies. In addition, it places non-proportional
emphasis on SQL Server (particularly SQL Server 2000) as the data store. This is the
case because it’s my view that many, if not most, developers who are moving to
ADO.NET will at least be using SQL Server in addition to other data stores such as

Introduction 3

NEW TERM

ANALYSIS

01 3869 intro 5/20/02 1:15 PM Page 3

Oracle. And, of course, my experience working for a Microsoft partner is primarily with
SQL Server, so I can certainly speak to its integration with ADO.NET from first-hand
knowledge rather than having to rely on third parties as I would have to do with other
data stores.

You’ll also notice that I make several references to my previous .NET book, Building
Distributed Applications with Visual Basic .NET in notes and tips. Although I admit
there’s an aspect of self-promotion in play, that book goes more deeply into topics that
are particular to the .NET Framework and common language runtime itself, whereas this
book strives to stay focused on data and how to use ADO.NET. As a result, you’ll often
find more in-depth discussions of threading, delegates, garbage collection, and other
issues in that book.

Finally, I wrote this book because I think ADO.NET as a technology is well suited to
building modern Web-based and multi-tier applications. Its deep integration with XML,
for example, makes it ideally suited for use in the brave new world of XML Web
Services. Explicating its virtues in the Sams Teach Yourself series offers a unique
approach to learning ADO.NET that’s more interactive than a simple reference title, and
yet isn’t a bland tutorial of overly simplistic walkthroughs (my personal pet peeve with
so many developer books). In any case, I hope you enjoy the book and I look forward to
your feedback.

Dan Fox

Shawnee, Kansas

March 2001

4 Sams Teach Yourself ADO.NET in 21 Days

01 3869 intro 5/20/02 1:15 PM Page 4

At a Glance
The goal of this week is to get you familiar with ADO.NET
concepts and the ways in which you can use the DataSet
object in disconnected scenarios. A basic understanding of
managed execution and either VB or C# syntax in VS .NET is
also recommended, although a short primer about managed
code is given on Day 1.

This week is basically split into two sections. Days 1 and 2
provide the introduction and overview of ADO.NET. During
these first two days, you’ll learn about the history of
Microsoft data access technologies and how ADO.NET was
designed to further extend those models and to help develop-
ers avoid common mistakes. In addition, you’ll be exposed to
the integration of ADO.NET with VS .NET to get a feel for
how VS .NET can be used to assist in the development of
your applications.

In Days 3 through 7, you’ll dig into the details of the DataSet
object and explore how you can use it to select, find, view,
and otherwise manipulate data. You’ll also learn about its
internal structure and the objects it contains, how changes to
data are tracked, how derived DataSet classes can be generat-
ed and assist in development, and, finally, the ways in which
the DataSet is based on and integrates with XML standards.
At the end of the week, you should be totally comfortable
with using a DataSet both graphically and programmatically
to utilize the disconnected programming model in your appli-
cations.

WEEK 1 1

2

3

4

5

6

7

02 3869 WAG1 5/20/02 1:21 PM Page 5

02 3869 WAG1 5/20/02 1:21 PM Page 6

DAY 1

WEEK 1

ADO.NET in Perspective
Welcome to Sams Teach Yourself ADO.NET in 21 Days! I hope you find this
book both informative and applicable as you embark on using .NET technolo-
gies to solve real business problems and build the next generation of enterprise
applications. Today’s goal is to familiarize you with ADO.NET, how it fits into
both the history and evolution of data access in the Microsoft platform, and its
place in Microsoft’s .NET initiative as a whole.

Today you’ll learn:

• The history and technologies used to access data

• The design goals of ADO.NET

• ADO.NET’s architecture and context in the .NET Framework

Microsoft Data Access Technologies
If you’re a developer who’s been working on the Microsoft platform
for some time, you’re probably painfully aware of the succession of

data access technologies that have come down the pike. Although my intent is
not to bring up any painful memories regarding conversions or compatibility, I

NEW TERM

03 3869 ch01 5/20/02 1:16 PM Page 7

do think it’s important to revisit this past to see clearly where we’re heading with
ADO.NET and why it’s important that we do so.

The Long Road to ADO.NET
In many respects, the data access libraries that have been issued from Redmond have fol-
lowed the architectural trends in software development of the last decade. As the 1990s
began, Microsoft released its version of SQL Server (a similar version based on the same
code base was released by Sybase), and in doing so, it officially jumped into the world of
client/server computing. As a result, Microsoft needed a way for Visual Basic and C
developers to make calls to SQL Server and return result sets and other interesting things
you can do with a relational database. To fill this gap, a library of code (actually a DLL)
referred to as DB-Library was released. Later, the functionality of DB-Library was incor-
porated into a Visual Basic Custom Control (VBX) called VBSQL that allowed easier
access for Visual Basic users.

8 Day 1

FIGURE 1.1
A timeline of important
events in Microsoft’s
data access story. Note
how the data access
technologies have
tracked with changes
in the software devel-
opment paradigms.

Specs

1990 1993 1996 1999 2002

Data
Access

Tools

Paradigm

DB-Library
VBSQL DAO

Access

Client/Server

VB 3.0 VB 5.0 VB 6.0
VID/ASP

VS.NETMTS

RDO

ODBC DCOM XML SOAP XSD
WOSA UDA

OLE DBSQL
COM 2.0

ADO 1.0
RDS

ADO 2.0 ADO 2.5 ADO.NET

Multi-tier Programmable
Web

Data driven web

On a parallel track, Microsoft had developed a relational database product, called Access,
for desktop and workgroup use. VB developers were clamoring for desktop data access,
so in order for VB developers to programmatically manipulate Access databases, an API
had to be developed. Data Access Objects (DAO) was released with VB 3.0 in 1993 and
proved to be very popular. However, it was designed first and foremost as an API to use
with the Access database engine (Jet), so its programming model included objects
designed for manipulating Jet tables and queries directly through the TableDef and
QueryDef objects, respectively. Results were returned using a Recordset object that
could be populated in different ways depending on its initialization.

03 3869 ch01 5/20/02 1:16 PM Page 8

ADO.NET in Perspective 9

1
Data for the Masses
Although DB-Library allowed access to SQL Server and DAO was useful for Jet, the
promise of client/server computing relied on interoperability—the ability to develop code
that could be easily ported to run against a variety of relational database systems. This
meant not having to use a different library and rewrite all your data access code. To
address this issue, in the early 1990s, Microsoft was working to create the Open
Database Connectivity (ODBC) standard. This standard incorporated Structured Query
Language (SQL) and is based on, and is actually a superset of, the Call-Level Interface
(CLI) specifications from X/Open and ISO/IEC. In addition, ODBC adheres to
Microsoft’s Windows Open Services Architecture (WOSA) model, which dictates that
the API exposed to developers in a client application be held constant while the function-
ality that differs must be abstracted into vendor-specific drivers.

Although sometimes confused as to its name (it’s referred to as both
Windows Open Systems Architecture and Windows Open Standards
Architecture in Microsoft documents), Microsoft has used the WOSA design
pattern successfully in a whole host of scenarios including messaging (MAPI),
telephony (TAPI), networking (Windows Sockets library), and universal data
access (OLE DB).

Note

ODBC obviously became the de facto standard for relational database access and has
now gone through several major releases, each adding additional functionality, such as a
cursor library supporting scrollable cursors and connection pooling. In addition, ODBC
drivers can now be found for scores of data sources. The success of ODBC meant that
both Access and DAO gained the ability to connect to ODBC data sources and so, for VB
developers, DAO could be used as the common data access API for both Jet and other
data sources. Of course, ODBC also exposed its API through DLL functions, so C devel-
opers, as well as intrepid VB developers, could use its functionality directly.

Although DAO could be used to access an ODBC data source, doing so often incurred
extra overhead that decreased performance. Also, its object model was more complex
than necessary for ODBC applications. To address these issues, Microsoft released
Remote Data Objects (RDO) with VB 5.0 in 1996. RDO is mostly a lightweight object
wrapper around the ODBC APIs. This resulted in increased performance while simplify-
ing the object model for developers. In addition, as the name implies, RDO introduced
the concept of disconnected or disassociated result sets through the use of its Client
Batch Cursor Library. This allowed an rdoResultset object to be populated and then
disassociated from a connection object so that the client application was free to make
changes and then send them to the server at a later time.

03 3869 ch01 5/20/02 1:17 PM Page 9

Go Connectionless
Even though RDO supported disassociated result sets, up to this point the data access
technologies were really built around the paradigm that the application would run in a
continuously connected LAN environment and further, that the data access model was
two-tier. In other words, the code that implemented the user interface (UI) would be
making calls directly to the database and processing the results. This was central to
client/server computing architectures using products such as PowerBuilder.

Two developments in the industry upset this apple cart: the adoption of multi-tiered
architectures to create distributed applications and the use of the Internet for database-
driven applications, both of which had gained popularity by 1995. Together, these events
required that a new data access model be developed that was better designed to handle
these new architectures.

In response, in 1996, Microsoft introduced its Universal Data Access (UDA)
strategy that at its core consists of a series of COM interfaces dubbed OLE DB.

These interfaces allow developers to build data providers that flexibly represent data
that is stored in various formats, and use service components to manipulate data through
cursor and sorting engines. Although the familiar WOSA concept is utilized, the major
difference between OLE DB and ODBC is found in the flexibility of using OLE DB to
access more than simply tabular data from relational databases.

For example, Microsoft created OLE DB providers for non-tabular data sources such as
Microsoft Index Server, Active Directory Services Interface (ADSI), and Microsoft
OLAP Services. In addition, OLE DB can be used to connect to ODBC data sources
through a special OLE DB provider called MSDASQL. As with the DLL interface of
ODBC, the COM-based OLE DB model is great for C/C++ programmers, but because it
requires manipulation of interface pointers, VB programmers can’t access it directly. This
is where ADO—originally from the term ActiveX Data Objects, which has since been
dropped—comes in. ADO was developed as an object interface to OLE DB accessible by
automation clients, so ASP and VB developers could use OLE DB through ADO to com-
municate with data providers.

Because scripting clients could not otherwise use OLE DB, the first release of ADO
coincided with the introduction of Visual InterDev (VID) in 1996 for building Web-based
applications using Active Server Pages (ASP) on IIS 3.0. ADO consists of a very simple
and non-hierarchical object model that provided increased performance and made it easy
to build data-driven Web sites with ASP. ADO, through a special OLE DB provider
called the Data Shape Provider, also provided rudimentary support for hierarchical data.

10 Day 1

NEW TERM

03 3869 ch01 5/20/02 1:17 PM Page 10

ADO.NET in Perspective 11

1
Middleware to the Rescue
Although ADO allowed simple ASP Web sites to access data, it didn’t initially support
building multi-tiered distributed applications. At the same time, Microsoft released the
first component-oriented middleware product with the unfortunate name of Microsoft
Transaction Server (MTS). Simply put, MTS provided an environment complete with
interception, activation, and threading support in which COM components could be host-
ed. It also allowed the components to participate in distributed transactions using
resource managers such as ODBC and OLE DB and using a two-phase commit protocol.
Utilizing MTS meant that components accessing data could reside in isolated processes
and even remote machines. This architecture furthered the need for a good way to move
ADO Recordset objects between tiers of the application.

The need to move data between physical tiers was addressed with the introduction of the
disconnected Recordset in ADO 2.0 in 1998. Originally, Microsoft introduced the tech-
nology as a part of Active Data Services (ADS), renamed to Remote Data Services
(RDS) for use in Internet Explorer (MSIE). The idea was that a Recordset could be cre-
ated on the Web server and downloaded to MSIE, where it was cached and manipulated
on the client. The success of this technique was limited because of the obvious problem
of moving away from browser independence (the Internet’s key strength). In addition, the
client had to have the correct versions of the various DLLs. It turned out that the major
usefulness for disconnected record sets as implemented in ADO 2.0 was to move data
between components residing in MTS (and later COM+) and ASP pages that manipulat-
ed the data for display on the page. This enabled data access code to be truly separate
from presentation code. In addition, it provided a standard, albeit proprietary, way to
move data without resorting to manually parsing the data for insertion in custom data
structures or simply using the GetRows method of the Recordset object to stream the
data to a Variant array.

As OLE DB and ADO went on to supplant ODBC and RDO as Microsoft’s flagship data
access technologies, new versions with features such as asynchronous programming,
events, a more sophisticated cursor library, advanced searching, and custom control of
updates were introduced. Typically, the new releases would ship with new products, such
as when ADO 2.0 shipped with VB 6.0 and ADO 2.1 shipped with SQL Server 7.0 and
Office 2000.

For more information on ADO and how to use it in various scenarios, see
Chapter 14 of my book Pure Visual Basic, published by Sams.

Note

03 3869 ch01 5/20/02 1:17 PM Page 11

At this point, it became apparent that the collection of data access technologies and their
various versions had become interdependent and taken on a life of their own. Microsoft
responded by creating a separate group and distribution point for the Jet, ODBC, ADO,
and OLE DB software (although Jet software and the desktop ODBC drivers were
removed starting with MDAC 2.6). All the data access software is now bundled in the
Microsoft Data Access Components (MDAC) SDK and can be downloaded in installa-
tion packages from www.microsoft.com/data. As of this writing, the current release is
version 2.7 and was installed with Windows XP.

12 Day 1

As discussed shortly, ADO.NET actually requires MDAC 2.6 or later to be
installed because use of both the SQL Server .NET Data Provider and the OLE
DB .NET Data Provider require it.

Note

The Web Grows Up
As the Internet protocols TCP/IP, HTTP, and HTML became ubiquitous, the breadth of
applications that were targeted for the Web increased. In addition to basic “brochure
ware” Web sites, organizations began using the Web for selling products, as typified by
high-profile e-commerce sites such as Amazon.com. As bandwidth increased, other orga-
nizations soon recognized that business transactions could be conducted over the Web as
well. Unfortunately, there were few common data exchange formats and none that
spanned more than a single industry. The need for efficiently exchanging data over the
Web led to the development of the eXtensible Markup Language (XML) 1.0 specification
by the World Wide Web Consortium (W3C) and its release as a recommendation in
February 1998. Quickly, vendors—with Microsoft leading the charge—began adopting
XML and incorporating it into their products.

Unlike HTML, another markup language derived from SGML, the key feature of XML
is, of course, the fact that it’s a self-describing, structured document that’s strictly parsed
and can be validated against a schema to ensure that it’s both syntactically and semanti-
cally correct.

For a good overview of XML and its related specifications, see the book
Sams Teach Yourself XML in 21 Days, Second Edition by Devan Shepherd.

Note

03 3869 ch01 5/20/02 1:17 PM Page 12

ADO.NET in Perspective 13

1
Although ADO incorporated some basic support for XML in ADO 2.5 with the ability to
save a Recordset as XML to a file or COM object that implemented the IStream inter-
face, ADO was obviously not designed from the ground up to work with XML. For
example, when saving an ADO Recordset to XML, it always used the same schema.
Developers would have to spend development time (and CPU cycles) coding transforma-
tions using eXtensible Stylesheet Language Transformation (XSLT). Clearly, as XML
and its related specifications (XSD, XSLT, XPath, among others) became the primary
way to describe and exchange data over the Web, Microsoft’s data access technologies
would have to evolve.

The XML Embrace

It cannot be said strongly enough that Microsoft has gotten the XML religion and has been the
clear leader in adopting XML in its products, as well as working with the World Wide Web
Consortium (W3C), an industry organization whose over 500 member organizations work to
create standard protocols and specifications for use on the Internet, to further define XML-
based standards.

First, Microsoft has been active in integrating XML into its products. For example, the XML sup-
port added to SQL Server 2000 allows XML documents to be created using a FOR XML statement.
In addition, support for querying XML data using XML templates via http is available. XML has
found its way into products as wide ranging as Office and BizTalk Server 2000, and even Bill
Gates noted at the Microsoft PDC in 2001 that XML is the core technology that Microsoft has
rallied around to build the next generation of all its products.

Another primary example, of course, is the Simple Object Access Protocol (SOAP) specification.
This specification was originally jointly developed by Microsoft, DevelopMentor, and UserLand
Software and subsequently led to collaboration with IBM, Hewlett-Packard, and others. Version
1.1 was submitted to the W3C (www.w3c.org) in May 2000. Visual Studio .NET (VS .NET) and the
.NET Framework are testaments to Microsoft’s commitment to XML because they are steeped in
XML and SOAP 1.1 from their very foundations. Everything from configuration files, to data
access, to XML Web Services, to classes used to manipulate XML documents, to the serialization
format of objects within the Common Language Runtime (CLR) relies on XML, SOAP 1.1, and an
XML specification for describing XML Web Services called Web Service Description Language
(WSDL), pronounced “wiz-dull.” In addition, Microsoft has recently worked with IBM to develop
the next set of SOAP-based standards for adding enterprise features such as reliable messaging,
routing, security, and inspection to the protocol under the umbrella term Global XML Web
Service Architecture.

Finally, Microsoft is embracing XML in its .NET “My Services” initiative designed to unify dis-
parate silos of information and make them securely accessible via Web protocols. Basically, to
developers, the interaction with .NET My Services takes the form of sending and receiving XML
documents to do things such as send an alert notification to a user that his or her flight is going
to be delayed.

Certainly, in all these ways, Microsoft has been ahead of the curve, so it’s no surprise that from
the ground up, ADO.NET is built around XML.

03 3869 ch01 5/20/02 1:17 PM Page 13

The final twist in this road is the idea of using the Internet as the platform for application
development. This is the thrust of Microsoft’s .NET strategy, which was first announced
in June 2000. The core of this strategy is to build products and services for a “program-
mable Web” where information and services are exchanged not just by human interaction
through browsers, but also programmatically through software. Because XML’s strength
is its self-describing nature, it became the obvious technology substrate upon which to
build the programmable Web. For developers, the end result is exposing functionality
over the Web programmatically through the use of the XML grammar SOAP. Visual
Studio .NET and the .NET Framework fully support this new paradigm by providing
tools to create and consume XML Web Services. Of course, all these new XML Web
Services will need to interoperate with backend data stores. This is where ADO.NET
comes in.

So, this is the landscape from which ADO.NET arose. There was a clear need for a data
access technology that deeply integrated XML standards and provided the scalability to
satisfy an increasing demand for Web-based applications of all kinds, including XML-
based data exchange and XML Web Services.

ADO.NET Design Goals
Before digging into how ADO.NET has been architected, let’s take a brief look at the
design goals, which provides insight into the final implementation. To that end,
ADO.NET was designed with five primary goals in mind.

It Efficiently Supports a Multi-Tiered Programming
Model
As mentioned earlier, one of the key shifts in software development in the past several
years has been to a multi-tier (or n-tier) programming model. In that model, data is read
from a data source, disconnected from the source, and moved across tiers. If you think of
those tiers as not simply machines within an organization, but as Web sites that span
organizations (as with XML Web Services), it becomes immediately apparent that the
disconnected record sets of ADO 2.x won’t satisfy this model. This is the case because a
disconnected Recordset is a COM object and, therefore, you need a COM infrastructure
on both ends of the channel. Although the COM/DCOM component model has been
extremely successful, it is, for all intents and purposes, wedded to the Windows platform.
This means that an organization running a different platform (for example, Sun Solaris)
can’t exchange data through a Recordset. In fact, even two Microsoft shops will have
difficulty doing this because firewall configurations often prevent DCOM communica-
tion.

14 Day 1

03 3869 ch01 5/20/02 1:17 PM Page 14

ADO.NET in Perspective 15

1
To address the disconnected model, the core ADO.NET object is an in-memory XML-
based cache called the DataSet. Because the DataSet is a managed class, it can take
advantage of the runtime’s ability to serialize and deserialize it to XML, thereby allowing
it to pass more easily between tiers in a multi-tiered architecture. Because the DataSet is
so fundamental, you’ll explore it in depth in Days 3, “Working with DataSets,” 4,
“DataSet Internals,” and 5, “Changing Data.”

It Deeply Integrates XML Standards
If XML is the primary means of exchanging data over the Web, ADO.NET needs to sup-
port it in a robust way. This means that not only should you be able to transform data
into XML, but also control the schema and read and write data natively as XML. To that
end, the DataSet is a fully XML-enabled object. Its structure is defined by an XSD
schema and its data is represented as XML. Further, ADO.NET integrates the way you
work with both relational and XML data. In the past, ADO could be used to manipulate
relational data, whereas the MSXML parser could be used to manipulate XML docu-
ments. Within the .NET Framework, these two models are fundamentally joined. You’ll
look at this in more detail on Day 7, “DataSets and XML.”

It Leverages Current ADO Knowledge
First and foremost, although there’s always a little pain when learning a new data access
model, the goal was to allow current ADO developers to move into ADO.NET with their
current skill sets intact and therefore minimize the learning curve. As a result, you’ll find
many familiar concepts in ADO.NET, including connection, command, and parameter
objects. You’ll look at this side of ADO.NET in depth in Week 2.

This is also important because, as you’ll see, ADO.NET isn’t a wholesale replacement of
ADO and OLE DB, but is rightly thought of as an addition to it. ADO.NET, in its current
incarnation, targets only a specific set of application scenarios—that is, Web-based dis-
tributed applications—whereas ADO can still be used to build connected applications
that rely on features such as server-side cursors.

Why ADO.NET?

Good question. Officially, the acronym ADO no longer stands for ActiveX Data Objects (the
term ActiveX was coined in 1995 when the term OLE had fallen out of favor for describing com-
ponents based on the COM specification). So, ADO simply refers to a data access technique, and
to provide continuity with the past, the term ADO was incorporated into the new name.
Originally, ADO.NET was called ADO+ just as ASP.NET was called ASP+.

03 3869 ch01 5/20/02 1:17 PM Page 15

Even though the name has continuity, keep in mind that the infrastructures upon which ADO
and ADO.NET are built are completely different. ADO is built on the COM infrastructure, with
its IUnknown interface, registry entries, reference counting, and vtable layouts, whereas
ADO.NET is managed code executed by the common language runtime using the Common Type
System, assemblies, XML, and garbage collection.

The continuity between ADO and ADO.NET is most clearly seen in the fact that existing OLE DB
providers and ODBC drivers can be used in ADO.NET through .NET Data Providers created for
that purpose. In this way, ADO.NET can also be thought of as an evolution of ADO. However,
because of its deep reliance on XML, as you’ll learn on Day 7, perhaps a more appropriate
name might be XDO.NET (XML Data Objects).

16 Day 1

It Combines Relational and Object-Oriented Paradigms
As you’re probably aware, the substrate upon which ADO.NET is built, the .NET
Framework (the common language runtime plus the base class libraries), is fully object-
oriented to the core. This means that developers now have the opportunity to create OO
designs using overloading, inheritance, polymorphism, and encapsulation. This in turn
means that developers will want to treat and work with data in terms of objects rather
than simply as a collection of columns in a row.

Although there was no mechanism, outside of hand coding, for “objectifying” data in
ADO, ADO.NET supports the ability to create strongly typed DataSets that provide a
natural OO interface to data. You’ll take a look at how this works on Day 6, “Building
Strongly Typed DataSet Classes.” In addition, we’ll talk about some exciting new fea-
tures to take this concept one step further on Day 21, “Futures and Wrap-Up.”

It Reduces Programming Errors
Even though leveraging ADO knowledge is a good thing, many ADO programmers admit
to a certain degree of confusion, especially when working with the interplay of cursor
types and locations with a specific OLE DB provider. Alleviating this confusion and
reducing common programming errors was another design goal of ADO.NET.

This has been done by simplifying the ways in which data can be accessed. For example,
in ADO.NET there are two ways to get data: either you read an entire result set and
cache it in a DataSet, or you stream through it in a read-only, forward-only manner using
a DataReader object. There’s no option for manipulating server-side cursors, so the
issues of seeing changes made by other users, encountering deleted rows, dealing with
keyset cursors, and using positioned updates all go away.

03 3869 ch01 5/20/02 1:17 PM Page 16

ADO.NET in Perspective 17

1
Although some readers might be alarmed by this loss of functionality, those features
were the ones that caused developers the most problems and were the source of perfor-
mance problems because they were often used incorrectly or inadvertently. We’ll discuss
ADO.NET futures and how some of this functionality might be restored in future releas-
es on Day 21.

The root of these problems is that ADO tried to be all things to all people. By incorporat-
ing a full cursor model into the Recordset, ADO provided a unified programming model
at the expense of confusion because each OLE DB provider could choose to implement
the features differently or not at all. ADO.NET solves this problem by allowing each
.NET Data Provider (roughly the equivalent of an OLE DB provider) to provide its own
programmatic interface to handle special functionality. A great example is the fact that
the SQL Server .NET Data Provider includes a special method to execute Transact-SQL
statements that return XML via the FOR XML statement. This does fracture the program-
ming model slightly, but makes working with any particular data source simpler.

On a second level, the classes (their methods, properties, and events) in ADO.NET have
been designed to eliminate the most common programming errors. For example, ASP
developers often forgot to include the MoveNext object when coding a loop to display a
Recordset on a page. The resulting infinite loop often caused severe problems with the
Web server, which then had to be shut down manually and restarted, affecting other sites
on the server. Because ADO.NET’s DataReader exposes rows as a collection, they are
iterated using the For Each syntax, making this sort of error impossible.

And, of course, you’ll put all the features used to satisfy these design goals to use on
Days 15 through 18.

ADO.NET in .NET
In this section, you’ll drill down to look at how ADO.NET is architected to realize the
design goals discussed in the previous section. Let’s begin with a review of the execution
environment in which ADO.NET runs and then move on to the namespaces, classes, and
interfaces that make up ADO.NET in the .NET Framework.

Managed Code Review
Although the ins and outs of managed code and the Common Language Runtime are
beyond the scope of this book, it’s important to have a foundational understanding of
how the code you write for ADO.NET is actually executed.

03 3869 ch01 5/20/02 1:17 PM Page 17

To begin, all code you write to work with ADO.NET, whether in VB .NET, VC#
.NET, or any of the .NET languages, will by executed by the common language

runtime and is thus referred to as managed code. The common language runtime
includes a host of runtime features including a class loader, thread support, exception
manager, security engine, garbage collector, code manager, and type checker. In turn, all
managed code is first compiled to a machine-independent intermediate language called
Microsoft Intermediate Language (MSIL), and subsequently compiled to native instruc-
tions for execution in a just-in-time (JIT) manner as the common language runtime’s
class loader loads code at runtime. This process is outlined in Figure 1.2.

18 Day 1

For an in-depth look at the common language runtime, see Essential .NET
Volume I by Don Box, published by Addison-Wesley. Chapter 1 of my Sams
book Building Distributed Applications with Visual Basic .NET also provides a
more in-depth look at the common language runtime from a Visual Basic
perspective.

Note

NEW TERM

Yes, it is also possible to pre-JIT code at install time. This can be done using a
command-line utility that stores the resulting native code (executable or
DLL) in a code cache on the machine. When the assembly is to be executed
by the common language runtime, it locates the native code and runs it
directly instead of using JIT compilation.

Note

When your code is compiled to MSIL, it is stored in a PE (portable executable)
file called a module. The module contains the MSIL instruction in addition to

FIGURE 1.2
The managed code
execution environment.
This diagram depicts
how managed code is
compiled and executed
by the common lan-
guage runtime.

My.Assembly

CLR

Metadata

Manifest

Native
Code

VB

Class Loader

Just In Time
Compiler

VC VC# …

MSILPre-JIT

ADO.NET
Assembly

NEW TERM

03 3869 ch01 5/20/02 1:17 PM Page 18

ADO.NET in Perspective 19

1
metadata that describes the types (classes) in the code you’ve written, along with the
dependencies on other types. The metadata is roughly equivalent to a COM type library.
This metadata is heavily relied upon by the common language runtime and other tools in
VS .NET to make sure that the appropriate code is loaded and to assist in enabling fea-
tures such as IntelliSense and debugging. A module can then be incorporated in, or exist
independently as, an assembly. An assembly is the fundamental unit of packaging,
deployment, security, and versioning in .NET and contains a manifest (embedded in one
of the modules or in its own PE file) that describes the version, an optional public key
(called a strong name) used for uniquely identifying this assembly from all others, and a
list of dependent assemblies and files.

As you’ll note from Figure 1.2, ADO.NET is itself an assembly (written in VC# .NET)
called System.Data.dll that is a part of, and is installed with, the .NET Framework in the
windowsdir\Microsoft.NET\Framework\framework_version directory. As a result, the
manifest of your assemblies will reference the ADO.NET assembly and so, at runtime,
the common language runtime will be able to make sure that ADO.NET is loaded and
JIT compiled.

By running the .NET Framework Configuration Manager from the
Administrative Tools group, you can view what is called the Global Assembly
Cache (GAC). Simply put, the GAC is a machinewide store for assemblies that
have been given a strong name. Putting an assembly in the GAC makes it
easy for thecommon language runtime’s class loader to find it at runtime.
Not surprisingly, the ADO.NET assembly is placed in the GAC when you
install VS .NET. You’ll also notice that the Configuration Manager depicts
assemblies with two different icons. The lion’s share of the assemblies in the
GAC is placed there after simply being compiled to MSIL. The core assem-
blies that are used in almost every .NET application such as mscorlib,
System, and System.Xml, however, have been pre-JITted to native code for
better performance.

Note

The last, and perhaps most important, point to note about the managed code environment
of the common language runtime is the existence of the Common Type System (CTS). In
the CTS, all data types (simply referred to as types) are ultimately derived from a base
object called Object (System.Object) and found in the assembly mscorlib.dll. The CTS
is key to understanding .NET because it governs how types are represented and dealt
with by the common language runtime.

For example, Figure 1.3 shows that all types are classified as value types or ref-
erence types. As the name implies, value types are typically passed by value in

applications and are used to represent simple data types such as integers, Boolean, and

NEW TERM

03 3869 ch01 5/20/02 1:17 PM Page 19

character. Value types are simply allocated on the stack and therefore are very light-
weight. Reference types are allocated on the heap, are addressed by their memory loca-
tion, and are used to represent classes, interfaces, pointers, strings, and delegates (which
you can think of as object-oriented function pointers). Therefore, the high-level objects
found in ADO.NET such as the DataSet are reference types. This distinction is important
because reference types are automatically garbage collected by the common language
runtime, although they can also expose a Dispose or Close method for de-allocation.

20 Day 1

FIGURE 1.3
The Common Type
System. This diagram
shows how the CTS is
organized. All types
are derived from
System.Object.

Int16

Byte

Char

DateTime

Decimal

Double

Ulnt16

Ulnt32

Boolean

ValueType

Object

ReferenceType

Int32

Int64

intPtr

SByte

Single

TimeSpan

UInt64

Enum Class A (enum)

Class B
(framework, i.e.

Array)

Interface A
(custom)

Interface B
(framework,
IDisposable)

Pointer

String Delegate A

Multicast
Delegate B

The CTS is what makes cross-language development in .NET a reality. By using the
same underlying representation of types as managed by the common language runtime,
languages can freely use types created in other .NET languages without having to per-
form any translation or coercion. This also means that an assembly written in one lan-
guage can even inherit from a type written in another language. This is fundamental to
ADO.NET because the ADO.NET classes were written in VC# .NET, but can be used,
for example, as base classes for code written in VB .NET.

03 3869 ch01 5/20/02 1:17 PM Page 20

ADO.NET in Perspective 21

1
The System.Data Namespace
Assemblies in .NET contain classes, interfaces, and enumerated types arranged hierarchi-
cally in namespaces. Namespaces can cross assembly boundaries and can themselves
contain other namespaces. They are simply a convenient way to arrange code and can be
navigated using the familiar dot notation. Within the ADO.NET assembly, the primary
namespace is, not surprisingly, System.Data. Within System.Data are four namespaces
that implement specific ADO.NET features as shown in Table 1.1.

TABLE 1.1 The System.Data namespaces. These namespaces comprise the functionality
of ADO.NET.

Namespace Description

System.Data Contains the heart of the ADO.NET architecture, including more than
45 classes and more than 20 enumerations that comprise the DataSet
and a dozen or more interfaces that are implemented by .NET Data
Providers

System.Data.Common Contains about a dozen classes shared by .NET Data Providers such
as the OleDb and SqlClient providers

System.Data.OleDb Contains approximately 20 classes and a few enumerations that make
up the OLE DB .NET Data Provider

System.Data.SqlClient Contains approximately 20 classes and a few enumerations that make
up the SQL Server .NET Data Provider

System.Data.SqlTypes Contains more than a dozen structures that map to data types exposed
by SQL Server in addition to a couple of enumerations and classes
used to perform comparisons and handle exceptions

In addition, the ADO.NET assembly contains one class from the System.Xml namespace,
most of which is defined in the System.Xml.dll assembly. This class, XmlDataDocument,
is used to bridge the gap between relational and XML data. We’ll discuss this on Day 7.

As you can see from Table 1.1, the first two namespaces contain types that are for gener-
al use, whereas the last three implement features particular to accessing data through an
OLE DB provider or to accessing SQL Server. This highlights the fundamental division
of ADO.NET into the DataSet and .NET Data Providers, as shown in Figure 1.4.

As mentioned previously, the DataSet implements the in-memory cache for disconnected
data and as a result is not dependent on any particular data source. The classes exposed
by the .NET Data Providers, particularly the DataAdapter, are used to populate the
DataSet. The DataSet can then be serialized and passed between tiers of a distributed
application using the facilities of the common language runtime. In addition, it can load

03 3869 ch01 5/20/02 1:17 PM Page 21

data from multiple data adapters and represent the data hierarchically through a set of
relationships defined by its XSD schema. Finally, changes can be made to the DataSet
that are tracked by the DataSet and it can be passed back to the .NET Data Provider in
order to update the underlying data store.

22 Day 1

FIGURE 1.4
ADO.NET architec-
ture. This diagram
depicts the architecture
of ADO.NET and its
fundamental division
between the DataSet
and the .NET Data
Providers.

Data Source

DataSet

Error

IDbConnection

IDataReader
CommandBuilder

IDbTransaction

IDataParameterIDbCommand

Exception

.NET Data Provider

IDbDataAdapter
DbDataAdapter

DataAdapter

Table 1.1 also shows that ADO.NET ships with two .NET Data Providers: System.OleDb
and System.SqlClient. The role of the providers is to implement classes that use the
interface and classes in System.Data and System.Common to expose the functionality of a
particular data store. In other words, the .NET Data Providers are analogous to OLE DB
providers and ODBC drivers, with the exception that they expose functionality at the pro-
grammatic layer rather than simply as an abstraction. This means that vendors writing
.NET Data Providers can expose custom functionality to developers directly as additional
classes or methods.

At a functional level, as shown in Figure 1.4, providers will expose functionality based
on the interfaces and classes in System.Data and System.Data.Common to connect to the
data store, initiate transactions, communicate with a DataSet, handle exceptions, execute
commands, handle parameters, and stream through data in a fast-forward read-only fash-
ion. All the interfaces and classes shown in Figure 1.4, with the exception of
CommandBuilder, Exception, and Error, are implemented or inherited by an actual
provider to provide the programming model for implementing a provider. By convention,
the provider also exposes the CommandBuilder class to automatically populate a data
adapter with commands used to select, insert, update, and delete data from the data

03 3869 ch01 5/20/02 1:17 PM Page 22

ADO.NET in Perspective 23

1
source and Exception and Error classes to handle errors returned from the data source.
Finally, access to providers can be controlled through the use of code-access security
implemented as permission objects. You’ll explore each of these functions in depth dur-
ing Week 2.

In addition to the two providers that ship with ADO.NET, there is also an
ODBC .NET Provider available for download from msdn.microsoft.com.

Note

Interface-Based Programming
As you can see from Figure 1.4, ADO.NET makes use of interfaces (those iden-
tifiers prefixed with an I, such as IDbDataAdapter, IDbConnection, and

IDataReader) to provide the template or contract between a class that uses the interface
and the client. By implementing or deriving from an interface in a class, you ensure that
the methods, properties, fields, and events that your class exposes follow a particular
semantically related pattern. You can also implement several interfaces in the same class
to support different sets of functionality. This is called interface inheritance. In turn,
following a predefined pattern allows client code to be written that can work with any
class that implements a particular interface. This is referred to as polymorphism, and in
ADO.NET can be very useful in writing code that works with multiple .NET Data
Providers.

.NET languages based on the common language runtime also support single-
implementation inheritance wherein a class can be derived from another class, and in
addition to inheriting its member definitions, it also inherits the implementation or code
behind those members. You can see from Figure 1.4 that the classes DbDataAdapter and
DataAdapter can be used in this way.

If you’re a VB or ASP developer, you’ve probably not worked with interfaces very much.
This is primarily the case because although VB 6.0 supported interfaces through the use
of the Implements keyword, it was not natural to create interfaces in VB 6.0 and ASP did
not support them at all. Secondarily, although the COM programming model relied on
interfaces in a very fundamental way, VB did a good job of hiding that fact from devel-
opers.

Generic Versus Specific Providers
As is implied by the previous discussion, .NET Data Providers can come in several fla-
vors. The OLE DB and ODBC providers are generic in that they are used to access a

NEW TERM

03 3869 ch01 5/20/02 1:17 PM Page 23

variety of data stores and more or less act as a pass through to other software that com-
municates with the actual data store. On the other hand, the SQL Server provider is an
example of a specific provider because it bypasses OLE DB and ODBC and talks to SQL
Server directly using SQL Server’s native Tabular Data Stream (TDS) protocol. This pro-
vides for better performance. This architecture points to the fact that vendors will likely
implement specific providers to expose custom functionality and improve performance,
while OLE DB and ODBC can still be used through the generic providers. As you’ll
learn on Day 14, “Working with Other Providers,” you can also take advantage of this
architecture to build your own generic and specific providers for enterprise applications.

Because .NET Data Providers implement the functionality shown in Figure 1.4, Figure
1.5 shows the same diagram, this time with the specific classes implemented by the SQL
Server provider in the System.Data.SqlClient namespace.

24 Day 1

FIGURE 1.5
The SqlClient .NET
Data Provider. This
diagram shows the
implementation of the
SqlClient provider.

Data Source

DataSet

SqlError

SqlConnection

SqlDataReader
SqlCommandBuilder

SqlTransaction

SqlParameterSqlCommand

SqlException

SqlClient.NET Data Provider

SqlDataAdapter

It’s also important to keep in mind that ADO.NET, although a fundamental part of the
.NET Framework because of its importance for most corporate developers is, in terms of
the number of classes it includes, a very small part of the framework as a whole. In its
entirety, the .NET Framework encompasses more than 6,500 classes, and includes func-
tionality for everything from building XML Web Services and Windows Forms to build-
ing components that can be hosted by Component Services.

03 3869 ch01 5/20/02 1:17 PM Page 24

ADO.NET in Perspective 25

1
A Note About Language Choice
If it wasn’t clear from the discussion on managed code, it cannot be overemphasized that
one of the fundamental goals of .NET is to provide a language-independent framework
for developing modern distributed applications. To that end, it doesn’t matter whether
you program ADO.NET from VB .NET, VC# .NET, or any of the other languages target-
ed for the common language runtime. However, because the two primary languages that
most developers will use initially are VB and C#, all the examples in this book will use
one of those two languages. I’ll alternate the language used in the listings and the exer-
cise solutions throughout the book, but of course you’re free to implement the exercises
in whatever language you choose. I think you’ll find it fairly easy to read code written to
use ADO.NET in either VB or C#, although I’m certainly aware that there might be con-
cepts in each language that will need further explanation. At those times, look for tips
and notes for clarification.

Summary
Today you learned how the data access technologies on the Microsoft platform have
developed in the last decade and set the stage for the introduction of ADO.NET in the
.NET Framework. In addition, you reviewed the managed code environment in which
applications written to use ADO.NET will execute. Finally, you saw the ADO.NET
architecture from a high level and learned about the fundamental division of ADO.NET
into the DataSet and .NET Data Providers.

Tomorrow, you’ll actually start working with ADO.NET both graphically and program-
matically to learn how it is exposed in Visual Studio .NET.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What limits ADO 2.x from being used in Web-based distributed applications?

Although ADO 2.x supports disconnected Recordset objects that can be moved
between tiers in a distributed application, those tiers must be based on the
COM/DCOM infrastructure. This is the case because DCOM doesn’t work well
through firewalls, COM is not platform independent, and the record set is not rep-
resented in an industry standard way using XML. These factors together make it
difficult, if not impossible, to pass ADO record sets between organizations.

03 3869 ch01 5/20/02 1:17 PM Page 25

2. What is the key technology upon which Microsoft is building its next generation of
software?

XML. XML is the industry standard controlled by the W3C. It is the basis for stan-
dards such as XSD for capturing the structure of an XML document, XPath for
querying XML documents, SOAP for invoking services over the Web, and WSDL
for describing the functionality of XML Web Services. There are other specifica-
tions in the works that will likely be rolled into future versions of VS .NET to sup-
port higher levels of functionality as well.

3. What key design goal will make it easier for ADO programmers to grasp
ADO.NET?

The goal of leveraging current ADO knowledge. This is accomplished by using
some of the same object types that are found in ADO, including connection, com-
mand, and parameter.

4. How does .NET achieve language choice and interoperability for developers?

The common language runtime and the CTS together allow developers to write
code in any managed language that can fully interoperate with code from any other
language. This includes cross-language inheritance and full fidelity of all types cre-
ated in any .NET language.

5. What are the two parts of ADO.NET?

ADO.NET is divided into the DataSet object for manipulating disconnected data
and the .NET Data Providers for communicating with backend data stores and the
DataSet.

Exercise
Because this book deals with Enterprise ADO.NET, you’ll need a server database to
work with while going through this book. The exercises in the remainder of the book will
work with SQL Server 2000 and Visual Studio .NET Professional, so the only exercise
today is to set up the database by running the script provided by downloading the code
for this book from www.samspublishing.com. When you unzip the code, look for the
ComputeBooksDb.bat script in the Day01 directory. Execute this on the machine with
SQL Server and it will attach the ComputeBooks database. This database contains a
schema that a fictional bookstore might use to inventory books, track customers, and take
and fulfill orders. After the database has been created, you’re all set for tomorrow.

26 Day 1

03 3869 ch01 5/20/02 1:17 PM Page 26

DAY 2

WEEK 1

Getting Started
Yesterday you learned about the history and goals of ADO.NET that hopefully
allowed you to put it in proper context. Today you’ll begin to use ADO.NET
both graphically and programmatically. Today’s goal is to familiarize you with
the two primary ways of working with ADO.NET in Visual Studio .NET (VS
.NET). To that end, you will learn:

• How to connect to and view data through the Server Explorer

• How to use the VS .NET designer to build a simple application to retrieve
data and update a database

• How to programmatically instantiate, populate, and invoke ADO.NET
objects to retrieve and update data in a simple application

ADO.NET in Visual Studio .NET
Because data access is so central to the design of most corporate enterprise
applications, VS .NET includes a wealth of features designed to make using
ADO.NET simple. These include the use of the Server Explorer, component
designer, and wizards to graphically manipulate the underlying database and
write the code to work with the ADO.NET classes.

04 3869 ch02 5/20/02 1:15 PM Page 27

To begin, let’s walk through the construction of a very simple ASP.NET application in
C#. This application queries the ComputeBooks product catalog and allows the user to
make some modifications to demonstrate the graphical features of VS .NET that can be
used with ADO.NET.

First, of course, you need to create an ASP.NET Web site using the New Project dialog
accessed by clicking File, New Project or through the New Project button on the VS
.NET Start Page. In this case, under Visual C# projects, select ASP.NET Web Application
and call it ComputeBooksSimple. When completed, a new virtual directory will have
been created on the Web server and the project will contain AssemblyInfo.cs,
WebForm1.aspx, Global.asax, and Web.config files.

Before getting started keep in mind that the application you’re walking through
today is an example of what I refer to as a two-tier Web application. That

means that the code used to create the user interface uses ADO.NET objects directly to
communicate with a database. Although you can certainly create two-tiered applications
effectively with ASP.NET, ADO.NET, and VS .NET, a more robust design pattern for
enterprise applications calls for the use of an n-tiered model where the ADO.NET code
(referred to as the data services tier) is abstracted from the user interface code (the pre-
sentation tier) and also from reusable business logic (the business services tier) .
Designing applications using this approach allows their constituent parts to be more
maintainable, reusable, and scalable at the cost of increased complexity. On Days 15
through 17, you’ll explore how an n-tiered pattern can be used with ADO.NET.

Using the Server Explorer
The Server Explorer window is available in all VS .NET projects and can be used for
viewing resources such as message queues, event logs, performance counters, services,
and databases on a local or remote machine. The purpose of the Server Explorer is to
enable graphical interaction with these services and visual designers within the develop-
ment environment. It can be accessed from the View menu or by typing Ctrl+Alt+S. Like
other windows in VS .NET, it will by default auto-hide itself when your cursor is not
over it. To pin it to the surface, use the pin icon in the upper-right corner.

28 Day 2

If you don’t like the default way in which the windows behave or are
arranged, click on the Start Page and go to My Profile. Here you can choose
from seven profiles (or build your own) to customize the look and feel
based on your previous experience. In this book, I’ll use the default Visual
Studio Developer profile, although others for Visual Basic, Visual C++, and
Visual InterDev developers are available.

Tip

NEW TERM

04 3869 ch02 5/20/02 1:15 PM Page 28

Getting Started 29

2

In addition to the server-based resources, the Server Explorer also contains a Data
Connections node that can be used to connect to and view a particular data source. If
you’re familiar with the Visual Studio 6.0 IDE, you’ll recognize this as analogous to the
Visual Data Tools.

Creating a Connection
To create a connection to a data source, simply right-click on the Data Connections node
and click Add Connection. You’ll notice that you can create both a SQL Server database
and a data connection simultaneously by selecting Create New SQL Server Database.

The resulting dialog, shown in Figure 2.1, is the familiar Data Link Properties dialog.
Through this dialog, you can configure the connection. By default, it assumes you’re
going to connect to SQL Server, although this can be changed by selecting the appropri-
ate OLE DB provider in the Provider tab. In this case we’re going to connect to the
ComputeBooks database you created during the exercise on Day 1, “ADO.NET in
Perspective,” on the local server (denoted by using a “.” in the server name field), and
authenticate using Windows NT integrated security. Obviously, you would change these
settings if the location or authentication requirements of your server differed.

FIGURE 2.1
Data Link Properties.
This dialog is used to
create a data connec-
tion in the Server
Explorer.

Note that even though we’re using SQL Server for our data connection,
we’re not yet using the SQL Server .NET Data Provider. The connections
made through the Server Explorer use the SQL Server OLE DB provider. This
is evident by selecting the connection in the Server Explorer window and
choosing Properties.

Note

04 3869 ch02 5/20/02 1:15 PM Page 29

When it’s connected, the new connection will appear in the Server Explorer. You can
then drill down through it to view the tables, views, and stored procedures. By double-
clicking on a table, you can view and edit the data (depending on your permissions as
defined by how you authenticated). Figure 2.2 shows the IDE after double-clicking the
Titles table and using the Query toolbar to activate all the panes (diagram, grid, SQL,
results) available. You can use the panes to modify the query, as was done in this case, to
show only some of the data by selecting particular columns or to add a where clause or
sorting condition.

30 Day 2

FIGURE 2.2
Using a data connec-
tion. You can use a
data connection to
inspect and edit the
data in the underlying
database.

You’ll also notice that you can inspect the SQL Server databases on the local
server by drilling down into the SQL Servers node in the Server Explorer win-

dow. Although this provides the same level of functionality as creating your own connec-
tion, again depending on your permissions, the database connections are permanent

In the Professional edition of VS .NET, you can view and edit data and exe-
cute views and stored procedures, but cannot create and alter these objects.
These features are enabled in the Enterprise Developer and Enterprise
Architect versions of the product. To ensure that all readers will be able to
follow along, in this book I’ll use the features of the Professional edition.

Tip

NEW TERM

04 3869 ch02 5/20/02 1:15 PM Page 30

Getting Started 31

2

connections and will be loaded each time you start a new instance of VS .NET. The VS
.NET documentation distinguishes between these by calling the connection we just creat-
ed a database reference, while referring to connections under the SQL Servers node,
database connections. The other primary difference is the additional functionality you
gain when using a reference if you have the Enterprise versions of VS .NET as noted.

Creating a Data Adapter
When the connection (or reference) has been established to the database, you can use it
to incorporate data access code into your project. To do so, simply drag and drop an
object from the connection onto a designer in the IDE. For example, to create code to
access the Titles table, drag and drop the table onto the WebForm1.aspx designer surface.

A Bit About Designers

One of the interesting features of the .NET Framework and VS .NET is the interaction between
classes and designers. The Framework ships with several visual designers, each of which is
implemented by a type. The designer’s type is then associated with a class through the use of
metadata, specifically, the DesignerAttribute type. This allows developers to create and associ-
ate their own designers with their custom classes, thereby extending the development environ-
ment. In our example, to create code to access the Titles table, a table is dragged onto a Web
Form and its associated designer. However, you can also create your own components that can
be added to the Toolbox and subsequently dragged and dropped on a designer surface by
directly or indirectly implementing the System.ComponentModel.IComponent interface.

Finally, you can graphically interact with inherently non-visual components by creating a class
derived from System.ComponentModel.Component because it is associated with the designer
implemented by the System.ComponentModel.Design.ComponentDesigner type.

As a result of dragging and dropping the table onto the WebForm1.aspx designer surface,
two objects, sqlConnection1 and sqlDataAdapter1, will be created and placed at the
bottom of the designer surface. By dropping the table, VS .NET assumed you wanted to
connect to the database and select, insert, update, and delete data from the table and so it
added both objects to the form. You can then inspect and change the default properties it
set for the objects by clicking on them and viewing their properties in the Properties win-
dow. To provide easier configuration, if the Data Adapter Configuration Wizard does not
open automatically, you can invoke it by right-clicking on the sqlDataAdapter1 object
and selecting Configure Data Adapter.

This wizard has several interesting features, including the ability to generate SQL state-
ments and stored procedures to populate the data adapter. To begin, it allows you to
choose an existing data connection or create a new one on the fly. After selecting the
connection, you are presented with the dialog shown in Figure 2.3.

04 3869 ch02 5/20/02 1:15 PM Page 31

This dialog is used to specify how the data adapter will communicate with the
data store. Because ADO.NET was designed with the goal of flexibility, it’s just

as easy to use a SQL statement as it is a stored procedure. In most enterprise applica-
tions, you’ll want to use stored procedures because of the added performance, abstrac-
tion, and security they provide. We will discuss this in more detail on Day 10, “Working
with Commands.”

In this case, you’ll choose Create new stored procedures and click Next. From here, you
can specify a SQL statement to use as the basis for specifying the data that the data
adapter will access, or you can use the query builder to build a SQL statement graphical-
ly. By default, a SELECT statement with all the columns will be created. In this case,
either use the Query Builder or simply modify the SQL to remove the Cover column
from the SELECT clause and sort the result set in ascending order by title. This dialog also
contains the Advanced Options button, which controls how the stored procedures are to
be written. The three options allow you to specify

• Whether insert, update, and delete statements are generated in addition to a select
statement

• Whether optimistic concurrency is used when formulating the WHERE clauses in the
update and delete stored procedures

• Whether a SELECT statement will be added to the insert and update stored proce-
dures

If you unselect the optimistic concurrency option, only the primary key will be
used in the WHERE clause. As changes hit the database, they will overwrite exist-

ing records that might have been changed by other users since the data was first selected.
This increases concurrency (the ability to have many users using the database simulta-
neously) and decreases the chances of an error. Leaving the option checked ensures that

32 Day 2

FIGURE 2.3
Choose a query type.
This part of the Data
Adapter Configuration
Wizard allows you to
specify how data from
the database is
accessed.

NEW TERM

NEW TERM

04 3869 ch02 5/20/02 1:15 PM Page 32

Getting Started 33

2

the data has remained untouched. However, it means that the stored procedure must be
passed both the new and original values, and will obviously increase the likelihood that a
change will fail, thereby decreasing concurrency. For this example, turn off the Use
Optimistic Concurrency option.

The third option to refresh the DataSet is useful, especially in situations where the table
contains server-generated values such as IDENTITY columns and default values in order to
make sure they are visible if the modifications are successful. Click OK to close the
Advanced Options dialog and click Next to move to the Create the Stored Procedures
step shown in Figure 2.4.

FIGURE 2.4
Naming procedures.
This step of the Data
Adapter Configuration
Wizard allows you to
pick names for the
stored procedures, and
optionally review and
save the script used to
create them.

In the step shown in Figure 2.4, you have the option of naming the stored procedures
that are about to be created and either allowing the wizard to create the procedures or
saving the script and running it at a later time. You should use the latter option when you
do not have permissions to create objects in the database or if you want to further modify
the script by, for example, adding additional SQL Data Definition Language (DDL)
statements to it.

As shown in the figure, you should publish and use a naming convention in your organi-
zation for your procedures so that other developers can easily identify them. In this
example, we’re using the convention where the procedure is prefixed with usp (so as not
to be confused with the sp prefix reserved for system stored procedures), followed by
Select, Ins, Upd, or Del, depending on the function of the procedure and finally the
name of the table affected.

04 3869 ch02 5/20/02 1:15 PM Page 33

34 Day 2

Developer Rights

It’s important to remember that in SQL Server 2000 it’s not adequate to simply be logged on
with an account that’s a member of the db_ddladmin or even the db_owner fixed database role.
Being a member of the role will certainly allow you to create a stored procedure; however, the
procedure will be created under your account and so its fully qualified name will be, for exam-
ple, ssosa.dfox.usp_SelectTitles. In other words, the object will be owned by your account
and not the database owner (dbo), as is preferred. Having the objects owned by dbo allows all
accounts access to the objects transparently without having to specify the owner using dot
notation.

This situation can be avoided in one of three ways. First, if you’re a member of the sysadmin
fixed server role, any objects you create will be owned by dbo. Second, if you’re a member of
the dbcreator fixed server role and create the database in which you are attempting to create
objects, they’ll be owned by dbo. Finally, the option that is typically used, the server administra-
tor can alias your account as dbo by using the system stored procedure sp_addalias. In this way,
any object you create will be owned by dbo. This option gives you the necessary control of the
database while not allowing you to administer the server or create other databases. Of course,
it goes without saying that developers can be aliased to dbo in development databases, but cer-
tainly not in production.

You should then preview the SQL script using the appropriate button to make sure that
the script is as you specified. By clicking Next, the wizard presents a final checklist and
then creates the procedures and writes the necessary code in the Web Form to instantiate,
populate, and invoke the SqlConnection and SqlDataAdapter objects.

In this example, in addition to querying data for the Titles, we also need to query data
from the Categories table because there is a foreign key relationship between Titles
and Categories (each book belongs to exactly one category). To query the Categories
table, simply drag and drop it on the Web Form and once again invoke the Data Adapter
Configuration Wizard. This time, however, instead of creating stored procedures, select
Use existing stored procedures and select the existing usp_SelectCats stored procedure
for the Select command. Because the Categories table will not be modified in this
application, you needn’t fill in the rest of the commands. You’ll notice that the wizard
allows you to modify the names of the columns in the data row that map to the parame-
ters that are required by the stored procedure. As you’ll learn on Day 12, “Using a Data
Adapter,” the data adapter contains a mapping collection that is used to map columns in
the data source to those in the DataSet. By default, mappings are assumed to use identi-
cal names and so you don’t need to change the default values.

After finishing the wizard, you will now see two data adapter objects and one
SqlConnection in the designer. To make things simpler to read, you can rename

04 3869 ch02 5/20/02 1:15 PM Page 34

Getting Started 35

2

sqlDataAdapter1 to daTitles and sqlDataAdapter2 to daCategories using the
Properties window.

As a final touch, invoke the Table Mappings dialog for the daCategories object by
clicking on the ellipses button next to the TableMappings property in the Properties win-
dow. The dialog shown in Figure 2.5 can be used to modify the table mappings discussed
previously. It can also be used to set the name of the table in the DataSet this data
adapter will fill. Change the name from usp_SelectCats to Categories.

FIGURE 2.5
Table mappings. This
dialog is primarily
used to provide the
mapping layer between
a DataSet and the data
adapter.

Creating a DataSet
Now that the project contains two data adapters that will provide the communication to
the data source, you must add a DataSet to cache the data for display and modification.
To do so, right-click on the designer near the objects you just created and select Generate
DataSet.

The Generate DataSet dialog presents a list of the data tables it found in the Web Form;
in this case, finding both the Titles and Categories tables from the data adapters. By
selecting both tables, the tool will create a DataSet that contains two distinct tables that
can contain data from different data adapters. The obvious implication is that DataSet
objects can be used to store and combine heterogeneous data easily. You can also change
the name of the DataSet; in this case, change it to dsTitles.

After the data adapters are configured, you can preview them by choosing
the Preview Data option on their context menus. The resulting dialog simply
allows you to see the data selected by the adapter, and that will be used to
populate a DataSet.

Tip

04 3869 ch02 5/20/02 1:15 PM Page 35

The DataSet then will be added to the project (viewable in the Solution Explorer win-
dow) as dsTitles.xsd (because the structure of a DataSet is represented by the XML
Schema Definition [XSD] grammar). By double-clicking on the DataSet, the schema
editor will be invoked showing the two data tables side by side. As mentioned previously,
in the ComputeBooks database, the Titles and Categories tables have a foreign key
relationship. To represent that relationship in the DataSet, you need to create a relation
by right-clicking on the CatID element (column) and selecting Add, New Relation. You
can then use the Edit Relation dialog, shown in Figure 2.6, to set the properties of the
relationship, including the name of the relation, the parent and child elements, the fields
that will participate, and any additional constraints such as mandating cascading deletes
or setting the child field to Null in the event the parent field is deleted. In this case, the
child element should be set to Titles, which will automatically change the name
as well.

36 Day 2

FIGURE 2.6
Editing relations. You
can visually edit and
define relationships
between data tables in
a DataSet using the
Edit Relation dialog.

By clicking OK, the relation will be created and depicted with a dotted line.

At this point, you can view the XSD syntax for the DataSet by clicking on the XML
pane at the bottom of the editor. You’ll learn more about the syntax shown here on Day
7, “DataSets and XML.” You can also get a preview of Day 6, “Building Strongly Typed
DataSet Classes,” by clicking on the Show All Files icon in the Solution Explorer and
expanding the dsTitles.xsd node. You’ll see that beneath the DataSet is a file called
dsTitles.cs. This code file contains the programmatic definition of a typed DataSet that
maps to the schema.

04 3869 ch02 5/20/02 1:15 PM Page 36

Getting Started 37

2

Viewing the Code
One glaring fact should be pointed out before going any further: Up until this point,
we’ve not written a single line of code in order to declare, instantiate, populate, or invoke
any of the objects we’ve manipulated graphically. So, where’s the code?

To access the code for the Web Form, right-click on the designer and choose View Code.
The code for the form should appear similar to that shown in Listing 2.1.

LISTING 2.1 The generated code. This listing shows the code generated by the various
wizards used thus far today.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace ComputeBooksSimple
{

/// <summary>
/// Summary description for WebForm1.
/// </summary>
public class WebForm1 : System.Web.UI.Page
{
protected System.Data.SqlClient.SqlDataAdapter daTitles;
protected System.Data.SqlClient.SqlDataAdapter daCategories;
protected System.Data.SqlClient.SqlCommand sqlSelectCommand2;
protected System.Data.SqlClient.SqlCommand sqlSelectCommand1;
protected System.Data.SqlClient.SqlCommand sqlInsertCommand1;
protected System.Data.SqlClient.SqlCommand sqlUpdateCommand1;
protected System.Data.SqlClient.SqlCommand sqlDeleteCommand1;
protected ComputeBooksSimple.dsTitles dsTitles1;
protected System.Data.SqlClient.SqlConnection sqlConnection1;

private void Page_Load(object sender, System.EventArgs e)
{

// Put user code to initialize the page here
}

#region Web Form Designer generated code
#endregion

}
}

04 3869 ch02 5/20/02 1:15 PM Page 37

You’ll notice that although declarations have been created for the
SqlConnection, two SqlDataAdapters, and several SqlCommand objects, no code

to manipulate these objects is evident. Because the code was generated by a wizard and
can therefore be changed by a wizard, the Web Form Designer places the code in the
expandable region after the Page_Load method. By expanding the region, you can view
the roughly 130 lines of code that were generated, which we’ll discuss later today.

Creating the User Interface
The only remaining task to make this application functional is to put a user interface on
the Web Form and write some minimal code to get things rolling.

To begin, you’ll need to drag and drop a DataGrid control, found in the Toolbox on the
Web Forms tab, onto the Web Form. As you’ll learn on Day 16, “ADO.NET in the User
Services Tier,” VS .NET ships with a variety of controls that can be bound to a DataSet,
data reader, or in fact any object whose class implements the IEnumerable interface.
When the grid is positioned and sized correctly, right-click on it and choose Property
Builder to invoke the Properties dialog. From the Properties dialog, you can configure
almost all the properties necessary to allow the user to display and edit the information in
the product catalog.

Under the General tab, you first must bind the DataGrid to the dsTitles1 DataSet by
choosing it from the drop-down menu. In addition, you must set the DataMember property
to Titles because dsTitles1 contains two tables and therefore can be used to display
both Titles and Categories data. You can then set the Data key field option to ISBN
because ISBN is the primary key of the Titles table, as shown in Figure 2.7.

38 Day 2

ANALYSIS

FIGURE 2.7
The DataGrid
Properties dialog. The
General tab is used to
set up data binding on
the DataGrid.

04 3869 ch02 5/20/02 1:15 PM Page 38

Getting Started 39

2

You’ll do most of your work under the Columns tab. As you’ll notice, the Create
columns automatically at run time option is selected by default and will set up the grid
for you automatically. In this case, because you want to allow editing of the grid, you
should uncheck the box and select (All Fields) from the Available columns list and move
it across to the Selected columns list using the arrow button.

As you scroll through the Select columns list, you’ll notice that properties, such as the
header text, can be set for each column. In this case, because you want the user to be
able to edit only certain columns, you can go through the columns and mark ISBN,
Title, Author, Publisher, and PubDate as read-only. In addition, because several of the
columns (BulkDiscount, Discount, and Price) display currency, change their data for-
matting expression to “{0:c}” in order to display the amounts correctly.

For the grid to allow the user to shift a particular row into edit mode and subsequently
update that row, you must add a Edit, Update, Cancel column to the grid found under the
Button Column node in the Available columns list. After selecting it and moving to the
Selected columns list, be sure to move it to the top of the list using the arrow button.

The only remaining task in the Columns tab is to transform the editable columns into
template columns. Simply put, template columns can be used in a DataGrid control to
render data items differently depending on the edit mode. In this case, we want to make
sure that each editable column is rendered with a TextBox control to allow the user to
change its values. To create the template columns, simply click on each editable column
(Description, BulkAmount, BulkDiscount, Discount, and Price) in the Select columns
list and click the link found at the bottom of the dialog to convert the column into a tem-
plate column.

Also, in the Properties dialog, you can set the paging options using the Paging tab to
ensure that only a specific number of rows is visible at any particular time. In this case,
you might check the Allow paging option and set the page size to 5. Other navigation
options are available, although the defaults will suffice in this case. Of course, you might
also want to format the grid using the Format tab, for example, to change the font and
size of the text that displays for the DataGrid, header, footer, or to even alternate items.
After you’ve set the options you want, click OK and the grid should appear with the
bound columns on the Web Form, as shown in Figure 2.8.

To easily format the grid with a professional appearance, right-click on it in
the designer and select Auto Format. The grid shown in Figure 2.8 has been
formatted using the Colorful 2 option.

Tip

04 3869 ch02 5/20/02 1:15 PM Page 39

As mentioned previously, in this example we’re using template columns to allow users to
edit some of the columns when they click on the Edit link for a particular row. To pro-
vide specific names for the TextBox controls that are displayed, you can right-click the
grid and select Edit Template. You’ll see the five templated columns displayed. Click on
each one in turn and the grid will show the template editor. Note that a templated column
can render the header template, item template (the default view of the column), edit tem-
plate, and footer template. The EditItemTemplate should already contain a TextBox, so
you can simply click on it and change its ID in the Properties dialog. The names you can
use might include txtDesc, txtBulkAmount, txtBulkDiscount, txtDiscount, and
txtPrice. When you’ve renamed each of the controls, select End Template Editing from
the context menu.

In addition to the grid control, add a Label control from the Web Forms tab of the tool-
box to the top of the Web Form. This control will be used for rudimentary error handling,
so rename the control lblError. You can place it at the top of the page.

At this point, we need to add code to the page to query the database and bind the data to
the grid, to handle the paging of the grid, and to respond to the user clicking on Edit,
Update, or Cancel for a particular row. To view the code, again right-click on the design-
er and select View Code or double-click on the WebForm1.aspx.cs code file in the
Solution Explorer.

40 Day 2

FIGURE 2.8
A formatted DataGrid
control. Note that the
Properties window can
also be used to config-
ure properties such as
data binding for the
grid.

04 3869 ch02 5/20/02 1:15 PM Page 40

Getting Started 41

2

Retrieving Data
First, in a Web Form, the Load event of the page is called each time the page is first
loaded and when the page is posted back to the Web server in response to a user action
such as clicking the Edit link. To make the data from the database available to code in
the page, you must write code that queries the database, populates the DataSet, and
binds it to the DataGrid control. To do so, you can write the code shown in Listing 2.2.

One of the great things about ASP.NET is that it provides an event-driven
programming model for Web-based applications similar to that familiar to
developers who have used Visual Basic in the past. As in this example, you
can simply write code that handles events fired (actually posted) as the user
manipulates the page. The ASP.NET page framework handles the details of
posting the events and calling the correct event handlers on the server side.
For more information about the sequence and processing that takes place,
see Chapter 11 of my book Building Distributed Applications with Visual
Basic .NET, published by Sams.

Note

LISTING 2.2 Page Load event. The Load event of the page can be used to populate the
DataSet and bind it to controls on the page.

private void Page_Load(object sender, System.EventArgs e)
{
// Fill the dataset
daCategories.Fill(dsTitles1, “Categories”);
daTitles.Fill(dsTitles1, “Titles”);

if (!Page.IsPostBack)
{
// Bind the Data
DataGrid1.DataBind();

}
}

In Listing 2.2, we first use the two data adapters to query the database using their
Fill methods. The Fill method invokes the SelectCommand associated with the

data adapter, and uses the results to populate the DataSet passed as a parameter. The
Fill method is overloaded (that is, it has multiple sets of arguments), and in this case,
you can pass the DataSet along with the name of the table within the DataSet that
should be populated. Then, to make sure that the data is bound to the grid, you simply
call the DataBind method of the control. This snippet also shows wrapping the execution
of the DataBind method in a check of the IsPostBack property of the page so that the

ANALYSIS

04 3869 ch02 5/20/02 1:15 PM Page 41

binding occurs only when the page is first loaded, and not in response to user actions
such as putting the grid into edit mode.

Allowing Navigation
Next, you can add code for the PageIndexChanged event raised when the user navigates
to a new page. Although the Properties dialog sets up all the required properties, it does
not write the code to handle the event, which is shown in Listing 2.3.

LISTING 2.3 Handling navigation. The PageIndexChanged event will fire when the user
navigates to a new page within the grid control.

private void DataGrid1_PageIndexChanged(object source,
DataGridPageChangedEventArgs e)

{
DataGrid1.CurrentPageIndex = e.NewPageIndex;
DataGrid1.DataBind();

}

As you can see in Listing 2.3, the DataGridPageChanged object contains the
number of the page the user is navigating to in its NewPageIndex property.

Setting the CurrentPageIndex property of the DataGrid and then calling DataBind dis-
plays the appropriate page in the grid.

Handling Editing Events
Finally, the most sophisticated code you need to write handles the three events raised
when the user initially selects a row for editing, updates the row, or chooses the cancel
option. Keep in mind that these options are available because you added the button col-
umn to the grid in the Property Builder dialog.

The three events can be handled using the code shown in Listing 2.4.

LISTING 2.4 Handling editing events. This listing shows how you can handle the events
fired when the user edits data in a DataGrid control.

private void DataGrid1_EditCommand(object source, DataGridCommandEventArgs e)
{

DataGrid1.EditItemIndex = e.Item.ItemIndex;
DataGrid1.DataBind();

}

private void DataGrid1_CancelCommand(object source, DataGridCommandEventArgs e)
{

DataGrid1.EditItemIndex = -1;
DataGrid1.DataBind();

42 Day 2

ANALYSIS

04 3869 ch02 5/20/02 1:15 PM Page 42

Getting Started 43

2

}

private void DataGrid1_UpdateCommand(object source, DataGridCommandEventArgs e)
{

// Extract the data from the template controls
TextBox descBox = (TextBox)(e.Item.Cells[1].FindControl(“txtDesc”));
string desc = descBox.Text;

TextBox baBox = (TextBox)(e.Item.Cells[1].FindControl(“txtBulkAmount”));
string bulkAmount = baBox.Text;

TextBox bdBox = (TextBox)(e.Item.Cells[1].FindControl(“txtBulkDiscount”));
string bulkDiscount = bdBox.Text;

TextBox disBox = (TextBox)(e.Item.Cells[1].FindControl(“txtDiscount”));
string discount = disBox.Text;

TextBox prBox = (TextBox)(e.Item.Cells[1].FindControl(“txtPrice”));
string price = prBox.Text;

try
{

// Update the DataSet
dsTitles1.Titles[e.Item.DataSetIndex].Description = desc;
dsTitles1.Titles[e.Item.DataSetIndex].BulkAmount =
System.Int16.Parse(bulkAmount);

dsTitles1.Titles[e.Item.DataSetIndex].BulkDiscount =
System.Decimal.Parse(bulkDiscount);

dsTitles1.Titles[e.Item.DataSetIndex].Discount =
System.Decimal.Parse(discount);

dsTitles1.Titles[e.Item.DataSetIndex].Price =
System.Decimal.Parse(price);

// Update the database
daTitles.Update(dsTitles1.GetChanges());

}
catch (Exception ex)
{

lblError.Text = “An error occurred:” + ex.Message;
return;

}

// Switch out of edit mode.
lblError.Text = “”;
DataGrid1.EditItemIndex = -1;
DataGrid1.DataBind();

}

LISTING 2.4 continued

04 3869 ch02 5/20/02 1:15 PM Page 43

As you can see from Listing 2.4, two of the events are trivial. The EditCommand
and CancelCommand events of the DataGrid are used to simply shift the grid into

and out of edit mode. This is done by setting the EditItemIndex property of the
DataGrid to 1 and –1, respectively, and calling the DataBind method to bind the data
from the dsTitles1 object to the grid.

The code in the UpdateCommand, however, is more complicated because it’s responsible
for extracting the modified data from the TextBox controls and saving the data to the
database. As you can see, the first section of the code extracts the values from the Text
property of the TextBox controls by finding the control in the current row using the
FindControl method. The Item (row) that is being edited is passed in the
DataGridEventArgs object and its cells accessed through the Cells collection.

Next, the DataSet and database updates are wrapped in a try catch block in order to
intercept any exceptions that might be thrown and display the message in the lblError
control before exiting the method. Exiting the method before changing the
EditItemIndex property back to –1 ensures that the grid will remain in edit mode, and
gives the users a chance to correct their errors and resubmit the changes. The DataSet
needs to be updated because while the columns in the grid are bound to the DataSet for
display, they do not automatically update the DataSet. In this case, the DataSetIndex
property of the Item can be used to determine which row in the DataSet was changed,
and then its properties are set accordingly using the Titles DataTable object exposed by
the dsTitles class. Note that the data types of the columns must be honored, so the
strings must be converted to short or decimal data types in this case.

44 Day 2

ANALYSIS

As you learned yesterday, the ability to access data both relationally and in
an object-oriented syntax was a design goal for ADO.NET. The typed DataSet
dsTitles exposes objects such as Titles that make accessing the underlying
data much easier.

Note

To actually perform the database update, call the Update method of the daTitles data
adapter and pass it a DataSet to update. The GetChanges method of the DataSet simply
creates a DataSet with only the modified rows in it. This obviously cuts down on the
amount of data being passed to the method, and is particularly effective when passing
data between processes or machines in a distributed application. The Update method
looks for modified and deleted rows and invokes its UpdateCommand or DeleteCommand,
respectively. In this case, the usp_UpdTitles stored procedure that was created previous-
ly will be called with the new data.

04 3869 ch02 5/20/02 1:15 PM Page 44

Getting Started 45

2
If no exceptions occur, the EditItemIndex property is set back to –1 to take the grid out
of edit mode and the new data is bound to the grid for display.

Binding the Events
The final step is to bind the three methods in Listing 2.4 and the method for the
PageIndexChanged event to the events of the grid control. This can be done graphically
by clicking on the lightning bolt in the Properties window for the grid and dropping
down the appropriate event and selecting the methods you just created. This adds code
like that shown in Listing 2.5 to the Web Form Designer generated code in the
InitializeComponent method.

LISTING 2.5 Binding the events. This listing shows how you add event handlers for the
events of the DataGrid control.

this.DataGrid1.PageIndexChanged += new
System.Web.UI.WebControls.DataGridPageChangedEventHandler(
this.DataGrid1_PageIndexChanged);

this.DataGrid1.CancelCommand += new
System.Web.UI.WebControls.DataGridCommandEventHandler(
this.DataGrid1_CancelCommand);

this.DataGrid1.EditCommand += new
System.Web.UI.WebControls.DataGridCommandEventHandler(
this.DataGrid1_EditCommand);

this.DataGrid1.UpdateCommand += new
System.Web.UI.WebControls.DataGridCommandEventHandler(
this.DataGrid1_UpdateCommand);

When using SQL Server, to see the statements invoked on the server and to
aid in debugging, use the Profiler utility found in the Microsoft SQL Server
program group.

Tip

In case you’re not familiar with C#, the this operator is used to reference
members of the current instance. In other words, this.DataGrid1 refers to
the instance of the DataGrid1 object associated with the current page.

Note

You can then run the page in the browser and it should appear as shown in Figure 2.9.
Note that in this figure the Edit link for the row has been clicked and the row’s data has
been edited. The product catalog application can be tested by modifying the values and
clicking Update to save the record to the database.

04 3869 ch02 5/20/02 1:15 PM Page 45

ADO.NET in Code
Although you have completed a functional ADO.NET application, you’ve only written a
handful of lines of code to make it functional. As mentioned previously, this is due to the
work of the various wizards, particularly the Data Adapter Configuration Wizard, and the
property dialogs. This section will briefly look at selected sections of the ADO.NET
code that was written so you can begin to get familiar with what’s under the covers in
preparation for the days ahead.

All the code that will be discussed was placed in the private InitializeComponent
method of WebForm1 class in the WebForm1.aspx.cs file. This method is called in the
OnInit method of the WebForm1 class, itself called by ASP.NET the first time the page is
loaded when requested by an individual client. You can view the InitializeComponent
method by expanding the Web Form Designer generated code region.

Making a Connection
First, remember that the data connection we created at the very beginning of this day was
used by the Data Adapter Configuration Wizard to place the sqlConnection1 object on
the form designer. The result included two lines of code in addition to the declaration
shown in Listing 2.1:

46 Day 2

FIGURE 2.9
Running the product
catalog. Here the row
is in edit mode and its
data can be modified.

04 3869 ch02 5/20/02 1:15 PM Page 46

Getting Started 47

2

this.sqlConnection1 = new System.Data.SqlClient.SqlConnection();

this.sqlConnection1.ConnectionString = “data source=.;” +
“initial catalog=ComputeBooks;integrated security=SSPI;persist security” +
“ info=False;workstation id=SSOSA;packet size=4096”;

Obviously, the first line instantiates the new connection object, and the second initializes
the string that contains the properties used to create the connection. In this case, you’ll
notice that the connection string indicates that the data exists on the local server, and
integrated security (the identity or Windows account of the process running the code)
will be used for authentication. These settings can be changed simply by editing the
string here, although a more maintainable approach is to store the connection string sepa-
rate from the code so that it can be changed without changing and recompiling the code.
Several techniques for doing so will be discussed on Day 9, “Using Connections and
Transactions.”

The other interesting point to note is that the Open and Close methods of the
SqlConnection class are never called explicitly. This is the case because the
SqlDataAdapter calls them for you as it is used to Fill a DataSet and Update its con-
tents.

Setting Up a Command
For the data adapter to do its work, of course, it must call the stored procedures that were
created when you ran the Data Adapter Configuration Wizard. As mentioned yesterday,
one of the convenient aspects of ADO.NET is that it integrates support for calling stored
procedures to perform all aspects of data manipulation. In addition to creating stored pro-
cedures in the ComputeBooks SQL Server database to handle the select, insert, update,
and delete actions for the Titles table, it wrote code in the InitializeComponent
method to instantiate a SqlCommand object for each object and configure its parameters.
For example, the code in Listing 2.6 was written to define the command object used to
handle the update action of the user called when the Update method of the data adapter
is called in Listing 2.4.

LISTING 2.6 Creating a command. This code written by the wizard configures the
update command for the data adapter.

this.sqlUpdateCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlUpdateCommand1.CommandText = “[usp_UpdTitles]”;
this.sqlUpdateCommand1.CommandType = System.Data.CommandType.StoredProcedure;
this.sqlUpdateCommand1.Connection = this.sqlConnection1;

04 3869 ch02 5/20/02 1:15 PM Page 47

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@RETURN_VALUE”,
System.Data.SqlDbType.Int, 4, System.Data.ParameterDirection.ReturnValue,
false, ((System.Byte)(0)), ((System.Byte)(0)), “”,
System.Data.DataRowVersion.Current, null));
this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@ISBN”,
System.Data.SqlDbType.NVarChar, 10, “ISBN”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@Title”,
System.Data.SqlDbType.NVarChar, 100, “Title”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@Description”,
System.Data.SqlDbType.NVarChar, 2048, “Description”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@Author”,
System.Data.SqlDbType.NVarChar, 250, “Author”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@Publisher”,
System.Data.SqlDbType.NVarChar, 50, “Publisher”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@CatID”,
System.Data.SqlDbType.UniqueIdentifier, 16, “CatID”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@BulkAmount”,
System.Data.SqlDbType.SmallInt, 2, “BulkAmount”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@BulkDiscount”,
System.Data.SqlDbType.Money, 8, “BulkDiscount”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@Discount”,
System.Data.SqlDbType.Money, 8, “Discount”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@Price”,
System.Data.SqlDbType.Money, 8, “Price”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@PubDate”,
System.Data.SqlDbType.DateTime, 4, “PubDate”));

this.sqlUpdateCommand1.Parameters.Add(new
System.Data.SqlClient.SqlParameter(“@Original_ISBN”,
System.Data.SqlDbType.NVarChar, 10, System.Data.ParameterDirection.Input,
false, ((System.Byte)(0)), ((System.Byte)(0)), “ISBN”,
System.Data.DataRowVersion.Original, null));

As you can see from Listing 2.6, the sqlUpdateCommand1 object is instantiated
first. The command is then configured by setting its CommandText property to the

name of the stored procedure to execute, and setting the CommandType to a value from an

48 Day 2

LISTING 2.6 continued

ANALYSIS

04 3869 ch02 5/20/02 1:15 PM Page 48

Getting Started 49

2

enumerated type that specifies what kind of command was placed in the CommandText
property. Finally, the connection object that will be used to communicate with the data-
base is set using the Connection property.

In addition to the command shown in Listing 2.6, the wizard also created and configured
four other command objects that include the select, insert, and delete commands for the
daTitles data adapter and the select command of the daCategories data adapter.

The remainder of Listing 2.6 contains code used to create the parameters used to call the
stored procedure. Note that the parameters are added to a collection using the Add
method. You’ll learn more about parameters on Day 10. For comparison, the actual
stored procedure generated and saved to SQL Server by the wizard is shown in
Listing 2.7.

LISTING 2.7 The Update stored procedure. This procedure was created by the Data
Adapter Configuration Wizard and is used to update a row in the Titles table.

CREATE PROCEDURE dbo.usp_UpdTitles
(

@ISBN nchar(10),
@Title nvarchar(100),
@Description nvarchar(2048),
@Author nvarchar(250),
@Publisher nvarchar(50),
@CatID uniqueidentifier,
@BulkAmount smallint,
@BulkDiscount money,
@Discount money,
@Price money,
@PubDate smalldatetime,
@Original_ISBN nchar(10)

)
AS
SET NOCOUNT OFF;

UPDATE Titles SET ISBN = @ISBN, Title = @Title, Description = @Description,
Author = @Author, Publisher = @Publisher, CatID = @CatID,
BulkAmount = @BulkAmount, BulkDiscount = @BulkDiscount, Discount = @Discount,
Price = @Price, PubDate = @PubDate WHERE (ISBN = @Original_ISBN);

SELECT ISBN, Title, Description, Author, Publisher, CatID, BulkAmount,
BulkDiscount, Discount, Price, PubDate
FROM Titles
WHERE (ISBN = @ISBN) ORDER BY Title
GO

04 3869 ch02 5/20/02 1:15 PM Page 49

Configuring a Data Adapter
Not only did the wizard create the command objects that execute the stored procedures in
the database, it also had to configure the data adapters to associate them with the com-
mand objects. Data adapters expose SelectCommand, InsertCommand, UpdateCommand,
and DeleteCommand properties that are populated with commands like those shown in
Listing 2.6. In the InitializeComponent method, the code looks like the following:

this.daTitles.DeleteCommand = this.sqlDeleteCommand1;
this.daTitles.InsertCommand = this.sqlInsertCommand1;
this.daTitles.SelectCommand = this.sqlSelectCommand1;
this.daTitles.UpdateCommand = this.sqlUpdateCommand1;

Finally, the wizard configured the TableMappings collection as shown in Figure 2.5. The
code to do so can be seen in Listing 2.8.

LISTING 2.8 Table mappings. The wizard wrote the following code to add the table and
column mappings to the data adapter.

this.daTitles.TableMappings.AddRange(
new System.Data.Common.DataTableMapping[] {
new System.Data.Common.DataTableMapping(“Table”, “Titles”,
new System.Data.Common.DataColumnMapping[] {
new System.Data.Common.DataColumnMapping(“ISBN”, “ISBN”),
new System.Data.Common.DataColumnMapping(“Title”, “Title”),
new System.Data.Common.DataColumnMapping(“Description”, “Description”),
new System.Data.Common.DataColumnMapping(“Author”, “Author”),
new System.Data.Common.DataColumnMapping(“Publisher”, “Publisher”),
new System.Data.Common.DataColumnMapping(“CatID”, “CatID”),
new System.Data.Common.DataColumnMapping(“BulkAmount”, “BulkAmount”),
new System.Data.Common.DataColumnMapping(“BulkDiscount”, “BulkDiscount”),
new System.Data.Common.DataColumnMapping(“Discount”, “Discount”),
new System.Data.Common.DataColumnMapping(“Price”, “Price”),
new System.Data.Common.DataColumnMapping(“PubDate”, “PubDate”)})});

Basically, this code adds new DataColumnMapping objects to a collection associ-
ated with the Titles table in a DataSet that the data adapter will populate using

its Fill method. The data adapter uses this collection to map the column names from the
database (the first argument in the constructor) to the columns in the DataSet (the sec-
ond argument in the constructor). In this case, you’ll notice that all the mappings use the
same names, so the map needn’t have been created.

50 Day 2

ANALYSIS

04 3869 ch02 5/20/02 1:15 PM Page 50

Getting Started 51

2

Summary
Today you learned how to create a simple ASP.NET application using ADO.NET to
update the product catalog of the ComputeBooks database. This application demonstrat-
ed some of the features of VS .NET and how they work with ADO.NET to generate code
and allow graphical creation of even Web applications. In addition, you gained a perspec-
tive on how the components of ADO.NET fit together and the rudimentary code needed
to make them work.

Tomorrow, you’ll start to delve deeply into the DataSet object and how it can be manip-
ulated programmatically.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What is the purpose of the Server Explorer in Visual Studio .NET?

The purpose of the Server Explorer, along with the visual designers in VS .NET, is
to allow rapid application development for server-based and middle-tier compo-
nents by providing a drag-and-drop interface for manipulating server resources
such as databases, message queues, event logs, and performance counters.

2. What three options does the Data Adapter Configuration Wizard provide for defin-
ing a query?

Using SQL statements typed in or built with the Query Builder, creating new
stored procedures on the fly, or specifying existing stored procedures. Stored pro-
cedures are recommended for accessing a SQL Server database.

3. How can you generate a DataSet from existing data adapters?

If you have data adapters defined on the designer, you can right-click on the
designer and choose Generate DataSet. The resulting dialog allows you to choose
which select commands from the data adapters will be used to generate the defini-
tion of the data tables in the DataSet.

4. What is the purpose of template columns in a DataGrid control?

Template columns are used to provide alternative renderings for columns in the
DataGrid. For example, you can provide a Label control for default viewing of the
column and a DropDownList control for editing.

04 3869 ch02 5/20/02 1:15 PM Page 51

Exercise
You’ll notice that although we added a data adapter to read the Categories table and
create a relation in the DataSet to relate the CatID columns in the Titles and
Categories table, we didn’t actually display a Categories column. In this exercise, mod-
ify the WebForm1.aspx page to add a read-only column to display the category descrip-
tion.

Answers for Day 2
Exercise Answer
One simple technique that you can use to add the category description column to the grid
is to first create a new template column in the grid. This can be accomplished program-
matically by editing the HTML and adding the new Category column after the Price col-
umn as follows:

<asp:TemplateColumn HeaderText=”Category”>
<ItemTemplate>
<asp:Label id=”Label7” runat=”server”
Text=’<%# this.GetCategory(DataBinder.Eval(Container,”DataItem.CatId”))%>’>

</asp:Label>
</ItemTemplate>
</asp:TemplateColumn>

Note that this template column contains only an ItemTemplate tag because the column is
not editable. The Text attribute passes the CatId column for the current row to a method
on the page called GetCategory. This method should return the Description given the
CatId as follows.

protected string GetCategory(object CatId)
{

dsTitles.CategoriesRow dr =
(dsTitles.CategoriesRow)dsTitles1.Categories.Select(
“CatID = ‘“ + CatId.ToString() + “‘“)[0];
return dr.Description;

}

You’ll learn more about the Select method used here tomorrow.

52 Day 2

04 3869 ch02 5/20/02 1:15 PM Page 52

DAY 3

WEEK 1

Working with DataSets
Yesterday you walked through an end-to-end example of building an ASP.NET
application designed to put the use of ADO.NET in perspective. However, the
reliance on code-generating wizards can certainly obscure the breadth of func-
tionality that is at your disposal. For that reason, today and the next four days
will be devoted to an in-depth look at all aspects of the DataSet object. Unlike
yesterday, the format of the next few days will not take you through an applica-
tion or work with graphical tools, but rather will examine short snippets and
code listings that highlight specific features and behaviors of the DataSet.
Specifically, today you will learn the most common techniques for working
with DataSet objects, including

• How a DataSet compares to an ADO Recordset

• How to programmatically populate and traverse a DataSet

• How to select and find rows within a table

• How to copy, clone, and merge DataSet objects

• How to be notified of events

• The importance and use of a DataView

05 3869 ch03 5/20/02 1:19 PM Page 53

Understanding the ADO.NET DataSet
The DataSet class is a member of the System.Data namespace. It represents the first of
the two major components of the ADO.NET architecture you learned about on Day 1,
“ADO.NET In Perspective,” the other being the .NET Data Providers. Its major attributes
include the following:

• It is XML-based.

• It is an in-memory cache of data that is not backed by a file or data store—it is dis-
connected.

• It is independent of a data store and cannot communicate with one by itself.

• It can store data in multiple tables from multiple data stores that can be related
through foreign key relationships.

• It stores multiple versions of the data for each column and for each row in each
table.

• It can be serialized with full fidelity to XML for transport between tiers of a dis-
tributed application even when those tiers reside on separate physical machines.

As is evident from this list, the DataSet provides the core object for building applica-
tions using a disconnected programming model. ADO.NET also supports a connected
model for data retrieval through the use of the data readers, as you’ll learn on Day 11,
“Using a DataReader.”

This list should also point to several of the similarities and differences between the
DataSet and the Recordset object available in ADO that might be helpful if you are
experienced with ADO. Similar to the DataSet, a Recordset could be disconnected from
its data store and therefore act as an in-memory cache of data. Of course, it could also be
used in a connected model depending on the cursor options that were set. Although the
Recordset object stored multiple versions of each column for each of its rows, it was not
by nature able to represent multiple tables without the use of the Data Shape Provider.
The Recordset was not XML-based and could not be serialized to XML easily or flexi-
bly. Finally, a Recordset was not independent of a data store because it tracked a
Connection object and through its methods could send queries to the data source to pop-
ulate, update, and refresh its data. To that end, the Recordset contained functionality
found in the ADO.NET DataSet, data reader, and data adapter objects.

The DataSet class itself is derived from the class
System.ComponentModel.MarshalByValueComponent, from which it receives its ability
to be serialized, added to the VS .NET toolbox, and visually designed in a designer. Its
place in the .NET Framework is shown in Figure 3.1.

54 Day 3

05 3869 ch03 5/20/02 1:19 PM Page 54

Working with DataSets 55

3
The major properties, methods, and events (collectively referred to as members) of the
DataSet class can be seen in Table 3.1.

TABLE 3.1 Important DataSet Members

Member Description

Properties

CaseSensitive Property that gets or sets whether string comparisons are case
sensitive

DataSetName Property that gets or sets the name of the DataSet

DefaultViewManager Property that gets a custom view of data to allow searching, sort-
ing, and filtering

EnforceConstraints Property that specifies whether constraint rules are followed when
updates occur

ExtendedProperties A collection of custom information that resides with the DataSet

HasErrors Property that indicates whether there are errors in any rows in any
of the tables

Namespace Property that gets or sets an XML namespace for the DataSet

Prefix Property that gets or sets an XML prefix for the namespace for
the DataSet

Collections

Relations A collection of relations housed in a DataRelationCollection
object that link tables through foreign keys

Tables A collection of tables (DataTable objects exposed through a
DataTableCollection object) that store the actual data

FIGURE 3.1
The DataSet in context
within the .NET
Framework. Note that
all objects are ulti-
mately derived from
System.Object and
that namespaces are
denoted with dotted
borders.

ExtendedProperties

DataSet

Relations

Tables

Object

MarshalbyValueComponent

ComponentModel

Data

System

05 3869 ch03 5/20/02 1:19 PM Page 55

Methods

AcceptChanges Method that commits all changes to the DataSet

Clear Method that removes all rows from all tables

Clone Method that copies the structure but no data from the DataSet

Copy Method that copies both the structure and data of a DataSet

GetChanges Method that returns a copy of the DataSet with only changed
rows or those that match a given DataRowState filter

GetXml Method that returns an XML representation of the data

GetXmlSchema Method that returns an XML representation of the structure of the
DataSet

HasChanges Method that returns a value indicating that there are pending
changes

InferXmlSchema Method that infers the structure of the DataSet based on a file or
stream

Merge Method that merges this DataSet with one provided

ReadXml Method that loads an XML schema and data into a DataSet

ReadXmlSchema Method that loads an XML schema into a DataSet

RejectChanges Method that rolls back all changes made to a DataSet (opposite of
AcceptChanges)

Reset Method that reverts the DataSet to its original state

WriteXml Method that writes XML data and optionally the schema to a file
or stream

WriteXmlSchema Method that writes the XML schema to a file or stream

WriteXmlSchema Method that writes the XML schema to a file or stream

Events

MergeFailed Event that fires when a merge fails due to constraint violations

Throughout the next several days, you’ll become very familiar with these members and
how they can be used in your applications. Keep in mind that through overloading, many
of the methods shown in Table 3.1 can accept different sets of arguments and therefore
work in several different ways.

56 Day 3

TABLE 3.1 continued

Member Description

05 3869 ch03 5/20/02 1:19 PM Page 56

Working with DataSets 57

3

Populating a DataSet
As you learned yesterday, a DataSet can be populated by a data adapter by calling the
data adapter’s Fill method. The Fill method invokes the command object referenced in
the data adapter’s SelectCommand property, and the data is subsequently loaded into the
DataSet using the mapping found in the TableMappings property of the data adapter.
This technique is far and away the one that you’ll use most frequently to load data into a
DataSet.

However, because the DataSet is a standalone object, it can also be programmatically
loaded using its Tables collection. For example, the code in Listing 3.1 written in VB
.NET creates a DataSet and populates it with two stores.

Referencing ADO.NET

Because ADO.NET is so integral to creating applications in .NET, when using VS .NET, new pro-
jects in both VC# .NET and VB .NET automatically add a reference to the ADO.NET assembly.
However, in VC# .NET, you must include a using System.Data; statement in your source code
file to avoid having to fully qualify the names of ADO.NET objects as in System.Data.DataSet.
In VB .NET, the story is a little different because its Project Property dialog includes the Imports
page that by default includes the System.Data namespace. Therefore, the Imports System.Data
statement doesn’t have to appear in VB .NET source code files (unless you’re going to compile
them from the command line). The page can be seen and modified to include other name-
spaces, such as System.Data.SqlClient or System.Data.OleDb, by right-clicking on the project
name in the Solution Explorer when working with a VB .NET project and selecting properties.
The Imports page is under Common Properties.

LISTING 3.1 Populating a DataSet programmatically. This code populates a DataSet with
store information.

Dim stores As New DataSet(“NewStores”)
Dim storesTable As DataTable
Dim store As DataRow
Dim dcID As DataColumn

stores.CaseSensitive = False
stores.Namespace = “www.compubooks.com/stores”
stores.Prefix = “cbkss”

‘ Add the new table
storesTable = stores.Tables.Add(“Stores”)

‘ Define the columns

05 3869 ch03 5/20/02 1:19 PM Page 57

With storesTable
.Columns.Add(“StoreID”, GetType(System.Guid))
.Columns.Add(“Address”, GetType(String))
.Columns.Add(“City”, GetType(String))
.Columns.Add(“StateProv”, GetType(String))
.Columns.Add(“PostalCode”, GetType(String))

End With

‘ Create a new row
store = storesTable.NewRow
With store
.Item(“Address”) = “5676 College Blvd”
.Item(“City”) = “Overland Park”
.Item(“StateProv”) = “KS”
.Item(“PostalCode”) = “66212”
.Item(“StoreID”) = System.Guid.NewGuid

End With

‘ Add it
storesTable.Rows.Add(store)

‘ Add a second row
Dim newValues() As Object = {System.Guid.NewGuid, _
“5444 Elm”, “Shawnee”, “KS”, “66218”}

storesTable.Rows.Add(newValues)

You’ll notice in Listing 3.1 that the constructor of the DataSet accepts a string
that is used to specify the name of the DataSet. This can also be set using the

DataSetName property if you use the alternative constructor that accepts no arguments.
Properties of the DataSet including the XML Namespace and Prefix are then set to
ensure that if it were serialized to XML and transported to a trading partner, for example,
the data could be differentiated.

58 Day 3

LISTING 3.1 continued

ANALYSIS

In this example, the CaseSensitive property is set to False to disable case-
sensitive searching and filtering on the DataSet. As you’ll learn tomorrow,
there is also a CaseSensitive property on the DataTable class. As you would
expect, setting the property on the table overrides the property on the
DataSet, and resetting the property on the DataSet has no effect on tables
that have already had their CaseSensitive property set. It should also be
noted that the CaseSensitive property affects only string comparisons with
data and not the names of columns. In other words, case is not taken into
account when accessing column names even if the CaseSensitive property is
set to True.

Note

05 3869 ch03 5/20/02 1:19 PM Page 58

Working with DataSets 59

3

To track store information, a DataTable object is created and added to the Tables collec-
tion of the DataSet using the Add method of the underlying DataTableCollection
object. As you’ll learn tomorrow, the DataTable exposes a collection of the DataColumn
objects in its Columns collection. In Listing 3.1, columns are added to the table using the
Add method. Although there are several overloaded Add methods, the one used here sim-
ply accepts the name of the column and its data type. The StoreID column is the unique
identifier, and so its data type is System.Guid, whereas the rest simply map to the VB
.NET String data type (System.String behind the scenes).

After the table’s structure is created, the first row is added by first creating the DataRow
object using the NewRow method and then populating each individual column exposed
through the Item collection. Although the new row was created with the NewRow method,
it must be added to the table explicitly using the Add method of the DataRowCollection
class exposed through the Rows property.

The second row is added using a different technique. In this case, the values for the new
row are placed into an array of type Object and then simply passed to the overloaded
Add method of the DataRowCollection class. Note that in this case the values must be
placed into the array positionally coinciding with the order of the columns in the
DataTable. In addition, notice that the expression System.Guid.NewGuid is added as the
first element in the array. This is the case because the first position represents the
StoreID column, which must be uniquely generated.

Of course, you can also use a combination of the Fill method and the programmatic
approach to build a DataSet. One typical example is when you want the DataSet to
include both data from a data source and some application-generated data. For example,
the rather hard-coded example in Listing 3.2 shows how the DataSet can first be filled
using the Fill method and then modified to add a second table to store the criteria used
to populate the other table. The criteria can then subsequently be used to remind the
users how the rows they’re seeing were found.

As you’ll learn on Day 7, “DataSets and XML,” a DataSet can also be loaded
from an XML document.

Tip

LISTING 3.2 Combining techniques to populate a DataSet. This listing uses both the
Fill method and the programmatic approach to populate a DataSet.

Dim con As New OleDbConnection(_
“provider=sqloledb;server=ssosa;database=compubooks;trusted_connection=yes”)

Dim da As New OleDbDataAdapter(“usp_GetTitles”, con)
Dim books As New DataSet(“ComputeBooksTitles”)

05 3869 ch03 5/20/02 1:19 PM Page 59

Dim criteria As DataTable
Dim strISBN As String = “06720001X”

da.SelectCommand.CommandType = CommandType.StoredProcedure
da.SelectCommand.Parameters.Add(“@isbn”, strISBN)

da.Fill(books, “Titles”)

criteria = books.Tables.Add(“Criteria”)

‘ Define the columns
With criteria
.Columns.Add(“ISBN”, GetType(String))
.Columns.Add(“Title”, GetType(String))
.Columns.Add(“Author”, GetType(String))
.Columns.Add(“PubDate”, GetType(Date))
.Columns.Add(“CatID”, GetType(System.Guid))

End With

‘ Add the row
Dim newValues() As Object = {strISBN, Nothing, Nothing, Nothing, Nothing}
criteria.Rows.Add(newValues)

‘ Make it permanent
criteria.AcceptChanges()

A second interesting aspect of Listing 3.2 is that it calls the AcceptChanges
method of the criteria DataTable when the criteria row has been added. This

is done to make sure that the new row has been committed to the DataSet and so if the
DataSet is passed to a data adapter for update, the adapter will not attempt to synchro-
nize the changes with the data store. The code could have alternatively called the
AcceptChanges method of the DataSet, as shown in Table 3.1. This would have had the
effect of committing all changed or new rows in all tables within the DataSet.
Obviously, in this case, it makes sense to call AcceptChanges because the criteria will
never actually be stored in the database. In Listing 3.1, the AcceptChanges method
wasn’t called because the new stores may be later inserted into a database using a data
adapter.

Traversing a DataSet
It should come as no surprise that after a DataSet has been populated, both its structure
and data can be traversed programmatically. Listing 3.3 uses the collections of the
DataSet and its children to write out information about each of the tables as well as the
rows in a DataSet populated through the stored procedure usp_GetTitlesLookups.

60 Day 3

LISTING 3.2 continued

ANALYSIS

05 3869 ch03 5/20/02 1:19 PM Page 60

Working with DataSets 61

3

LISTING 3.3 Traversing a DataSet. This listing populates and traverses both the structure
and data in a DataSet.

Dim con As New SqlConnection(_
“server=ssosa;database=compubooks;trusted_connection=yes”)

Dim da As New SqlDataAdapter(“usp_GetTitlesLookups”, con)
Dim dsLookup As New DataSet(“LookupData”)
Dim dt As DataTable
Dim dc, pk As DataColumn
Dim dr As DataRow

da.SelectCommand.CommandType = CommandType.StoredProcedure

da.MissingSchemaAction = MissingSchemaAction.AddWithKey
da.Fill(dsLookup)

For Each dt In dsLookup.Tables
‘ Table info
Console.Write(dt.TableName)
Console.WriteLine(“ has “ & dt.Rows.Count & “ rows”)
Console.Write(“Primary Key: “)
For Each pk In dt.PrimaryKey
Console.Write(pk.ColumnName)

Next
Console.WriteLine()

‘ Column Info
For Each dc In dt.Columns
Console.Write(dc.ColumnName & “ “)
Console.Write(dc.DataType.ToString & “ “)
Console.Write(dc.AllowDBNull & “ “)
Console.WriteLine(dc.Unique)

Next
Console.WriteLine()

‘ Data
For Each dr In dt.Rows
For Each dc In dt.Columns
Console.Write(dc.ColumnName & “:”)
Console.WriteLine(dr.Item(dc))

Next
Next

Next

In Listing 3.3, you’ll notice that the DataSet is populated with the Fill method
from the stored procedure. The interesting aspect of the usp_GetTitlesLookups

stored procedure is that it contains SELECT statements from not just one but three tables,
as shown here:

ANALYSIS

05 3869 ch03 5/20/02 1:19 PM Page 61

Create Procedure usp_GetTitlesLookups
As
Select * From Titles
Order By Title
Select * From Categories
Order by Description
Select * From Publishers
Order by Name

As a result, if the data source can stream multiple result sets to the client in a single
statement, the Fill method of the data adapter can simply iterate them and create multi-
ple tables within the DataSet. You’ll also notice that the MissingSchemaAction property
of the data adapter is set to the AddWithKey value from the MissingSchemaAction enu-
meration. Although covered in more detail tomorrow, this setting ensures that the tables
within the DataSet will be loaded with the primary key and other information about the
columns.

After filling the DataSet, the code consists of a series of For Each loops used to iterate
the various collections. Each loop prints table and column information to the console fol-
lowed by all the data in the table. A sample of the results printed to the console is shown
here:

Table has 605 rows
Primary Key: ISBN
ISBN System.String False True
Title System.String False False
Description System.String True False
Author System.String False False
PubDate System.DateTime False False
Price System.Decimal False False
Discount System.Decimal True False
BulkDiscount System.Decimal True False
BulkAmount System.Int16 True False
Cover System.Byte[] True False
CatID System.Guid False False
Publisher System.String True False

ISBN:06720199X
Title:.NET Framework Essentials
Description:Great Books
Author:Thai/Lam..
PubDate:6/1/2001 12:00:00 AM
Price:29.99
Discount:10
BulkDiscount:11
BulkAmount:51
Cover:
CatID:21b60927-5659-4ad4-a036-ab478d73e754

62 Day 3

05 3869 ch03 5/20/02 1:19 PM Page 62

Working with DataSets 63

3

Publisher:ORly
...

Note that unlike in ADO, the number of rows returned for each table can be queried
before the data is traversed because the entire result set is first downloaded to the client.
In addition, by setting the MissingSchemaAction property, the PrimaryKey property of
the DataTable and the AllowDBNull and Unique properties of the DataColumn objects are
populated with the correct values corresponding to the primary key constraint, nullability
(NULL or NOT NULL) setting, and unique constraint information in SQL Server,
respectively.

Finally, the data is traversed by iterating the Rows collection of DataRow objects. In this
case, the ColumnName is printed along with the value.

Note that even though Option Strict is turned on, you don’t have to con-
vert the value of each column, dr.Item(dc), to a string using the CType func-
tion. This is because the WriteLine method of the Console object actually
supports 18 different signatures that accept the data types returned by the
Item collection. As a result, the appropriate data type will be chosen at run-
time and converted to a String for display. This is an excellent example of
an effective way to use overloaded members in a class.

Note

Selecting Data
Although it is more efficient to supply the appropriate row selection criteria to a SELECT
statement through a WHERE clause, there are times when you’ll need to create a subset of
the rows loaded to a DataSet. This can be accomplished through the use of the Select
and Find methods of the DataTable and DataRowCollection objects, respectively.

The Select method of the DataTable object is overloaded and can return the entire con-
tents of the table, the contents filtered by an expression, filtered and sorted rows, as well
as filtered and sorted rows that match a particular state. For example, building on the
code in Listing 3.3, the following code could be written to create an array of DataRow
objects containing the books for a particular author:

Dim titles As DataTable
Dim foundRows() As DataRow

titles = dsLookup.Tables(0)

foundRows = titles.Select(“Author = ‘Fox, Dan’”)

05 3869 ch03 5/20/02 1:20 PM Page 63

As you can see, the filter expression is similar to a WHERE clause but contains its own set
of rules, as shown in Table 3.2. The array of DataRow objects can then be traversed using
the For Each syntax shown in Listing 3.3. Of course, if just the rows for this author were
required from the database, you should use the following syntax directly in the
SelectCommand of the data adapter used to populate the DataSet or in the stored proce-
dure with the author name passed in as a parameter:

SELECT * FROM Titles
WHERE Author = ‘Fox, Dan’

TABLE 3.2 Expression Syntax Rules

Rule Description

Column Names You refer to column names using the name defined in the
DataSet rather than the name in the underlying data store.
Further, if a column name contains a special character, such as
~ () # / \ = > < + - * & % | ^ ‘ “ [], the name must be
wrapped in brackets.

Literal Values Strings must be placed in single quotes, dates must be brack-
eted in # (for example, #11/25/2001#), and numeric expres-
sions can contain decimal points.

Operators AND, OR, NOT, =, <, >, <=, >=, IN, LIKE, +, -, *, /, % (modulus)
operators are supported with optional parentheses; otherwise,
normal precedence rules apply. Note that string comparisons
are case sensitive based on the CaseSensitive property of the
DataSet object.

Wildcard Characters Both * and % can be used interchangeably in wildcard expres-
sions (for example, LIKE ‘Fox*’ or LIKE ‘Fox%’). If the lit-
eral string contains one of these characters, it can be set off in
brackets.

Functions The CONVERT, LEN, ISNULL, IIF, and SUBSTRING functions are
supported. They work as you would expect. More information
can be found in the online help.

Aggregate Functions The Sum, Avg, Min, Max, Count, StDev, and Var functions are
typically used in conjunction with a reference to parent or
child rows.

Parent and Child Relations Rows associated through relationships can be accessed using
dot notation, as in Child.column or Parent.column. If more
than one child exists, you can pass the name of the relation
using the syntax Child(relation).column.

64 Day 3

05 3869 ch03 5/20/02 1:20 PM Page 64

Working with DataSets 65

3

WHERE Versus Select

So, when should you use the Select method versus explicit parameters? The rule of thumb is
always to retrieve only the data from the database that you’re going to use. This means only
the data the user needs to see and perhaps modify. In other words, it should be rare that you’d
select the contents of an entire table and load it into a DataSet. Most DataSets will contain
rows already filtered through a WHERE clause. They can then be further filtered for a particular
use through the Select method.

This is the case because in most enterprise databases, the primary tables will contain many
more than the approximately 600 rows in the Titles table in the sample database. Can you
imagine loading the millions of titles tracked by a real bookseller into a DataSet? That
approach would be terribly slow and consume a tremendous amount of memory on the mid-
dle-tier server where the DataSet is created. Database products such as SQL Server and Oracle
are optimized to select data very quickly based on indexes created by the database administra-
tor. As long as you query data based on these indexes, you’re always better off letting the data-
base do the heavy lifting.

Table 3.2 lists the rules for creating expressions that are also used with the
Expression property of the DataColumn class, which we’ll discuss tomorrow,
and the RowFilter property of the DataView class. However, each of these
properties can be used for different purposes, and so although legal, not all
the available syntax will make sense when used with a particular property.
For example, using a string appropriate for a filter in the Expression proper-
ty of the DataColumn will simply evaluate to a Boolean statement that will
cause the value of the column to be a 0 (False) or 1 (True).

Note

In the previous example, if the DataTable has a primary key defined on it, as this one
does, the rows will be added to the array in the order of the key. If no key is specified,
the array will simply be populated in the order the rows were added to the table.

To explicitly control the sort order, you can specify the sort expression in the overloaded
Select method. For example, to select all the books published by Sams in order of pub-
lication date, starting with the most recent, the following code could be used:

foundRows = titles.Select(“Publisher = ‘Sams’”, “PubDate DESC”)

In the previous two examples, the Select method filtered and sorted the current rows in
the DataSet. However, because the DataSet stores both original and modified versions
of each row, the Select method also supports selecting rows based on the state of the
row in the table. The states are tracked using the DataViewRowState enumeration and

05 3869 ch03 5/20/02 1:20 PM Page 65

can be set to one of eight values (Added, CurrentRows, Deleted, ModifiedCurrent,
ModifiedOriginal, None, OriginalRows, and Unchanged). In other words, the previous
example is equivalent to

foundRows = titles.Select(“Publisher = ‘Sams’”, “PubDate DESC”, _
DataViewRowState.CurrentRows)

So, for example, you can use this overloaded signature to select rows that have not yet
been modified like so:

foundRows = titles.Select(“Publisher = ‘Sams’”, “PubDate DESC”, _
DataViewRowState.Unchanged)

You’ll learn more about changing data and how it is tracked on Day 5, “Changing Data.”

The second technique for selecting data is to use the Find method of the
DataRowCollection object (exposed through the Rows collection of the DataTable
object) to find one particular DataRow in the table based on the primary key. For exam-
ple, using the Titles table retrieved in Listing 3.3 once again, the following syntax can
be used to find a specific title:

Dim isbn As String
Dim foundRow As DataRow

isbn = “06720606X”

foundRow = titles.Rows.Find(isbn)

Note that the Find method is overloaded and accepts either a single value of type Object
or an array of objects. In this case, a single value is passed because the primary key con-
tains a single column. If the primary key were a composite key consisting of more than
one value, an array containing these values in the order they are defined in the key could
be passed. In addition, note that although Find accepts arguments of type Object, a
String can be passed (even with Option Strict On) because all types in .NET derive
from System.Object.

Of course, if no primary key is defined on the DataSet—for example, if the DataSet
were not populated using MissingSchemaAction.AddWithKey—the Find method would
throw a MissingPrimaryKeyException.

Manipulating Multiple DataSets
After a DataSet has been populated, you often need to use it in conjunction with other
DataSet objects. In this section, you’ll learn how to create a new DataSet based on an
existing one as well as merge it with other DataSet objects.

66 Day 3

05 3869 ch03 5/20/02 1:20 PM Page 66

Working with DataSets 67

3

Copying and Cloning
As you can see from Table 3.1, the DataSet object supports both Copy and Clone

instance methods. Neither method is overloaded or accepts any arguments; however, the
former copies both the data and structure of the DataSet and returns a new DataSet,
whereas the latter copies only the structure.

As you might imagine, you should use the Copy method when you need to maintain the
original DataSet and pass a copy to a process that may modify it. For example, Listing
3.4 shows an AddCriteria method that is passed in a DataSet and that then copies the
DataSet and adds to it a new DataTable. The result is that the original DataSet remains
unaffected, and a new DataSet with the new table will be returned from the method.

LISTING 3.4 Copying a DataSet. This method copies and then alters the new DataSet.

Public Function AddCriteria(ByVal ds As DataSet) As DataSet

Dim criteria As DataTable
Dim dsCopy As DataSet

dsCopy = ds.Copy

criteria = dsCopy.Tables.Add(“Criteria”)

‘ Define the columns
With criteria
.Columns.Add(“ISBN”, GetType(String))
.Columns.Add(“Title”, GetType(String))
.Columns.Add(“Author”, GetType(String))
.Columns.Add(“PubDate”, GetType(Date))
.Columns.Add(“CatID”, GetType(System.Guid))

End With

Return dsCopy

End Function

The Clone method works similarly but copies only the structure of the DataSet. You can
use it, for example, to create a DataSet that will hold similar information but is not yet
populated, as shown in the following code snippet:

Dim samsTitles As DataSet

samsTitles = titles.Clone()

05 3869 ch03 5/20/02 1:20 PM Page 67

In this case, titles is assumed to be a DataSet that might or might not have been previ-
ously populated with titles. However, the new DataSet will contain only Sams titles, so
its structure can be populated by cloning titles.

Although you can use the Copy method to copy an entire DataSet, it is usually more
important to create a new DataSet based on a subset of the rows from an existing
DataSet. This can be easily done using the GetChanges method. This overloaded method
is exposed by both the DataSet and DataTable objects. It returns either a new DataSet
or DataTable that includes all the changes made to the object since the last time
AcceptChanges was invoked, or the set of changes based on one or more of the five val-
ues from the DataRowState enumeration.

For example, Listing 3.5 is a template that shows how a client application could use the
GetChanges method to create a new DataSet that contains only the rows that have been
modified by the user and then send those changes to a data access object.

LISTING 3.5 Filtering rows. This method filters the rows that are sent to the data access
object using the GetChanges method.

Public Sub SaveChanges(ByVal ds As DataSet)

Dim dsErrors As DataSet

If ds.HasChanges(DataRowState.Modified) Then

Try
Dim bus As New DAObject()

‘ Call the business object
dsErrors = bus.Update(ds.GetChanges(DataRowState.Modified))

Catch e As DAException
‘ Handle exception here

End Try

End If
End Sub

Note that in Listing 3.5, the HasChanges method of the DataSet object is also
overloaded and can be passed a value from the DataRowState enumeration. In

this case, it checks to see whether any rows have been modified and if so, instantiates the
data access object and calls its Update method. The Update method accepts a DataSet
that is created and populated on the fly with only changed data using the GetChanges
method. Using this technique increases efficiency because passing only changed rows to

68 Day 3

ANALYSIS

05 3869 ch03 5/20/02 1:20 PM Page 68

Working with DataSets 69

3

the data access object results in less data being copied between tiers in your application.
After updating the underlying data source (typically using a data adapter), the data access
object may throw its own exception if an error occurs. It may, alternatively, pass back a
DataSet object that contains the rows that caused errors or perhaps the original DataSet
with values calculated by the data source (for example, primary key values or computed
columns). You’ll learn more about the GetChanges method and its usefulness on Day 5.

Merging DataSets
In addition to creating subsets of a DataSet, you can also merge the contents of two
DataSet objects using the overloaded Merge method. This is particularly useful when
you want to retrieve data to the client in smaller chunks or merge updated data returned
from a middle-tier object with existing data on the client.

The Merge method can merge an array of DataRow objects, a DataTable object, or an
entire DataSet into the current DataSet, defined as the one on which the method is
called. Along the way, the method accepts optional arguments that specify whether rows
from the merged data overwrite changes made to the current rows (the default) and what
action to take if the schema of the merged rows doesn’t match that of the current
DataSet. To give you a feel for how the Merge method works, consider the code in
Listing 3.6.

LISTING 3.6 Merging a DataSet. This code merges several DataSets together using vari-
ous overloaded signatures.

Dim books As DataSet
Dim books1 As DataSet
Dim books2 As DataSet
Dim books3 As DataSet

books = GetTitles(“Sams”)

books.Tables(0).Rows(0).Item(“Description”) = “Interesting book”

books1 = GetTitles(“Sams”)

books.Merge(dsBooks1, True)

books2 = GetTitles(“IDG”)

books.Merge(dsBooks2.Tables(0).Select(“Author = ‘Krumm, Rob’”))

books3 = GetTitles(“Wrox”)
books3.Tables(0).Columns.Add(New DataColumn(“Pre-release”, _
GetType(System.Boolean)))

books.Merge(dsBooks3, False, MissingSchemaAction.Add)

05 3869 ch03 5/20/02 1:20 PM Page 69

Although the code in Listing 3.6 is contrived, it provides a good overview of
how the Merge method works. First, assume that the GetTitles method returns a

DataSet populated with the titles for the publisher passed in as the argument. In this
case, the code first populates the books DataSet with the 44 titles for Sams in the data-
base. The code then modifies the Description column of the first book to a String
value in the next statement before retrieving the Sams titles again into a different
DataSet called books1. The Merge method of books is then called and is passed both the
DataSet to merge with books and an argument that indicates that previous changes to
books will be preserved. Because the two DataSets contain the same set of primary keys,
the Merge method will compare the key values and overlay the new data from books1
onto the rows in books while preserving any modified data in books. If the second argu-
ment were set to False, the rows from dsBooks1 would overwrite the books data com-
pletely. The end result is that books (or, more appropriately, the DataTable in books) still
contains 44 rows, one of which has been modified.

70 Day 3

ANALYSIS

In order for the Merge method to be able to compare rows based on the pri-
mary key, the key information must be defined for the DataSet. As men-
tioned previously, this can be done by setting the MissingSchemaAction
property of the data adapter used to fill the DataSet to AddWithKey.

Tip

The code then retrieves the 22 titles from IDG into books2 and then uses the Select
method to merge the returned array of DataRow objects into books. In this case, the
author used in the filter expression has authored one book, and so books will now con-
tain 45 rows.

Finally, the 49 Wrox titles are retrieved and placed in books3. In this case, the
DataTable that contains the Wrox titles is modified to include a new Boolean column
called Pre-release. When the Merge method is called to merge the Wrox titles into
books, the third argument specifies the action to take if the Merge method finds that the
schemas differ. The default, as is specified here, is to simply add the new column to the
existing schema using MissingSchemaAction.Add. In cases where the data being merged
comes from a trading partner or other organization, you might want to be alerted to the
fact that the schemas do not match. To do so, use the MissingSchemaAction.Error value
and a DataException will be thrown.

Handling Merge Errors
Merging data can cause errors to occur in two different ways. First, as you’ll learn
tomorrow, a DataSet can contain constraints including primary and foreign keys. Just as

05 3869 ch03 5/20/02 1:20 PM Page 70

Working with DataSets 71

3

in a relational database, these constraints can be violated as data is merged into a
DataSet that already contains data. For example, if data is loaded into a table that has a
foreign key constraint on another table in the DataSet, and one or more rows do not con-
tain valid foreign key values, the constraint will be violated.

During the merge process, the constraints are disabled and then re-enabled at the end of
the merge. At that time, if the constraints can’t be set due to errors, a
ConstraintException will be thrown and the EnforceConstraints property will be
reset to False, and the rows that contained errors are marked as such. Of course, if the
EnforceConstraints property is set to False before the Merge method is called, the con-
straints are not re-enabled and so no errors will occur until the property is set to True.

Secondly, because the Merge method uses the primary key information in the tables being
merged to match up rows that should be merged, the primary keys must be identical in
the tables. If the primary keys differ in the number of columns that make up the key, an
ArgumentException will be thrown. However, if the key length is the same but the
columns differ, a ConstraintException will be thrown. In both cases, the MergeFailed
event shown in Table 3.1 also will be fired. To capture the MergeFailed event, you can
use the C# event handling syntax you learned yesterday or dynamic event handling syn-
tax in VB as shown in Listing 3.7.

LISTING 3.7 Adding an event handler. This listing shows how to add a handler for the
MergeFailed event.

AddHandler dsBooks.MergeFailed, AddressOf HandleMergeErrors

Try
books.Merge(books1)

Catch e As ArgumentException
‘ Key lengths are different

Catch e1 As ConstraintException
‘ Keys have different columns

End Try

Private Sub HandleMergeErrors(ByVal sender As Object, _
ByVal e As MergeFailedEventArgs)
‘ Called before Catch block is entered above
Console.WriteLine(e.Conflict)
Console.WriteLine(e.Table.TableName)

End Sub

In Listing 3.7, the AddHandler statement in VB .NET is used to hook the
MergeFailed event of the books DataSet object to the delegate returned by the

ANALYSIS

05 3869 ch03 5/20/02 1:20 PM Page 71

AddressOf operator. The delegate then points to the HandleMergeErrors method that
accepts the standard object that produced the error (in this case, the DataSet) and an
object of type MergeFailedEventArgs. The MergeFailedEventArgs object exposes the
Conflict and Table properties that can then be inspected to return the particular error
message and the table in which the error occurred, respectively.

72 Day 3

Delegates in .NET can be thought of as object-oriented function pointers
and are used as the basis for events in the .NET Framework. In Listing 3.7,
the AddressOf statement is actually shorthand for the statement New
MergeFailedEventHandler(AddressOf HandleMergeErrors), where
MergeFailedEventHandler is a delegate that is used to call methods that
handle MergeFailed events. Using VB .NET, you could also declare the
DataSet at the class or module level and use the WithEvents and Handles

keywords to handle the event.

Note

Using a DataView
The final common technique used to work with a DataSet is to display its data using a
DataView. Simply put, a DataView object is a view of a particular DataTable within a
DataSet that can expose the data in a particular sort order or can filter the data. In other
words, you can use a DataView to create a filtered and sorted view of a DataTable and
then bind that view to a Windows or Web Forms control by referencing the DataView in
the control’s DataSource property. Unlike the Select statement discussed earlier, the
DataView doesn’t create copies of the rows, but is dynamic in that all changes to the
underlying DataTable are immediately reflected in the DataView.

A DataView is different from a relational database view in several respects.
First, a DataView always contains the entire set of columns present in the
DataTable it references, whereas a relational view is often used to expose a
subset of the columns from a table or to add additional computed and
aggregated columns. Second, a DataView always refers to a single DataTable
and therefore can’t be used to display data from multiple tables as is fre-
quently done in a relational view.

Note

The important members of the DataView class are shown in Table 3.3.

05 3869 ch03 5/20/02 1:20 PM Page 72

Working with DataSets 73

3

TABLE 3.3 Important DataView Members

Member Description

Properties

AllowDelete Property that gets or sets whether deletes are allowed

AllowEdit Property that gets or sets whether modifications are allowed

AllowNew Property that gets or sets whether new rows are allowed

ApplyDefaultSort Property that gets or sets whether the default sort should be
applied

Count Property that returns the number of records in the view after the
filters have been applied

DataViewManager Property that gets the DataViewManager object associated with this
view

Item Property that returns a column value based on the index or name
and an optional DataRowVersion

RowFilter Property that gets or sets the expression used to filter the rows

RowStateFilter Property that gets or sets the DataViewRowState value(s) used to
filter the rows

Sort Property that gets or sets the columns and sort orders to apply

Table Property that gets the underlying DataTable object for this view

Methods

AddNew Method that adds a new row to the DataView

CopyTo Method that copies the column values into an array

Delete Method that deletes the row at the specified index

Find Method that finds a row based on the current sort index

FindRows Method that finds rows based on the current sort index

Events

ListChanged Event that fires when the underlying DataTable is changed

Creating a DataView
A DataView can be created either by instantiating a new DataView object and using its
overloaded constructor, or by creating a reference to the view exposed by the
DefaultView property of the DataTable object.

In the first case, the constructor is overloaded to accept the DataTable from which to
create the view and, optionally, the sort order, row filter, and row state filter used to sort

05 3869 ch03 5/20/02 1:20 PM Page 73

and populate the view. For example, the following code snippet creates a DataView that
contains all the unchanged titles written by an author, sorted by title:

Dim books As DataSet
Dim dt As DataTable

books = GetTitles(“Sams”)
dt = dsBooks.Tables(0)

Dim dv As New DataView(dt, “Author = ‘Fox, Dan’”, _
“Title ASC”, DataViewRowState.Unchanged)

The last line of code above could also have been rewritten as follows:

dv = books.Tables(0).DefaultView

With dv
.Sort = “Title ASC”
.RowFilter = “Author = ‘Fox, Dan’”
.RowStateFilter = DataViewRowState.Unchanged

End With

In both cases, the resulting DataView is now ready to be used.

Sorting and Filtering
As is obvious from the preceding code snippets, the Sort, RowFilter, and
RowStateFilter properties control how a DataView is sorted and filtered. It should be
noted that the Sort property is of type String and can be set to multiple columns in
order to create a multi-level sort. For example, to sort on Price and PubDate, you could
use the following expression:

dv.Sort = “Price DESC, PubDate ASC”

When the Sort property is set, the DataView builds an index that is then used to display
the data in sorted order. You’ll also note from Table 3.3 that the DataView object exposes
an ApplyDefaultSort property. This property can be set to True when the Sort property
is set to an empty string or Nothing (null). It will reset the Sort property to sort by the
value of the primary key if one is defined. Conversely, if the Sort property is already set,
or a primary key hasn’t been defined on the underlying DataTable, setting the property
has no effect.

The RowFilter property is used in much the same way as the Select method of the
DataTable object discussed previously. In fact, the expression syntax shown in Table 3.2
also applies to the RowFilter property. The RowStateFilter property can accept a bit-
wise combination of values from the DataViewRowState enumeration also discussed
earlier.

74 Day 3

05 3869 ch03 5/20/02 1:20 PM Page 74

Working with DataSets 75

3

Finding Rows
In addition to being able to filter the DataView based on the RowFilter property, you can
also more quickly search the DataView using the index built when the Sort property is
set using the Find and FindRows methods.

The Find method is overloaded to accept a single Object or array of objects that map to
the columns defined in the Sort property. For example, if the Sort property is set as in
the previous code snippet, the following code would return the index of the row that has
a price of $44.99 and a PubDate of 11/16/2001:

Dim row As Integer

row = dv.Find(New Object() {44.99, CType(“11/16/2001”, Date)})

If the row is not found, a –1 is returned.

The FindRows method is analogous to Find in its signatures, but returns a one-element
array populated with a DataRowView object in order to expose the row to Windows Forms
as a control. You wouldn’t typically call the FindRows method yourself.

Capturing Changes
Just as with the DataSet class, the DataView class exposes a single event, in this case,
called ListChanged. This event is fired anytime the data or schema of the underlying
DataTable changes, including changes in the sort order or filter applied to the view. The
ListChangedEventArgs object from the System.ComponentModel namespace passed to
the event handling method exposes the ListChangedType, NewIndex, and OldIndex prop-
erties, which encapsulate the reason why the event was fired, the new index of the item
in the list, and the original index of the modified item, respectively.

As you might expect, the values in the NewIndex and OldIndex properties are populated
based on the value of the ListChangedType property. The ListChangedType property
returns one of the eight values of the ListChangedType enumeration. For example, if the
ItemMoved value is specified, both the NewIndex and OldIndex properties will be popu-
lated, whereas if the ItemAdded value is specified, only the NewIndex property is set. The
default for both properties when not set is –1.

In addition to standard ItemAdded, ItemDeleted, ItemChanged, and ItemMoved values,
the ListChangedType property also includes PropertyDescriptorAdded,
PropertyDescriptorChanged, PropertyDescriptorDeleted, and Reset values. The first
three values in the preceding list are set when schema additions, changes, and deletions
are made to the underlying DataTable. The Reset value is used when the Sort,
RowState, or RowStateFilter properties of the DataView are set.

05 3869 ch03 5/20/02 1:20 PM Page 75

As an example, consider the code in Listing 3.8, which builds on the previous code that
created the DataView object referred to as dv.

LISTING 3.8 Detecting changes. This code hooks the ListChanged event and writes the
ISBN of the modified row to the Trace object.

AddHandler dv.ListChanged, AddressOf TitlesChanged

Private Sub TitlesChanged(ByVal sender As Object, _
ByVal e As ListChangedEventArgs)

If e.ListChangedType = ListChangedType.ItemChanged Then
Dim dv As DataView
Dim dr As DataRow
dv = CType(sender, DataView)
dr = dv.Item(e.NewIndex).Row
Trace.WriteLine(“Changed ISBN: “ & dr.Item(“ISBN”).ToString)

End If
End Sub

Note that in Listing 3.8, the AddHandler statement is used to enable the
ListChanged event handler using the ListChangedHandler delegate encapsulat-

ing the address of the TitlesChanged method. In this case, the TitlesChanged method
uses the ListChangedType property to determine whether a row was changed and, if so,
uses the sender argument and the NewIndex property to reference the row that was
changed. The WriteLine method of the Trace class is then used to log the fact that a
change occurred.

76 Day 3

Keep in mind that the way in which the RowStateFilter property is set also
influences what the ListChangedType property will be set to. For example, if
the RowStateFilter is set to DataViewRowState.Unchanged, a change to an
underlying row in the DataTable will generate a value of ItemDeleted rather
than ItemChanged because the row will be removed from the view. In the
same way, changing the value of a column on which the Sort property is set
generates an ItemMoved value rather than ItemChanged because the row
must be moved within the DataView’s index.

Tip

ANALYSIS

The Trace class is a member of the System.Diagnostics namespace and can
be used to instrument or equip your application with tracing code that dis-
plays to the Command Window in VS .NET or any target (such as an event

Tip

05 3869 ch03 5/20/02 1:20 PM Page 76

Working with DataSets 77

3

Managing Multiple Views
Because a DataSet can store data from multiple tables or data sources, it makes sense
that you can also control the view settings (sort order and row filters) for each table in
the DataSet. This is accomplished through the use of the DataViewManager class. The
DataViewManager is primarily useful when you want to bind a DataSet with multiple
tables to a control such as a grid to ensure that the grid displays each table correctly.
Once again, you can populate the control’s DataSource property with the
DataViewManager object.

As with the DataView class itself, a DataViewManager object can be created in one of
two ways. First, as you’ll notice from Table 3.1, the DataSet exposes a
DefaultViewManager property that points to a DataViewManager object that exposes a
collection of DataViewSetting objects (DataViewSettingCollection) corresponding to
each DataTable in the DataSet, as shown in Figure 3.2. By simply referencing the
DefaultViewManager property, you are returned a DataViewManager object that contains
DataViewSetting objects for each table. Second, you can instantiate your own
DataViewManager, passing the DataSet into the constructor or populating its DataSet
property.

log or text file) specified by a class derived from TraceListener. When used
with the BooleanSwitch or TraceSwitch classes, you can create applications
that selectively log trace information based on settings in the application’s
XML configuration file.

FIGURE 3.2
The object hierarchy of
the DataViewManager

class. The
DataViewManager

object for a DataSet
can be accessed
through the
DefaultViewManager

property.

DataViewSettingCollection

DataViewSetting

DataSet

DefaultViewManager

DataViewManager

The DataViewSetting object exposes only a subset of the DataView members, including
the ApplyDefaultSort, RowStateFilter, RowState, and Sort properties, along with
properties that reference the underlying DataViewManager and Table. As a result, the
DataViewSetting object is useful for changing the display characteristics of the

05 3869 ch03 5/20/02 1:20 PM Page 77

underlying DataTable, but cannot be used to find rows or set the modification behavior.
However, if the RowFilter, RowStateFilter, or Sort properties are changed in the
DataViewSetting object, the corresponding properties in the DataView will also be set.
This is the case because the DataViewSetting object simply reflects the values of the
actual DataView.

As an example of using multiple views, consider the code snippet below. In this example,
the DataSet dsOrders contains two tables that contain the Orders and OrderDetails

information from the ComputeBooks database for a particular customer.

Dim orderV, orderDetV As DataViewSetting

orderV = orders.DefaultViewManager.DataViewSettings(“Orders”)
orderDetV = orders.DefaultViewManager.DataViewSettings(“OrderDetails”)

orderV.RowFilter = “OrderDate > #1/01/2002#”
orderDetV.Sort = “UnitPrice DESC”

In this case, the DefaultViewManager property of the DataSet object is used to access
the DataViewSettingCollection in order to reference each DataViewSetting object.
The DataViewSetting objects are then used to set the RowFilter property on the Orders
table to display only the current year orders and sort the OrderDetails table by
UnitPrice.

Optionally, the dvsOrder and dvsOrderDet objects could have been created indepen-
dently, like so:

Dim dvm As New DataViewManager(dsOrders)

orderV = dvm.DataViewSettings(“Orders”)
orderDetV = dvm.DataViewSettings(“OrderDetails”)

In this case, the new DataViewManager object was passed the DataSet to create its col-
lection on.

Summary
Today you learned about the basic workings of the DataSet and how it can be created,
populated, traversed, searched, and viewed. These basic skills will allow you to work
with DataSet objects programmatically. However, tomorrow you’ll delve more deeply
into the internals of the DataSet and explore the structure of DataTable objects as well
the constraints that can be placed on data.

78 Day 3

05 3869 ch03 5/20/02 1:20 PM Page 78

Working with DataSets 79

3

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What data access programming model does the DataSet enable?

The DataSet allows you to build applications that work with data that is entirely
disconnected from its data source. It does this by storing the data in an in-memory
cache represented as XML and that is serializable for transport across tiers in your
application.

2. Can a single DataSet be populated using both a data adapter and explicit code?

Yes. Different tables in a DataSet can be populated in different ways. For example,
one table could be populated from a data adapter connected to SQL Server, another
to a data adapter connected to Oracle, and a third through explicit code that creates
new rows manually. This feature is what allows the DataSet to store heterogeneous
data.

3. How do you combine the contents of two DataSet objects?

You can combine the data in multiple DataSet objects using the Merge method of
the DataSet object that will act as the final repository. Keep in mind that errors
might result if the schema of the tables differs or if constraints are violated, and
that changes in the original DataSet will be overridden by default. If the two
DataSet objects contain different tables, they can simply be merged into a single
DataSet that contains both tables.

4. What is the primary use for the DataViewManager?

The DataViewManager is used to manage the view settings for the collection of
tables in a DataSet. Basically, it exposes the sorting and filtering properties of the
DataView objects associated with the tables in the DataSet. The DataViewManager
can then be associated with a control’s DataSource property to enable custom
views during data binding.

Exercise
To try out the concepts discussed today, write a method that retrieves the Titles,
Categories, and Publishers information from the ComputeBooks database using the
usp_GetTitlesLookups stored procedure. After retrieving the data into a DataSet, create
a DataViewManager that shows only the titles with a price greater than $25 and sorts the
publishers by PubCode.

05 3869 ch03 5/20/02 1:20 PM Page 79

Answers for Day 3
Exercise Answer
One possible solution to the exercise is as follows:

Public Function GetTitlesLookups(ByVal connect As String) As DataViewManager

Dim con As New SqlConnection(connect)
Dim da As New SqlDataAdapter(“usp_GetTitlesLookups”, con)
Dim dsTitlesLookups As New DataSet(“TitlesLookups”)

‘ Fill the DataSet
da.Fill(dsTitlesLookups)

‘ Create the data view manager and set the properties
Dim dvm As New DataViewManager(dsTitlesLookups)
dvm.DataViewSettings(“Table”).RowFilter = “Price > 25”
dvm.DataViewSettings(“Table2”).Sort = “PubCode ASC”

Return dvm

End Function

In this method, the dsTitlesLookups DataSet is populated by the SqlDataAdapter da
using the Fill method. The DataSet will contain three tables (Table, Table1, and Table2,
which are the defaults) with the Titles, Categories, and Publishers data. The
DataViewManager can then be created and its individual DataViewSettings accessed
through the collection.

80 Day 3

05 3869 ch03 5/20/02 1:20 PM Page 80

DAY 4

WEEK 1

DataSet Internals
As you’ll recall, yesterday’s goal was to familiarize you with the various ways
that you can manipulate DataSet objects when dealing with disconnected data.
Today you’ll dig deeper into the structure of the DataSet in order to fully
exploit its capabilities to maintain data consistency and integrity. In fact, the
three key topics in this chapter explore the three children of the DataSet class:
Tables, Relations, and ExtendedProperties exposed as properties as shown
in Figure 3.1. Much of the functionality of the DataSet is encapsulated in the
objects of these three children.

Specifically, today you’ll learn the following concepts:

• The classes used to represent tables, relationships, and properties in a
DataSet

• How to create expression columns in a DataTable

• How to specify default values and set other properties of columns

• How to define and add unique, foreign, and primary key constraints to a
DataTable

• How to generate primary keys on the client to be used in a database

• How to use extended properties

06 3869 ch04 5/20/02 1:19 PM Page 81

Data Table Structure
Certainly, the primary collection exposed by a DataSet is encapsulated in the
DataTableCollection object and exposed through the Tables property. The
DataTableCollection object in turn exposes DataTable objects that are used to cache
the data within the DataSet. In this section, you’ll learn how that data is exposed through
rows and columns and how you can customize the properties of the table to assist in
maintaining data integrity.

As you might imagine, the DataTable exposes some members that are similar to those
found in the DataSet. The reason for this overlap is that the members of the DataSet,
such as HasErrors, look at all tables within the DataSet, whereas the DataTable proper-
ties are particular to an instance. The major methods, properties, and events of the
DataTable class can be seen in Table 4.1. You’ll notice from Table 4.1 that the
DataTable exposes more events to provide notification for changes to the data.

TABLE 4.1 Important DataTable Members

Member Description

Properties

CaseSensitive Property that gets or sets whether string comparisons are case
sensitive

ChildRelations Property that gets or sets a collection of relationships for the table
in a DataRelationCollection object

Columns Property that gets or sets the collection of DataColumn objects
associated with the table in a DataColumnCollection object

Constraints Property that gets or sets the collection of constraint objects for
the table in a ConstraintCollection object

DataSet Property that gets the DataSet object this table belongs to

DefaultView Property that gets a custom view of the table to allow searching,
sorting, and filtering

DisplayExpression Property that gets or sets a String used to represent the table in
the user interface

ExtendedProperties A collection of custom information that resides with the
DataTable in a PropertyCollection object

HasErrors Property that indicates whether there are errors in any rows of this
table

MinimumCapacity Property that gets or sets the initial size of the table defaulted to
25 rows; used by the system to efficiently allocate resources

82 Day 4

06 3869 ch04 5/20/02 1:19 PM Page 82

DataSet Internals 83

4

Namespace Property that gets or sets an XML namespace for the DataTable

ParentRelations Property that gets the collection of parent relationships for this
table in a DataRelationCollection object

Prefix Property that gets or sets an XML prefix for the namespace for
the DataTable

PrimaryKey Property that gets or sets an array of DataColumn objects that rep-
resent the primary key of the table

Rows Property that gets the collection of rows in the table exposed in a
DataRowCollection object

TableName Property that gets or sets the name of the table

Methods

AcceptChanges Method that commits all changes to the DataTable

BeginLoadData Method that turns off all notifications, indexes, and constraints
during the loading of data

Clear Method that removes all rows from this table

Clone Method that copies the structure but no data from the DataTable

Compute Method that computes the given expression on the current rows
not excluded by filter criteria

Copy Method that copies both the structure and data of a DataTable

EndLoadData Method that turns on notifications, indexes, and constraints after
loading data

GetChanges Overloaded method that returns a copy of the DataTable with
only changed rows or rows that match a given DataRowState
value

ImportRow Method that copies a given DataRow into the table preserving orig-
inal and modified values as well as property settings

LoadDataRow Method that finds and updates a specific row if present, and cre-
ates a new one if not; used with BeginLoadData and EndLoadData

NewRow Method that returns a new DataRow with the same schema as a
row in the table

RejectChanges Method that rolls back all changes made to a DataTable since it
was loaded or since AcceptChanges was called (opposite of
AcceptChanges)

TABLE 4.1 continued

Member Description

Properties

06 3869 ch04 5/20/02 1:19 PM Page 83

Reset Method that reverts the DataTable to its original state

Select Overloaded method that returns an array of DataRow objects based
on filter criteria or row state

Events

ColumnChanged Event fired after a value in a DataColumn changes

ColumnChanging Event fired when a value in a DataColumn is being changed

RowChanged Event fired after a DataRow has been successfully changed

RowChanging Event fired when a DataRow is being changed

RowDeleted Event fired after a DataRow has been deleted from the table

RowDeleting Event fired before a row is deleted from the table

As with the DataSet, the DataTable class contains several collections, as shown in
Figure 4.1. These collections are used to represent the columns, rows, constraints, rela-
tionships, and extended properties.

84 Day 4

TABLE 4.1 continued

Member Description

Methods

FIGURE 4.1
The DataTable object
and its child collec-
tions. This diagram
highlights the collec-
tions exposed by the
DataTable that make
up its structure.

DefaultView

DataView

DataColumn

DataTable

Columns

DataColumnCollection

DataRow

Rows

DataRowCollection

Constraint

Constraints

ConstraintCollection

DataRelation

ChildRelations

ParentRelations
DataRelationCollection

HashTable

ExtendedProperties

PropertyCollection

06 3869 ch04 5/20/02 1:19 PM Page 84

DataSet Internals 85

4

To illustrate the use of several of the methods of the DataTable class, consider the
LoadStores method shown in Listing 4.1. Here, the method accepts a DataTable as a
parameter and loads it with store information found in a text file.

LISTING 4.1 Loading a DataTable. This method loads a table from a text file.

Private Sub LoadStores(ByRef stores As DataTable)

Dim storeFile As FileStream
Dim reader As StreamReader
Dim strLine As String
Dim storeValues() As String
Dim sep As String = “,”

Try
storeFile = New FileStream(“stores.txt”, FileMode.Open)
reader = New StreamReader(storeFile)

Catch e As IOException
‘ Handle file errors here

End Try

Try
stores.MinimumCapacity = 125
stores.BeginLoadData()

Do While True
strLine = reader.ReadLine()
If strLine Is Nothing Then
Exit Do

End If

storeValues = strLine.Split(sep.ToCharArray)

Dim dr As DataRow
dr = stores.LoadDataRow(storeValues, False)
dr.Item(“StoreID”) = System.Guid.NewGuid

Loop

stores.EndLoadData()

Catch e As DataException
‘ Handle data exception (violated constraints)

Catch e As IOException
‘ Handle file IO problems

Catch e As Exception
‘ Handle other exceptions
Throw e

Finally

06 3869 ch04 5/20/02 1:19 PM Page 85

storeFile.Close()
End Try

End Sub

Although Listing 3.1 in the previous chapter showed two methods that could be
used to populate a DataSet programmatically, Listing 4.1 shows how you can

also use the LoadDataRow method of the DataTable object directly. This is especially
effective when you want to batch load a significant amount of data, as in this example.

86 Day 4

LISTING 4.1 continued

ANALYSIS

This method shows the basic use of the FileStream and StreamReader

objects from the System.IO namespace to open and read the text file. As a
result, this code would need the Imports System.IO statement at the top of
the source file.

Note

You’ll notice in the second Try block that the MinimumCapacity property is first set to
125 to allow the common language runtime to preallocate resources for at least 125 rows.
Setting this property appropriately can speed up the process of inserting data. The
BeginLoadData method is then called to disable all notifications and constraints on the
table to ensure that the data can be loaded without interruption.

The MinimumCapacity property defaults to 25 and therefore should be used
when you know that the DataTable will contain a good deal more than 25
rows because it can optimize performance. That said, worrying about setting
this property—to the extent that you incur an extra roundtrip to the data
store—doesn’t make sense. The cost of the roundtrip will far outweigh the
savings in memory allocation for the DataTable.

Note

The data is then read from the text file and parsed into an array of strings using the
Split method of the String class. If the array contains valid values for the columns in
the DataTable that match the positional order of the columns, it can then be loaded with
the LoadDataRow method. The second argument specifies whether to immediately call
AcceptChanges on the row, thereby marking the row as having no pending changes in
the DataTable.

06 3869 ch04 5/20/02 1:19 PM Page 86

DataSet Internals 87

4

Immediately after loading the row, the StoreID column is populated with a GUID using
the NewGuid method of the Guid structure. This ensures that the store has a unique identi-
fier used as the primary key. Note that if BeginLoadData hadn’t been previously called,
the LoadDataRow method would throw a DataException and not accept the row because
the text file contains only an empty string for each StoreID.

After the data has been loaded, the EndLoadData method is called to enable the con-
straints. At this point, if the data doesn’t adhere to the constraints, a DataException is
thrown and can be handled in a Catch block. In either case, the input file is closed in the
Finally block. Note that the stores object is passed into the method by reference
(ByRef), so when the method returns, the calling code will have a fully loaded DataTable
that can then be synchronized with a database using a data adapter.

Dealing with Rows
In previous listings and code snippets, you have no doubt noticed that the rows in a
DataTable are accessed via the Rows property, which returns a DataRowCollection
object that exposes a collection of DataRow objects. Each DataRow exposes its data as a
collection of values that adhere to the data types of the columns for the table and are
accessible via the Item and ItemArray properties. The members of the DataRow class can
be seen in Table 4.2.

TABLE 4.2 Important DataRow Members

Member Description

Properties

HasErrors Property that indicates whether there are errors in any rows of
this table

Item Property that gets or sets the value of a column in the row
accessible via the ordinal number or the name (in C#, this
property is the indexer and so it doesn’t show up in the mem-
ber list)

ItemArray Property that gets or sets the entire row of values through an
array

RowError Property that gets or sets the error description for the row

RowState Property that gets the current DataRowState

Table Property that gets the DataTable this row belongs to

06 3869 ch04 5/20/02 1:19 PM Page 87

Methods

AcceptChanges Method that commits all changes to the DataRow since the last
time AcceptChanges was called

BeginEdit Method that suspends event notifications so that changes can
be made without triggering validation rules—calling on a
deleted row throws an exception

CancelEdit Method that cancels the edit on the current row and reverts to
the original values and re-enables event notifications

ClearErrors Method that clears the errors on the row including the
RowError property and errors set with SetError

Delete Method that deletes this DataRow

EndEdit Method that ends the edit of the current row—will throw an
exception if a constraint was violated or the ReadOnly or
AllowDBNull properties of a column are violated

GetChildRows Overloaded method that returns an array of DataRow object by
navigating the relationships between tables and optionally
looking at a DataRowVersion

GetColumnError Overloaded method that returns the error description for a
given column on the current row

GetColumnsInError Method that gets an array of DataColumn objects that contain
errors on the current row

GetParentRow, GetParentRows Overloaded methods that return the parent DataRow or an array
of parent DataRow objects for the current row based on the rela-
tion and an optional DataRowVersion

HasVersion Method that returns a Boolean indicating whether the current
row contains a given DataRowVersion

IsNull Overloaded method that returns a Boolean indicating whether
the given DataColumn in the current row contains a null value

RejectChanges Method that rejects all changes on the current row since
AcceptChanges was last called

SetColumnError Overloaded method that sets the error description for the given
DataColumn

SetParentRow Overloaded method that associates a parent DataRow with the
current row

88 Day 4

TABLE 4.2 continued

Member Description

06 3869 ch04 5/20/02 1:19 PM Page 88

DataSet Internals 89

4

As shown in Table 4.2, you can use the members of the DataRow object to access error
information in the event that an exception is thrown after calling the EndEdit method.
For example, the TraceRowError method shown in Listing 4.2 accepts an array of
DataRow objects and an error message, and writes each DataRow’s error information to
the trace listeners collection using the WriteLine method of the Trace class.

LISTING 4.2 Manipulating row information. This method prints error information to the
active trace listeners.

Private Sub TraceRowError(ByRef dr() As DataRow, ByVal message As String)

Dim dc As DataColumn
Dim strError As String
Dim strPk As String = “{“
Dim row As DataRow

For Each row In dr
If row.HasErrors Then

‘ Get the primary key
For Each dc In row.Table.PrimaryKey
strPk &= “:” & dc.ColumnName & “ = “ & row.Item(dc).ToString

Next
strPk &= “}”

‘ Log the error
Trace.WriteLine(Now & “ “ & message & “: DataRow error occurred “ & _
strPk & row.RowState.ToString & row.RowError)

‘ Log errors for each column
For Each dc In row.GetColumnsInError
strError = row.GetColumnError(dc)
Trace.WriteLine(dc.ColumnName & “ = “ & strError)

Next

End If
Next

End Sub

In Listing 4.2, the first For loop iterates the array of DataRow objects that pre-
sumably contain errors by checking the HasErrors property. Within the loop, the

Table property is first used to access the primary key of the table to which the passed-in
row belongs. Each primary key column and its value are then concatenated to the strPk
String. Next, a timestamp, the custom message, the primary key information, the current
state of the row, and the error message are all written to the trace listeners. Finally, the

ANALYSIS

06 3869 ch04 5/20/02 1:19 PM Page 89

GetColumnsInError method is used to retrieve an array of DataColumn objects that con-
tain errors, and each column name and its error description are also written to the
listeners.

The TraceRowError method can then be called from a Catch block and passed the row
that contains the error and any custom message, as in the following code snippet where
dtTitles is a DataTable object:

TraceRowError(dtTitles.GetErrors(), “Error saving Titles”)

As evidenced by Table 4.2, in addition to simply finding errors, you can write code that
creates error conditions using the SetColumnError and RowError properties. For exam-
ple, if several columns in a particular row must be correlated, you can inspect their val-
ues in the RowChanging event for the DataTable and then set the error appropriately.
Listing 4.3 shows the StoresRowChanging method that is used to hook the RowChanging
event of a DataTable that encapsulates information about stores. The method uses the
DataRowChangeEventArgs object to inspect the reason the event was fired, and if a
change occurred, enforces the rule that either the postal code or the city and state must
be present.

LISTING 4.3 Creating errors. This event handler creates an error if the row doesn’t have
the correct columns populated.

Private Sub StoresRowChanging(ByVal sender As Object, _
ByVal e As DataRowChangeEventArgs)
‘ Make sure we have a valid address
If e.Action = DataRowAction.Change Then
If e.Row.Item(“PostalCode”) Is DBNull.Value Then
If e.Row.Item(“StateProv”) Is DBNull.Value _
OrElse e.Row.Item(“City”) Is DBNull.Value Then
e.Row.RowError = “Must have a Postal Code or City and State”

End If
End If

End If
End Sub

By setting the RowError property to a String value, the HasErrors property of the row,
the table, and the DataSet will all be automatically set to True.

Manipulating Columns
Of course, at the base level, the data in a DataTable is represented by a collection of
DataColumn objects in a DataColumnCollection object exposed through the Columns

90 Day 4

06 3869 ch04 5/20/02 1:19 PM Page 90

DataSet Internals 91

4

property, each of which exposes a set of properties used to define the column, as shown
in Table 4.3.

TABLE 4.3 Important DataColumn Members

Member Description

AllowDBNull Property that gets or sets a value indicating whether
null values are allowed in this column

AutoIncrement Property that gets or sets a value indicating whether
the value for the column is automatically generated
by incrementing

AutoIncrementSeed, AutoIncrementStep Properties that get and set the starting value and
increment used when auto-incrementing values

Caption Property that gets or sets the caption for the column
that can be used by controls to which the column is
bound

ColumnMapping Property that gets or sets the MappingType for the col-
umn controlling how it’s displayed as XML

ColumnName Property that gets or sets the name of the column as it
appears in the DataColumnCollection

DataType Property that gets or sets the type of data stored in the
column

DefaultValue Property that gets or sets an expression used as
default value when new rows are created

Expression Property that gets or sets an expression used to create
a calculation or an aggregate value for the column

ExtendedProperties Property that gets or sets a collection of custom infor-
mation in a PropertyCollection object

MaxLength Property that gets or sets the maximum length for a
text column

Namespace Property that gets or sets the XML namespace used
for the column

Ordinal Property that returns the position of the column in the
DataColumnCollection

Prefix Property that gets or sets the XML prefix used for the
Namespace of the column

ReadOnly Property that gets or sets a value indicating whether
changes are allowed to the column once a new row
has been added

06 3869 ch04 5/20/02 1:19 PM Page 91

Table Property that returns the DataTable to which this col-
umn belongs

Unique Property that gets or sets a value indicating that the
values within the column must be unique across all
rows

In the remainder of this section, you’ll learn some common ways the properties of the
DataColumn object are used to ensure better data integrity.

Using Column Properties
As you can see from Table 4.3, the properties of the DataColumn class mimic to some
degree the kinds of information you’d find when viewing a table definition in a relational
database such as SQL Server. Particularly, the AllowDBNull, ColumnName, DataType, and
MaxLength properties provide the core information about a column. Typically, all these
properties will be populated from the underlying data store when using a data adapter if
the MissingSchemaAction property is set to the AddWithKey value of the
MissingSchemaAction enumeration. If you don’t use AddWithKey, only the ColumnName
and DataType will be populated.

92 Day 4

TABLE 4.3 continued

Member Description

Even though you might assume that it does, creating a unique constraint or
a unique index on a column in a SQL Server 2000 database and using the
AddWithKey value does not automatically set the Unique property of the
DataColumn to True. You must set this yourself if you want to ensure unique-
ness.

Tip

The DataType property is particularly interesting because it allows data to be stored in
the DataColumn based on any type in the Common Type System (CTS), including cus-
tom types you create. However, the following base set of simple types from the CTS is
implicitly understood by the DataType property, and therefore will be typically used by
data adapters when populating a DataSet. For example, the SqlDataAdapter will trans-
late the SQL Server data types nvarchar, smalldatetime, and money to the CTS types
String, DateTime, and Decimal, respectively.

CTS types supported by the DataType property are

• Boolean

• Byte

06 3869 ch04 5/20/02 1:19 PM Page 92

DataSet Internals 93

4

• Char

• DateTime

• Decimal

• Int16, Int32, Int64

• SByte

• Single

• String

• TimeSpan

• UInt16, UInt32, UInt64

The primary reason these types are used is that they can be easily translated to types used
in the XML Schema Definition (XSD) upon which the DataSet is based. (You’ll learn
more about this on Day 7, “DataSets and XML.”) The use of common types allows
DataSets to be passed to and returned from XML Web Services more easily, as you’ll
learn on Day 18, “ADO.NET and XML Web Services.”

Regardless of which properties are automatically populated, you can then set additional
properties to further conform the data. For example, the code in Listing 4.4 sets some of
the properties for the columns in a DataTable that caches information from the Titles
table.

LISTING 4.4 Setting column properties. This code sets the Caption and other properties
of the columns in a table that stores rows from the Titles table.

With titles
.Columns(“PubDate”).Caption = “Publication Date”
.Columns(“BulkDiscount”).Caption = “Bulk Discount”
.Columns(“BulkAmount”).Caption = “Bulk Amount”
.Columns(“ISBN”).ReadOnly = True
.Columns(“Title”).Unique = True
.Columns(“CatID”).DefaultValue = _
New Guid(“21B60927-5659-4AD4-A036-AB478D73E754”)

End With

In Listing 4.4, the Caption properties of the PubDate, BulkDiscount, and
BulkAmount columns are set because the column names themselves aren’t for-

matted properly for display. In addition, the ISBN column is set to ReadOnly because it’s
the primary key and therefore shouldn’t be changed (assuming this simple structure
stores only a single version of each title). The Unique property of the Title column is
used to ensure that the same title isn’t added twice under different ISBNs. In addition,

ANALYSIS

06 3869 ch04 5/20/02 1:19 PM Page 93

the DefaultValue property of the CatID column is set to a general programming cate-
gory so that the book can be categorized at a later time.

Using Auto-Incrementing Columns
The other interesting properties exposed by the DataColumn class are those that deal with
creating auto-incrementing columns: AutoIncrement, AutoIncrementSeed, and
AutoIncrementStep. Together these properties mark the column as being one whose
value is automatically generated each time a row is added to the DataTable and whose
data type is System.Int32, the value for the first inserted row (defaulted to 0), and the
increment to use for each successive row (defaulted to 1), respectively.

Although you might not expect it, setting the AutoIncrement property to True on a col-
umn not defined as an Integer (Int32) automatically coerces the column into that data
type. As mentioned previously, setting the value to True on a column that has its
Expression property set throws an exception.

Typically, you’d use these properties when you want to ensure that you can uniquely
identify a row in the case where a naturally occurring unique value isn’t present. This
often occurs with detail rows that track multiple occurrences of similar events, such as
the reviews of books on the ComputeBooks Web site. You would then use the auto-
incrementing column in a relationship to link two data tables in a DataSet, as you’ll
learn shortly. However, to ensure uniqueness, you’d need to set the Unique property of
the column to True and the ReadOnly property to True for good measure so that changes
can’t even be attempted. As an example, consider the definition of a DataTable that
stores book reviews shown in Listing 4.5.

LISTING 4.5 Auto-incrementing columns. This code defines a table to hold book reviews
using an auto-incrementing column.

Dim reviews As New DataTable()

reviews.TableName = “Reviews”

With reviews
.Columns.Add(“ISBN”, GetType(String))
.Columns.Add(“ReviewText”, GetType(String))
.Columns.Add(“Stars”, GetType(Int16))
.Columns.Add(“ReviewNo”, GetType(Int32))
.Columns(“ReviewNo”).AutoIncrement = True
.Columns(“ReviewNo”).AutoIncrementSeed = 1
.Columns(“ReviewNo”).AutoIncrementStep = 1
.Columns(“ReviewNo”).Unique = True
.Columns(“ReviewNo”).ReadOnly = True
.Columns(“ReviewNo”).AllowDBNull = False

End With

94 Day 4

06 3869 ch04 5/20/02 1:19 PM Page 94

DataSet Internals 95

4

In Listing 4.5, the ReviewNo column is used to mark each row as unique. As data
is inserted into the table, the first row will start with 1 and increment by 1 there-

after. Keep in mind that setting the ReadOnly property to True disallows changes to the
column only after a row has been inserted into the table.

To insert a new row into the table programmatically, you can either omit the ReviewNo
column altogether by not setting its value using the Item property, or, if loading from an
array, you can simply place a null (Nothing) value in its position corresponding to the
position of the column in the array. For example, to insert a row into the Reviews table,
you could use the following syntax:

reviews.Rows.Add(New Object() {“06720043X”, “Good book”, 3, Nothing})

In the special case where the auto-increment column is the last column in the DataTable,
you can simply omit the null value when loading with an array and the elements of the
array will be mapped to the other columns.

Columns marked with auto-increment also work in conjunction with auto-incrementing
columns generated at the database server. For example, SQL Server allows one IDENTITY
column to be placed in each table that auto-increments values on the server in exactly the
same way as is done in the DataTable. In fact, if you populate a DataTable from SQL
Server that contains an IDENTITY column, the SqlDataAdapter object will correctly set
the AutoIncrement, AutoIncrementSeed, and AutoIncrementStep properties if the
AddWithKey value of the MissingSchemaAction property is set before calling the Fill
method. Further, when you then insert new rows into the table, the new values will pick
up where the last value left off. You’ll learn more about IDENTITY values in SQL Server
on Day 13, “Working with SQL Server.”

ANALYSIS

As a rule, you shouldn’t attempt to generate keys on both the client and the
server because they can get out of sync and lead to data corruption. This can
easily happen in the case of SQL Server because IDENTITY values can “get
lost” or go unused due to transactions that are rolled back—a fact that the
DataTable won’t be aware of. Although it’s possible to set the
AutoIncrementStep property to –1 in order to create negative values that
won’t conflict with the positive values generated at the database server, it’s
not recommended. For this reason—and because auto-incrementing columns
are much more difficult to use in distributed database scenarios—you should
use auto-incrementing columns in a DataTable only when they are transient,
such as when used to temporarily link data tables.

Caution

06 3869 ch04 5/20/02 1:19 PM Page 95

Although auto-incrementing columns can be useful, a better solution for generating keys
that are persisted to a database, and the one implemented in this book, is to use GUIDs
as the system-assigned keys. They have the advantage of being able to be generated on
either the client or the server and on multiple databases and still always retaining their
uniqueness. The only downside is that you must use explicit code on the client to popu-
late the Guid column using the NewGuid method of the System.Guid structure, as shown
in Listing 3.1.

Using Expressions
One of the most powerful properties of the DataColumn is the Expression property. This
property can be used to create computed columns based on the current row and child or
parent rows as well as to create computed columns based on aggregate values across
rows.

In the simplest case, the Expression property is used to calculate a value for a column
based on other values in the row. This is typically used for numeric calculations—for
example, to compute the purchase price for an item—or to create a more properly for-
matted string that combines a number of columns to, for example, create a URL that will
be used in an ASP.NET Web Form. In both cases, the expression must evaluate to a
String that can be cast to the type appropriate for the DataColumn. As an example, if a
DataTable were used to represent customer information from the Customers table in the
ComputeBooks database, a new column could be created that concatenates the first name
and last name columns. This would allow the name to be easily accessible when binding
the table to a control such as a grid. To create the column, you can simply use the Add
method of the DataColumnCollection class like so:

customers.Columns.Add(“Name”, GetType(String), “FName + ‘ ‘ + LName”)

In this case, the overloaded Add method accepts not only the name of the new column
and its data type, but also the expression used to populate the Expression property. Note
that the expression syntax follows the same rules as those found in Table 3.2. Another
example of using the Expression property on a single row would be to create a column
that holds the price of a title for customers ordering the book over the Web using the
Discount column of the Titles table as follows:

titles.Columns.Add(“WebPrice”, GetType(Decimal))
titles.Columns(“WebPrice”).Expression = “Price - ISNULL(Discount,0)”

Here, the Expression property is set explicitly using the ISNULL function to ensure that a
numeric value rather than a null is returned in the event the Discount column contains a
null value (which is allowed in the database).

96 Day 4

06 3869 ch04 5/20/02 1:19 PM Page 96

DataSet Internals 97

4

A more sophisticated use of the Expression property involves using aggregate functions
and navigating the relationships between tables in a DataSet. For example, consider the
case where a DataSet contains Orders and OrderDetails tables. As you’ll see shortly,
these tables can be related within the DataSet through a foreign key in the same way that
they were related within the relational database. In cases like this, it’s often useful to
summarize data from the child rows into single columns of the parent row. The
Expression property can be used to do this easily as follows:

orders.Columns.Add(“ItemCount”, GetType(Integer), “COUNT(Child.ISBN)”)

In this case, assume that orders is the DataTable that contains Orders. This statement
then adds a new column to the DataTable to reflect the number of OrderDetails rows
it’s the parent for. The COUNT aggregate function is used here and is passed a column
from the child table denoted with the Child identifier. In a slightly more sophisticated
example, you could use computed columns to calculate the order total for an entire order
by first creating a compute column on the OrderDetails table and calculating the item
total by multiplying the Quantity and the UnitPrice. A column on the Orders table
could then be created to sum the individual item totals and add any shipping costs that
are charged as shown in the following snippet.

Exceptions may be thrown either when the Expression property is initially
set or when it’s evaluated during execution. For example, an
ArgumentException will be thrown immediately if you attempt to set an
expression on a column that has its AutoIncrement or Unique properties set
to True. Of course, a SyntaxErrorException will be thrown if the expression
can’t be parsed. Exceptions thrown during evaluation typically involve the
use of functions. The CONVERT function may cause a FormatException or
InvalidCastException to be thrown if the CONVERT function doesn’t return a
String that can be cast into the data type of the column, or if the requested
cast isn’t possible, respectively. In addition, the SUBSTRING, LEN, and TRIM
functions can cause an ArgumentOutOfRangeException or simply an
Exception if invalid arguments are passed to them or if they don’t return a
String.

Note

Keep in mind that the Integer data type in Visual Basic .NET maps to the
System.Int32 data type in the CTS. As a result, the GetType statement shown
earlier could also have been written as GetType(Int32).

Note

06 3869 ch04 5/20/02 1:19 PM Page 97

orders.Columns.Add(“OrderTotal”, GetType(Decimal))
orderDet.Columns.Add(“ItemTotal”, GetType(Decimal))

orderDet.Columns(“ItemTotal”).Expression = “Quantity * UnitPrice”
orders.Columns(“OrderTotal”).Expression = _
“SUM(Child.ItemTotal) + ISNULL(Shipping,0)”

Although you might think that you could combine the two expressions into a single
expression that calculates the aggregate and does the multiplication on the child rows, the
syntax for the Expression property doesn’t allow it.

However, just as you can use aggregates with relationships, they can also be used on a
single table like so:

orders.Columns.Add(“MaxDate”, GetType(DateTime), “MAX(OrderDate)”)

Here, each row in the DataTable will contain a column called MaxDate with the most
recent (maximum) value from the OrderDate column. Although you could create another
table in the DataSet with a single row to act as the parent for all rows (using the
SetParentRow method), and then use syntax as in the COUNT example above, a far easier
way to efficiently calculate single aggregates is to use the Compute method of the
DataTable as shown in Table 4.1. The previous snippet could then be rewritten as

Dim maxDate As DateTime

maxDate = CType(orders.Compute(“MAX(OrderDate)”, Nothing), DateTime)

Note that the Compute method simply returns a value of type Object that can be cast to
the appropriate data type. Also, the second argument to the Compute method, here simply
set to Nothing, can be used to specify a filter expression in order to compute the aggre-
gate over only a subset of the rows.

98 Day 4

Where to Aggregate?

The use of aggregate functions in the Expression property raises an issue analogous to the use
of the Select method of the DataTable class versus the WHERE clause in a SQL statement dis-
cussed yesterday.

Using the aggregates functions as shown in this section means that the aggregations are calcu-
lated on the client (likely the middle-tier server) where the DataSet is being populated.
However, you can also calculate aggregates on the relational database server using the same
basic functions (SUM, MIN, MAX, AVG, COUNT) in SQL statements that typically use a GROUP BY clause.
As a general rule, performing calculations on the server is more efficient because with the use
of the GROUP BY clause, the detail rows needn’t be fully retrieved and sent to the client.
Therefore, you should use the Expression property and the aggregate syntax shown here
only if you already must retrieve all the detail rows and if the aggregate value can’t be pre-
calculated on the server.

06 3869 ch04 5/20/02 1:19 PM Page 98

DataSet Internals 99

4

Constraints
As you’re probably aware by now, you can place constraints on tables to ensure that the
data in them conforms to certain rules. Among these are unique constraints, primary
keys, and foreign keys.

Applying Unique Constraints
As shown in the previous section, you can use the Unique property to enforce uniqueness
on a DataColumn by setting the property to True. Conversely, you can remove the con-
straint simply by setting the Unique property to False. However, unique constraints can
also include more than one column so that the combination of columns will be unique.
Because setting each of the column’s Unique properties to True won’t enforce the rule
that their combination must be unique, you need some way to group the unique columns
together. This can be done with a UniqueConstraint object. For example, the following
code snippet creates a unique constraint on the OrderID and ISBN columns of the
orderDet DataTable, which holds OrderDetails records:

Dim unique As New UniqueConstraint(“OrderID_ISBN”, _
New DataColumn() {orderDet.Columns(“OrderID”), orderDet.Columns(“ISBN”)})

orderDet.Constraints.Add(unique)

Once the constraint has been created, it must be added to the Constraints collection of
the DataTable using the overloaded Add method. The Constraints property exposes a
ConstraintCollection object that can hold any constraint objects derived from the
System.Data.Constraint class (as is UniqueConstraint). The previous code snippet
could also have been rewritten in the following way:

orderDet.Constraints.Add(“OrderID_ISBN”, _
New DataColumn() {orderDet.Columns(“OrderID”), _
orderDet.Columns(“ISBN”)}, False)

The last argument to the Add method in this case specifies that the unique constraint
shouldn’t also be considered a primary key.

Specifying Primary Keys
As the previous code snippet makes clear, primary keys are simply special instances of
unique constraints in the ConstraintCollection of a DataTable. In fact, the
UniqueConstraint class exposes a read-only IsPrimaryKey property that returns True
when the constraint is acting as the primary key. As with unique constraints, primary
keys can span one or more columns. Of course, one of the differences with primary keys
is that they can also be set automatically when the DataSet is populated from a data
adapter when the MissingSchemaAction property is set to AddWithKey.

06 3869 ch04 5/20/02 1:19 PM Page 99

Primary keys can be programmatically created in two ways: either by using the
PrimaryKey property of the DataTable or by creating a unique constraint through the
Add method of the ConstraintCollection as shown earlier. For example, the former
method is shown in the following code snippet:

orderDet.PrimaryKey = New DataColumn() {orderDet.Columns(“OrderID”), _
orderDet.Columns(“ISBN”)}

In this case, the primary key is set to a composite key of the OrderID and ISBN columns.
Simply setting the PrimaryKey property also adds the constraint to the
ConstraintCollection.

Using Foreign Key Constraints and Relations
The final type of constraint that you can place in a DataSet is the foreign key constraint
represented by the ForeignKeyConstraint class derived from Constraint. As in a rela-
tional database, a foreign key constraint is simply a pointer to the primary key of another
table and, as a result, lives in the ConstraintCollection of the child table. Also as in a
relational database, a foreign key constraint has two primary functions. First, it makes
sure that if a child row is added to the DataTable, there is a corresponding row in the
parent table. Second, it controls whether changes to the primary key of the parent table
are cascaded to the child table or disallowed.

There are two ways you can add a foreign key to a DataSet: using the DataRelation
object that is also used to allow navigation between tables, and adding a
ForeignKeyConstraint object to the ConstraintCollection directly. In the latter case,
as with unique constraints, the foreign key can be created independently and added to the
collection using the Add method as shown in the following snippet, or created directly in
the Add method using one of its overloaded signatures:

Dim fk As New ForeignKeyConstraint(“FK_OrderID”, _
orders.Columns(“OrderID”), orderDet.Columns(“OrderID”))

orderDet.Constraints.Add(fk)

100 Day 4

In this release, foreign key constraints aren’t populated from a data adapter
in SQL Server when its MissingSchemaAction property is set to AddWithKey.
This example also assumes that the dtOrders and dtOrderDet DataTable

objects refer to tables within the same DataSet that contain high-level order
and order detail information, respectively. Note that they are linked by the
OrderID column and the constraint exists in the dtOrderDet table.

Note

06 3869 ch04 5/20/02 1:19 PM Page 100

DataSet Internals 101

4

As with unique constraints, foreign key constraints can span multiple columns as long as
both the parent and child tables include the columns. However, the column names in both
tables must have the same data types or an InvalidOperationException will be thrown.
Of course, when placing a constraint between tables that already have data, every child
row must have a corresponding parent row or an ArgumentException will be thrown. In
these cases, if you would like to create a foreign key constraint—or for that matter a
unique constraint—even though the data doesn’t conform to it, you can first set the
EnforceConstraints property of the DataSet to False and then add the constraint.
Later, after the data has been cleaned up, you can once again enable constraints by set-
ting the property to True.

You don’t need to first set the primary key of the parent table in order to
create a foreign key, as is the case in most relational databases. If the prima-
ry key isn’t set, a unique constraint is automatically created on the parent
column.

Tip

The second way to create a foreign key is to create a DataRelation. Simply put, a
DataRelation allows navigation between the parent and child tables by allowing the
GetChildRows, GetParentRow, and GetParentRows methods shown in Table 4.2 to be
called to navigate through the DataSet. Creating a relation has the side effect of creating
a foreign key constraint as well. For example, rather than explicitly creating a foreign
key constraint, as in the previous code snippet, you could create a DataRelation as fol-
lows:

orders.Relations.Add(New DataRelation(“FK_OrderID”, _
orders.Columns(“OrderID”), _
orderDet.Columns(“OrderID”)))

Note that here the name of the relation can be specified along with the par-
ent and child columns. The DataRelationCollection class’s Add method is
also overloaded to accept arrays of parent and child columns. The end result
is that the DataRelationCollection objects exposed through the Relations
property of the dsOrders DataSet, the ChildRelations property of the
dtOrders parent DataTable, and the ParentRelations property of the
dtOrderDet child DataTable are all populated along with the addition of the
foreign key constraint to the ConstraintCollection of the dtOrderDet child
table.

Note

06 3869 ch04 5/20/02 1:19 PM Page 101

After the relation is in place, you can use it to navigate the DataSet. For example, the
code in the following snippet traverses each row in the Orders table and prints each row
in the OrderDetails table:

Dim orderRow As DataRow
Dim detRow As DataRow
Dim detRows() As DataRow

For Each orderRow In orders.Rows
Console.WriteLine(orderRow.Item(“OrderID”))
Console.WriteLine(orderRow.Item(“OrderDate”))
detRows = orderRow.GetChildRows(“FK_OrderID”, DataRowVersion.Current)
For Each detRow In detRows
Console.WriteLine(“ “ & detRow.Item(“ISBN”).ToString)
Console.WriteLine(“ “ & detRow.Item(“Quantity”).ToString)

Next
Next

Note that the GetChildRows method is overloaded and can accept either the name of the
DataRelation to use in the navigation or a DataRelation object. The second argument
is optional and specifies which versions of the child rows to return in the array of
DataRow objects.

102 Day 4

Keep in mind that simply creating a foreign key constraint called FK_OrderID
won’t allow the code in the previous snippet to work. The reason is that
although relations automatically create foreign key constraints, the reverse
isn’t true.

Note

Cascading Changes
After a foreign key constraint has been created, you can set its AcceptRejectRule,
UpdateRule, and DeleteRule properties to affect its behavior as data is modified in the
parent table.

The AcceptRejectRule property can be set to either the Cascade or None value of the
AcceptRejectRule enumeration. When you set the property to Cascade, each time the
AcceptChanges or RejectChanges method is called on a parent row, AcceptChanges or
RejectChanges is also called on all its child rows. This is convenient because often par-
ent and child rows will be added to the DataSet at the same time and this avoids having
to loop through all the child rows to call AcceptChanges. The default value of
AcceptRejectRule, however, is None.

The UpdateRule and DeleteRule properties are similar and can be set to one of the four
values of the Rule enumeration (Cascade, None [the default], SetDefault, SetNull). As

06 3869 ch04 5/20/02 1:19 PM Page 102

DataSet Internals 103

4

in a relational database, setting either of these properties to Cascade ensures that if the
parent row’s primary key is changed, or if the parent row is deleted, the foreign key in
the child table is likewise changed or deleted. This prevents orphaned rows from collect-
ing in the child table. For example, the foreign key created previously should have both
its DeleteRule and UpdateRule set to Cascade as follows:

Dim fk As ForeignKeyConstraint

fk = CType(orderDet.Constraints(“FK_OrderID”), ForeignKeyConstraint)
fk.DeleteRule = Rule.Cascade
fk.UpdateRule = Rule.Cascade

Should I Cascade?

Although cascading deletes is appropriate for some foreign keys, such as an
Orders/OrderDetails relationship as discussed in this section, it isn’t for others. This is particu-
larly true of lookups where the parent table stores a set of lookup data used for normalization,
such as product codes and categories. Cascading a delete in these cases can have disastrous con-
sequences because it would delete vital data. In those cases, SetDefault or SetNull is more
appropriate.

Cascading updates aren’t typically used because you should strive to keep primary keys
immutable, especially in the case of system-assigned keys such as GUIDs. However, there are
times when natural keys (those that reflect real entities such as product codes) must be
changed, and so cascading an update is called for.

The SetDefault and SetNull values can be used when the primary key needs to be
changed or deleted but when the child row must remain. Using SetDefault populates the
child column with the expression in its DefaultValue property, whereas SetNull simply
sets the column’s value to null (Nothing) assuming that the AllowDBNull property is set
to True.

Extended Properties
As you might have noticed, each of the DataSet, DataTable, DataColumn, and
DataRelation classes exposes a PropertyCollection object through its
ExtendedProperties property. The PropertyCollection class is found in the
System.Data namespace and is derived from System.Collections.Hashtable. As a
result, a PropertyCollection stores a set of key and value pairs that are stored based on
the hash value of the key.

You typically use the extended properties collection to store metadata for the object. As
an example, for a DataSet, you might store the date and time the data was retrieved from

06 3869 ch04 5/20/02 1:19 PM Page 103

the data store, or calculate a time at which the data should be refreshed. For a
DataTable, you might store the criteria that were used when retrieving the data, or the
connection string used to connect to the data store. For a DataColumn, you might store
comments or a description of what data is stored in the column. These values can then be
used both for display to a user of the application and for diagnostic purposes in the event
of an exception. For example, Listing 4.6 demonstrates the creation of several properties
for a DataSet used to cache data from the Orders and OrderDetails tables.

LISTING 4.6 Populating extended properties. This method populates the dsOrders
DataSet and populates several extended properties.

Public Function GetOrders(ByVal custID As Guid) As DataSet

Dim con As New SqlConnection(Me.ConnectString)
Dim da As New SqlDataAdapter(“usp_GetOrders”, con)
Dim orders As New DataSet(“Orders”)

da.SelectCommand.CommandType = CommandType.StoredProcedure
da.SelectCommand.Parameters.Add(New SqlParameter(“@CustomerID”, custID))

da.Fill(orders)
orders.Tables(0).TableName = “Orders”
orders.Tables(1).TableName = “OrderDetails”

With orders
.ExtendedProperties.Add(“TimeRetrieved”, Now)
.ExtendedProperties.Add(“CustomerID”, custID)
.ExtendedProperties.Add(“ConnectString”, con.ConnectionString)
.ExtendedProperties.Add(“CommandText”, da.SelectCommand.CommandText)

End With

Return orders
End Function

The properties can then be either accessed individually by passing the key value to the
ExtendedProperties collection, or traversed using an enumerator as shown in the fol-
lowing code snippet:

Try
‘ Attempt to update the DataSet
da.Update(orders.GetChanges())

Catch e As Exception
‘ Log the error
Dim props As IDictionaryEnumerator = orders.ExtendedProperties.GetEnumerator()

104 Day 4

06 3869 ch04 5/20/02 1:19 PM Page 104

DataSet Internals 105

4

While props.MoveNext
Trace.WriteLine(props.Key.ToString() & “ = “ & props.Value.ToString())

End While

‘ Other error handling here
End Try

In the previous snippet, the code is attempting to update the data store with
changed rows from the dOrders DataSet. If an exception occurs, the Catch

block is used to first write all the extended properties to the Trace object for logging. To
traverse the properties, the GetEnumerator method of the PropertyCollection object is
called to return an enumerator that implements the IDictionaryEnumerator interface.
This interface exposes a MoveNext method that is then used to traverse the collection in a
loop. Because the collection is positioned before the first element, the MoveNext property
can be called at the top of the loop as shown here.

ANALYSIS

In addition to the properties shown, the IDictionaryInterface exposes the
Current and Entry properties and the Reset method. The properties are
used to represent the key and value pair the enumerator current points to,
whereas the Reset method moves the pointer back before the first element
in the collection.

Note

The only downside to using extended properties is that they aren’t represented when the
DataSet is serialized to XML using the WriteXml method or returned through an XML
Web Service. However, they are included when the DataSet is transported using .NET
Remoting.

Summary
Today you delved deeply into the structure of a DataSet and examined each of its con-
stituent parts from the perspective of the object model. Understanding the internal struc-
ture is the first step in being able to write applications that take advantage of the features
of the DataSet.

Tomorrow, you’ll briefly review the various ways data in a DataSet can be modified and
how those modifications are tracked and stored.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

06 3869 ch04 5/20/02 1:19 PM Page 105

Quiz
1. How are system-assigned keys supported in ADO.NET?

Automatically generated keys are supported in two primary ways. First, the
DataColumn class exposes AutoIncrement, AutoIncrementStep, and
AutoIncrementSeed properties that when set enable ADO.NET to generate incre-
mental numeric values in the DataColumn. These values are often used to relate
tables through a foreign key constraint or data relation. Second, you can write your
own code to assign values to keys as rows are inserted; for example, by using the
NewGuid method of the Guid structure.

2. In what ways can expressions be used for a DataColumn?

Expressions, through the Expression property, can be used to create calculated
columns based on a combination of literal values, numeric and string values, and
even aggregate functions and scalar functions such as ISNULL and SUBSTRING. In
addition, expressions can be used to refer to both parent and child rows to perform
rollups of data.

3. How does a primary key differ from a unique constraint on a DataTable?

A primary key is actually just an instance of a unique constraint and is represented
by a UniqueConstraint object in the ConstraintCollection of the table. The
IsPrimaryKey property of the UniqueConstraint object will be set to True when
this is the case. The PrimaryKey property of the DataTable can be used to set the
primary key, which automatically creates the unique constraint.

4. What is the relationship between a foreign key constraint and a data relation?

A foreign key constraint is used to ensure that data in a child table conforms to the
primary key value of a parent table. To that end, foreign key constraints are about
data integrity. Data relations, on the other hand, enable programmatic navigation of
a DataSet through methods such as GetChildRows and the ChildRelations collec-
tion. However, these two concepts are related in that creating a data relation auto-
matically creates a foreign key constraint, although the reverse isn’t true.

Exercise
To get some practice in working with the structure of a DataSet, write some code in a
console application similar to that shown in Listing 4.5 to retrieve the Titles table and
its associated Reviews table. Then create a data relation to relate the tables and use it to
traverse Titles and the child Reviews. Also ensure that the primary keys of both tables
are set and that no one can change them.

106 Day 4

06 3869 ch04 5/20/02 1:19 PM Page 106

DataSet Internals 107

4

Answers for Day 4
Exercise Answer
One possible solution is as follows:

Dim dr, child As DataRow
Dim con As New SqlConnection(connect)
Dim da As New SqlDataAdapter(“usp_GetTitlesReviews”, con)
da.SelectCommand.CommandType = CommandType.StoredProcedure

Dim ds As New DataSet(“TitlesReviews”)

‘ Get the data
da.MissingSchemaAction = MissingSchemaAction.AddWithKey
da.Fill(ds)

Dim reviews As DataTable = ds.Tables(0)
Dim titles As DataTable = ds.Tables(1)

‘ Make the PKs read only
reviews.Columns(“ReviewId”).ReadOnly = True
Titles.Columns(“ISBN”).ReadOnly = True

‘ Setup the relationship
ds.Relations.Add(“FK_ISBN”, titles.Columns(“ISBN”), reviews.Columns(“isbn”))

‘ Traverse the tables
For Each dr In titles.Rows
Console.WriteLine(dr.Item(“ISBN”).ToString())

Dim children() As DataRow
children = dr.GetChildRows(“FK_ISBN”)

For Each child In children
Console.WriteLine(“ “ & child.Item(“ReviewText”).ToString())

Next

Next

In this code snippet, the usp_GetTitlesReviews stored procedure returns the Reviews as
the first result set and the Titles as the second. The MissingSchemaAction property is
set to AddWithKey to ensure that the primary key information is returned. For ease of use,
the reviews and titles variables are set to refer to the appropriate tables before setting
the primary key columns to read-only and creating the DataRelation. With the relation-
ship in place, the code then traverses the titles table and finds the related reviews with
the GetChildRows method.

06 3869 ch04 5/20/02 1:19 PM Page 107

06 3869 ch04 5/20/02 1:19 PM Page 108

DAY 5

WEEK 1

Changing Data
Over the last two days, you’ve delved pretty deeply into the DataSet in order to
understand the various ways you can work with it programmatically and how it
is structured. During that time, you’ve seen several examples of data modifica-
tions and how they are represented without being given the big picture. Today,
you’ll put the pieces together in a shorter lesson to form a complete picture of
how and when changes are tracked in a DataSet.

Although today’s discussion will focus on modifying data, it won’t discuss how
data is actually synchronized with the underlying data store. That discussion
will have to wait for Day 12, “Using Data Adapters,” when you learn about
data adapters.

However, today you’ll learn the following concepts:

• How row states and row versions are tracked

• How the GetChanges method is used to filter rows

• What a DiffGram is and how it is used by a DataSet

• When and why to call the AcceptChanges, RejectChanges, and Reset

methods of the objects within a DataSet

07 3869 ch05 5/20/02 1:25 PM Page 109

Making Modifications
Obviously, to eventually update a data store with information, it must first be changed in
the DataSet that a data adapter will use to synchronize with the data store. These
changes can occur through explicit programmatic manipulation of the data by adding,
modifying, and deleting data in a DataTable, using the Merge method of the DataSet, the
ImportRow or LoadDataRow methods of the DataTable, the Add method of the
DataRowCollection object, the Item and ItemArray properties, or the Delete method of
the DataRow as you learned over the last two days. In addition, changes can be made
implicitly through bound controls on Windows Forms or Web Forms. In the case of the
former, the data in the DataSet is changed automatically by the control, whereas in the
latter, some additional code must be written in the ASP.NET page.

In either case, the key concept you need to keep in mind is that because the DataSet is a
truly disconnected data cache (remember, it doesn’t keep track of where it got its data),
any changes you make to it won’t be reflected in the data store until you synchronize
using an object such as a data adapter. This behavior is contrary to the way the
Recordset object functioned by default in ADO 2.x. In this way, a DataSet is particu-
larly useful for batch update scenarios.

110 Day 5

Modifying data in a DataSet and then using a data adapter isn’t the only
technique for making changes to a database. You certainly have the option
of executing data modification statements (SQL, stored procedures, func-
tions) using a command object provided by a .NET Data Provider such as
OleDbCommand. You’ll learn more about this approach on Day 10, “Working
with Commands.”

Note

However, for a data adapter to take the appropriate action when passed a DataSet, it
must know which rows were changed and how they were changed in addition to what the
values in the rows were changed to and from.

Understanding Row States
To eventually know which rows should be synchronized with the data store, the DataSet
must track the state of each row in each DataTable in its DataTableCollection. It does
this using the RowState property of the DataRow object, which is always set to one of the
values from the DataRowState enumeration, as shown in Table 5.1.

07 3869 ch05 5/20/02 1:25 PM Page 110

Changing Data 111

5

TABLE 5.1 Values of the DataRowState Enumeration

Value Description

Added The row has been added to the DataRowCollection of a DataTable and
AcceptChanges hasn’t yet been called.

Deleted The row has been deleted using the Delete method of the DataRow object. It
can’t subsequently be accessed without throwing a
DeletedRowInaccessibleException.

Detached The row exists, but isn’t part of a DataRowCollection either because it was
never added to a DataTable or was removed using the Remove method of the
DataRowCollection.

Modified One or more values in the row have been changed and AcceptChanges hasn’t
been called.

Unchanged The row hasn’t been changed since the last time AcceptChanges was called.

To illustrate when the row states are set consider the C# populateBooks method shown
in Listing 5.1.

LISTING 5.1 Illustrating row states. This method populates a DataSet and then manipu-
lates rows to show the values of the DataRowState enumeration.

private void populateBooks(string connect)
{

SqlConnection con = new SqlConnection(connect);
SqlDataAdapter da = new SqlDataAdapter (“usp_GetTitles”, con);

books = new DataSet(“ComputeBooksTitles”);

da.SelectCommand.CommandType = CommandType.StoredProcedure;
da.Fill(books, “Titles”);

DataTable titles = books.Tables[“Titles”];

// All rows are Unchanged

titles.Rows[0].BeginEdit();
titles.Rows[0][“Description”] = “This book is too long”;
titles.Rows[0].EndEdit();
Console.WriteLine(titles.Rows[0].RowState.ToString()); //Modified

titles.Rows[0].Delete();
Console.WriteLine(titles.Rows[0].RowState.ToString()); //Deleted

DataRow title = titles.Rows[1];
titles.Rows.Remove(title);

07 3869 ch05 5/20/02 1:25 PM Page 111

Console.WriteLine(title.RowState.ToString()); //Detached

DataRow drNewTitle = titles.NewRow(); //Detached
titles.Rows.Add(drNewTitle);
Console.WriteLine(drNewTitle.RowState.ToString()); //Added

titles.AcceptChanges(); //All Unchanged
}

In Listing 5.1, you’ll notice that the Titles table of the DataSet is first populat-
ed from a data adapter and then referenced as titles. At this point, all the rows

in titles have their RowState property set to Unchanged. The first row (0) is then modi-
fied before being deleted, changing its RowState from Unchanged to Modified to
Deleted. Note, however, that if the RowState had been inspected before the call to
EndEdit, it would have been Unchanged because embedding the change in BeginEdit
and EndEdit methods defers the changes to the row until the EndEdit method is called.
The second row is then removed from the DataRowCollection using the Remove method,
causing its RowState to be set to Detached. Finally, a new row is added to titles, caus-
ing its RowState to be set to Added. When AcceptChanges is invoked, all the rows that
have a RowState of Modified or Added will be set to Unchanged, and the Deleted and
Detached rows will be permanently removed.

112 Day 5

LISTING 5.1 continued

ANALYSIS

This listing shows a new row being added to the titles DataTable first
using the NewRow method to create the row, and then using the Add method
to add it to the DataTableCollection. However, the Add method will throw
an exception if any columns in the table have their AllowDBNull property set
to False and don’t have a DefaultValue that can automatically generate a
value.

Tip

As mentioned on Day 3, “Working with DataSets,” the HasChanges method of the
DataSet object returns a Boolean that can be used to quickly determine whether there
have been any changes (row states of Modified, Added, and Deleted) made to any rows
in any of its tables. In fact, the HasChanges method is overloaded to filter based on one
or more values from the DataRowState enumeration to check for specific types of
changes. If the following line of code were inserted just above the call to
AcceptChanges, it would return False because no rows with the Modified state would
exist in the DataSet at that time:

Console.WriteLine(books.HasChanges(DataRowState.Modified));

07 3869 ch05 5/20/02 1:25 PM Page 112

Changing Data 113

5

The previous paragraph implies that detached rows are handled differently from deleted
ones, and in fact this is precisely the case. Simply put, a row that is detached doesn’t reg-
ister as a changed row to ADO.NET, and so a data adapter won’t look at it when decid-
ing which rows to delete in the data store. Further, the HasChanges and GetChanges

methods of the DataSet and DataTable will ignore detached rows returning False if
detached rows exist and not returning rows with a state of Detached, respectively.

In addition to their invisibility, detached rows and deleted rows can cause a
RowNotInTableException or DeletedRowInaccessibleException to be thrown if you
try to manipulate them. For example, calling the AcceptChanges, GetChildRows,
GetParentRows, GetParentRow, RejectChanges, or SetParentRow methods of a DataRow
that is detached or deleted will throw a RowNotInTableException. Trying to access the
Item or ItemArray properties of a deleted row will cause a
DeletedRowInaccessibleException. You’ll also find that you can’t access the columns
of a row after it’s been detached without causing an exception. However, this isn’t the
case with a row that’s been newly instantiated and not yet added to a DataTable.

Understanding Row Versions
Marking a row as modified, deleted, or added, however, isn’t enough to ensure that the
data is properly updated in the underlying data store. The DataSet must also track the
versions of values within the rows of a DataTable. This is accomplished behind the
scenes in the table and tracked with the DataRowVersion enumeration, as shown in Table
5.2. Various versions of a row can then be made accessible using a DataView and its
RowStateFilter property or directly through the Item property of the DataRow object.

TABLE 5.2 Values of the DataRowVersion Enumeration

Value Description

Current Represents the data that is currently in the row, including both changed data
and unmodified data

Default Represents the data based on the setting of the RowState property of the row

Original Represents the data that was originally used to populate the row

Proposed Represents changes made to the data after BeginEdit was called and before
EndEdit—can still be undone if CancelEdit is called

One way you can think of the row versions listed in Table 5.2 is as three distinct copies
(Current, Original, Proposed) of each row that a table has available to use, but that
need not all be used simultaneously. Values within the copies can be manipulated directly
by your code, and the DataSet also moves values between the copies as methods such as

07 3869 ch05 5/20/02 1:25 PM Page 113

EndEdit, AcceptChanges, and RejectChanges are called. Although there are four values
in the enumeration, actually only three copies are available because the Default value
simply acts as a pointer to one of the three copies—which copy depends on the value of
the RowState property.

To illustrate this, consider the sequence of code based on Listing 5.1 shown in
Listing 5.2.

LISTING 5.2 Changing row data. This listing corresponds to Figure 5.1 to show how a
DataSet tracks row versions.

titles.Rows[0][“Description”] = “Too long”;

titles.Rows[0].BeginEdit();
titles.Rows[0][“Description”] = “Way too long”;

// See Figure 5.1

titles.Rows[0].EndEdit();
titles.AcceptChanges();

In Listing 5.2, assume that row 0 was just populated in the DataSet by a data
adapter and the value of the Description column was the string “A Great Book.”

As a result, its RowState would be set to Unchanged. At this point, the DataSet will have
created an Original version of each row and a Current version of each row and all their
values will be the same. The Default version will simply point to the Current version
because the RowState is Unchanged. However, after the first line of code executes, the
value of the Description column in the Current version will be changed to “Too Long”
and the RowState will be set to Modified. The Default version will still point to the
Current version because the modified value is in the Current version. When the
BeginEdit method is called, a Proposed version of the row is created and is then popu-
lated with the value “Way Too Long.” This is illustrated in Figure 5.1, which captures the
state of the table directly before the EndEdit method is called.

As shown in Figure 5.1, at this point, the Default version points to the Proposed version
and the RowState remains set to Modified because accessing the value of the column
will bring back the value “Way Too Long,” and the row was previously modified.

When the EndEdit method is called, the values from the Proposed version are copied
into the Current version and the Proposed version is destroyed. The RowState remains
as Modified. As you might expect, calling CancelEdit will simply destroy the Proposed
version without making any changes. Finally, when the AcceptChanges method is called,

114 Day 5

ANALYSIS

07 3869 ch05 5/20/02 1:25 PM Page 114

Changing Data 115

5

the Current value is copied into the Original value and so they’re once again the same.
Calling RejectChanges instead would have copied the Original value back into the
Current value. Both methods change the RowState back to Unchanged.

FIGURE 5.1
Row versions. This fig-
ure illustrates the state
of the table at the com-
mented line in
Listing 5.2.

Way Too Long

Proposed (Default)

Current

A Great Book

ISBN Title Author Description

Too Long

Original

Although not shown in Listing 5.2, it follows that immediately after a row such as
drNewTitle in Listing 5.1 is created, it has a Current version but not an Original ver-
sion because the row wasn’t originally retrieved from a data store. When the
AcceptChanges method is called, either on the row directly on the table or on the
DataSet after the row is added to the DataRowCollection, the Current version is copied
to the Original and so both versions are available.

To access the values in the various versions, the Item property of the DataRow is over-
loaded to support a second argument that specifies the DataRowVersion to retrieve. For
example, between the BeginEdit and EndEdit method calls in Listing 5.2, the following
code could be inserted:

//returns Great Book
string descO = titles.Rows[0][“Description”,DataRowVersion.Original].ToString();
//returns Too Long
string descC = titles.Rows[0][“Description”,DataRowVersion.Current].ToString();
//return Way Too Long
string descP = titles.Rows[0][“Description”,DataRowVersion.Proposed].ToString();
//return Way Too Long
string descD = titles.Rows[0][“Description”,DataRowVersion.Default].ToString();

From this snippet, you’ll notice that the Default version simply points to the Proposed
version as shown in Figure 5.1. It’s also important to note the differences in syntax
between VB and C# in this context. Because C# supports the concept of an indexer, you
needn’t reference the Item property explicitly. Simply enclosing the column name in

07 3869 ch05 5/20/02 1:25 PM Page 115

brackets after the row number assumes that you want to access the property denoted as
the indexer; in this case, Item. This construct allows access to a property in an array-like
syntax. As shown several times yesterday, in VB, you would have to explicitly use the
Item property like so:

Dim descD As String = titles.Rows(0).Item(
“Description”,DataRowVersion.Default).ToString()

Of course, to know which versions of the row are available, you can use the HasVersion
method of the DataRow class as shown in Table 4.2. This method accepts a value from the
DataRowVersion enumeration and simply returns true if the version has been created for
the row. For example, you could use the method to determine whether a row has both
Current and Original versions and, if so, compare their primary keys to see whether
they have been changed. The method in the following code snippet does just that and
returns true or false when passed in the row to inspect and the name of primary key
column:

private Boolean hasKeyChanged(ref DataRow row, string pk)
{

if (row.HasVersion(DataRowVersion.Current) &
row.HasVersion(DataRowVersion.Original))
{

if (row[pk,DataRowVersion.Current] != row[pk,DataRowVersion.Original])
{

return true;
}
else return false;

}
else return false;

}

Revisiting DataViews
Obviously, row states and row versions are closely connected because the changing of a
row state implies the population of a row version in many cases. This is most clearly
seen in the DataView object and its RowStateFilter property. As discussed on Day 3,
the DataView object is used to view the rows of a DataTable in different ways. Although
Day 3 focused primarily on changing the view based on sorting and filtering the various
row versions, the RowStateFilter property actually can be used to see an entire collec-
tion of rows from one of the other versions through the DataViewRowState enumeration
shown in Table 5.3.

116 Day 5

07 3869 ch05 5/20/02 1:25 PM Page 116

Changing Data 117

5

TABLE 5.3 Values of the DataViewRowState Enumeration

Value Description

Added Allows only new rows (Added state) to be visible—displays their Current
version

CurrentRows Shows the Current version of rows that include rows in the Unchanged,
Added, and Modified states

Deleted Allows rows in the Deleted state to be visible (the Current version)

ModifiedCurrent Shows rows in the Current row version that are in the Modified row state

ModifiedOriginal Shows rows in the Original row version that are in the Modified row
state

None No filter will be placed on the view

OriginalRows Shows all rows in the Original row version including both rows in the
Unchanged and Deleted row states

Unchanged Shows the Current version of rows in the Unchanged state (which would
be the same as the Original version)

As you can see from Table 5.3, values of the DataViewRowState enumeration encompass
aspects of both the DataRowState and DataRowVersion enumerations to allow you to
easily create a consistent view of the data in a DataTable. One use of this ability might
be to present before-and-after snapshots of the data to a user for inspection before pass-
ing the changes to a data adapter for synchronizing with the data store, as in the
showOriginal method in Listing 5.3.

LISTING 5.3 Viewing row versions. This method binds the original data from a table in a
DataSet to a grid using a DataView.

public DataView showOriginal(ref DataSet ds, String table,
String sort, ref DataGrid grid)

{
DataView myView = new DataView(ds.Tables[table],null,
sort,DataViewRowState.ModifiedOriginal);

grid.DataSource = myView;
grid.DataBind();
return myView;

}

The showOriginal method in the previous code snippet first creates a new
DataView of the table in the DataSet passed into the method. The DataView is

sorted using the sort string also passed in, and will display only the original rows that

ANALYSIS

07 3869 ch05 5/20/02 1:25 PM Page 117

have been modified using the ModifiedOriginal value of the DataRowViewState enu-
meration. The new DataView is then bound to the ASP.NET DataGrid control and
returned from the method.

Retrieving Changes
As you learned on Day 3, the GetChanges method is exposed by both the DataSet and
DataTable classes. Both methods are overloaded to accept one or more DataRowState
values to return only those rows that match the row state. If no row state is passed, all
rows with Modified, Deleted, and Added row states are returned. As you might expect,
the return values from the GetChanges method for the DataSet and the DataTable differ
in that they return a DataSet and DataTable, respectively.

The primary use of these methods in n-tiered applications is as shown on Day 3; namely,
to extract a subset of rows and then pass those rows to a class that can synchronize them
with the underlying data store. This technique is useful to minimize the amount of data
that must be marshaled between logical tiers (and possibly between machines), and
thereby increase performance.

118 Day 5

As with other methods that accept an enumerated value, such as
HasChanges, the GetChanges method can accept multiple values in a logical
OR using the VB Or keyword or the C# | operator. So, to create a new
DataSet that contains only Detached and Unchanged rows, you could use the
VB syntax ds.GetChanges(DataRowState.Detached Or
DataRowState.Unchanged) or the C# syntax
ds.GetChanges(DataRowState.Detached | DataRowState.Unchanged);.

Tip

However, the GetChanges method in conjunction with accessing data in the various row
versions can also be used to enumerate all the changes in a table before the
AcceptChanges method is called. The code in Listing 5.4 illustrates this concept by
showing a WriteXmlChanges method that creates an XML document that encapsulates all
the changes to the passed-in DataTable. The method then returns an XmlTextReader that
the calling code can use to navigate through the XML using a stream-based approach.

LISTING 5.4 Inspecting a DataTable. This method creates an XML document that
describes the changes in a DataTable using the GetChanges method.

public XmlTextReader WriteXmlChanges(DataTable dt, String pk)
{

MemoryStream s = new MemoryStream();
XmlTextWriter xmlChanges = new XmlTextWriter(s,

07 3869 ch05 5/20/02 1:25 PM Page 118

Changing Data 119

5

System.Text.Encoding.Default);

try
{

xmlChanges.Formatting = Formatting.Indented;
xmlChanges.Indentation = 4;
xmlChanges.WriteStartDocument();
xmlChanges.WriteComment(“Changes for the “ + dt.TableName + “ table”);
xmlChanges.WriteStartElement(“diff”,dt.TableName + “Diff”,
“http://mycompany.org”);

xmlChanges.WriteAttributeString(“primaryKey”,pk);

// Extract Deleted rows
DataTable del = dt.GetChanges(DataRowState.Deleted);
if (del != null)
{
xmlChanges.WriteStartElement(“Delete”);
foreach (DataRow row in del.Rows)
{
xmlChanges.WriteStartElement(“row”);
xmlChanges.WriteString(row[pk,DataRowVersion.Original].ToString());
xmlChanges.WriteEndElement(); //finish the Row tag
}
xmlChanges.WriteEndElement(); //finish the Delete tag

}

// Extract Modified Rows
DataTable mod = dt.GetChanges(DataRowState.Modified);
if (mod != null)
{

xmlChanges.WriteStartElement(“Change”);
foreach (DataRow row in mod.Rows)
{
xmlChanges.WriteStartElement(“row”);
xmlChanges.WriteAttributeString(“primaryKey”,row[pk,
DataRowVersion.Original].ToString());

foreach (DataColumn col in mod.Columns)
{
if (row[col.ColumnName, DataRowVersion.Current].ToString() !=
row[col.ColumnName, DataRowVersion.Original].ToString())

{
xmlChanges.WriteStartElement(col.ColumnName);
xmlChanges.WriteAttributeString(“original”,
row[col.ColumnName,DataRowVersion.Original].ToString());

xmlChanges.WriteString(row[col.ColumnName,
DataRowVersion.Current].ToString());

xmlChanges.WriteEndElement(); //finish column
}

}

LISTING 5.4 continued

07 3869 ch05 5/20/02 1:25 PM Page 119

xmlChanges.WriteEndElement(); //finish the Row tag
}
xmlChanges.WriteEndElement(); //finish the Change tag

}

// Extract Added Rows
DataTable add = dt.GetChanges(DataRowState.Added);
if (add != null)
{

xmlChanges.WriteStartElement(“Add”);
foreach (DataRow row in add.Rows)
{
xmlChanges.WriteStartElement(“row”);
foreach (DataColumn col in add.Columns)
{
xmlChanges.WriteElementString(col.ColumnName,
row[col.ColumnName, DataRowVersion.Current].ToString());

}
xmlChanges.WriteEndElement(); //finish the Row tag

}
xmlChanges.WriteEndElement(); //finish the Add tag

}

xmlChanges.WriteEndDocument(); //finish the document

xmlChanges.Flush();
s.Position = 0;
return new XmlTextReader(s);

}
catch (IOException e)
{

logError(e, dt);
return null;

}
catch (XmlException e)
{

logError(e, dt);
return null;

}
catch (Exception e)
{

logError(e, dt);
return null;

}
}

Although Listing 5.4 is fairly long, it can be broken into five distinct sections.
The first section instantiates the MemoryStream that will be used to hold the XML

120 Day 5

LISTING 5.4 continued

ANALYSIS

07 3869 ch05 5/20/02 1:25 PM Page 120

Changing Data 121

5

document as well as the XmlTextWriter used to write to the MemoryStream. Directly
inside the try block, the XmlTextWriter sets up the properties that determine how the
document will be formatted as well as writes the root element with an attribute that iden-
tifies the primary key and a comment to the stream.

The second section calls the GetChanges method of the DataTable passed to the method
to extract only those rows that have been Deleted. If rows are returned, a Delete ele-
ment is written to the XML document with the WriteStartElement method and each
row is written as a Row element inside. The point to note here is that in order to retrieve
the values from the deleted row, you must access the Original version of the row. In this
case, the primary key column, passed in the pk argument, is the only column written to
the XML document because the primary key is all that is required to delete a row.

The WriteXmlChanges method as shown here would work only with a single-
column primary key. It could easily be rewritten to accept an array of strings
to represent possible composite keys.

Note

Framework Patterns

This example uses classes from the System.Xml and System.IO namespaces to write out the XML
stream and return an object that can be used to stream through the document. The classes in
the System.Xml namespace, XmlTextWriter and XmlTextReader, implement a programming
model that is different from both the Document Object Model (DOM) and the Simple API for
XML (SAX) programming models exposed in the Microsoft XML (MSXML) parser familiar to
COM developers. The advantage to using this approach that melds DOM and SAX is twofold.
First, like SAX, it doesn’t incur the memory overhead of DOM where the entire document is
parsed into a tree structure before it’s available for inspection. Second, like the DOM, it imple-
ments a pull rather than a push model, which allows developers to use a familiar cursor-style
looping construct rather than having to respond to events fired from the parser.

As you’ll find throughout the .NET Framework classes, the System.Xml classes rely on stream
classes from the System.IO namespace to provide the underlying stream of bytes through
which to work. In this case, a MemoryStream object is used to represent a stream of bytes stored
in memory. Its base class, Stream, also acts as the base class for other stream objects in the
Framework, such as FileStream and NetworkStream, that have different backing stores and that
can be used polymorphically where a Stream object is called for.

The third section is analogous to the second by retrieving all the modified rows and loop-
ing through them, writing a row element for each one. However, inside the loop sits
another nested loop that iterates the columns in the row in order to write out both the old
and new values to the XML document. Note that the Current and Original versions are

07 3869 ch05 5/20/02 1:25 PM Page 121

used to find the new and old values, respectively, and that only columns that differ
between versions in their string representations are written to the stream. In this case, the
original value is written as an attribute using the WriteAttributeString method.

The fourth section uses GetChanges to retrieve the newly inserted rows defined as those
with a row state of Added. Like the previous section, it loops through all the rows and
each column in order to write all the values to the XML stream. Note that, in this case,
the Current version represents the new values because added rows don’t yet have an
Original version.

Finally, the ending element is written to the document and the Position of the stream is
reset to the beginning. Because the method returns an XmlTextReader, a new object is
instantiated and passed the MemoryStream. Most of the code is wrapped in a try catch
block in order to handle any errors. In this case, possible exceptions include
IOException, XmlException, and various exceptions from the System.Data namespace
that are all caught under the generic catch (Exception e) block. In all cases, the
exception is simply passed to a method to log the error.

The WriteXmlChanges method can then be called like so:

XmlTextReader tr = WriteXmlChanges(titles.GetChanges(),”ISBN”);

Note that the default version of GetChanges is used to pass only rows that have been
changed to the method. The result is an XML document that can be read from the
XmlTextReader with the structure shown in Listing 5.5.

LISTING 5.5 XML changes. This listing shows the output from the WriteXmlChanges
method shown in Listing 5.4.

<?xml version=”1.0” encoding=”Windows-1252”?>
<!--Changes for the Titles table-->
<diff:TitlesDiff primaryKey=”ISBN” xmlns:diff=”http://mycompany.org”>

<Delete>
<row>06720006X </row>

</Delete>
<Change>

<row primaryKey=”06720001X “>
<Description original=”Great Book”>Way too long</Description>

</row>
</Change>
<Add>

<row>
<ISBN>077802000X</ISBN>
<Title>Teach Yourself Enterprise ADO.NET in 21 Days</Title>
<Description />
<Author>Fox, Dan</Author>

122 Day 5

07 3869 ch05 5/20/02 1:25 PM Page 122

Changing Data 123

5

<PubDate>4/15/2001 12:00:00 AM</PubDate>
<Price>31.99</Price>
<Discount />
<BulkDiscount />
<BulkAmount />
<Cover />
<CatID />
<Publisher>Sams</Publisher>

</row>
</Add>

</diff:TitlesDiff>

From Listing 5.5, you can see that one row was deleted from the table with the
ISBN 06720006X, one row’s Description column was modified, and one new

row was added.

Obviously, creating an XML document like the one shown in Listing 5.5 isn’t something
you would do everyday. After all, remember it is the job of the data adapter to look for
changed rows much like the code in Listing 5.4 and apply those changes to the data
store. However, as you’ll learn on Day 14, “Working with Other Providers,” there are
rare occasions when you might want to write your own .NET Data Provider to work with
a proprietary data store or one that’s not easily accessible via ODBC or OLE DB. As a
result, you might implement an XML message-passing scheme where an XML document
is used to notify the data store of changes. In fact, the code shown in Listing 5.4 might
be the basis for the Update method of a custom data adapter class that implements the
IDataAdapter interface.

In any case, it should come as no surprise that the DataSet already implements function-
ality similar to that shown in this section.

DiffGrams
It turns out that the DataSet also supports an intrinsic method of creating an
XML document to represent the changes in its tables, referred to as a DiffGram.

DiffGrams were first introduced as a Web update to SQL Server 2000 that extended SQL
Server’s XML processing capabilities by allowing it to modify tables based on the con-
tents of an XML document that conformed to the DiffGram schema.

To create a DiffGram, you can use the WriteXml method of the DataSet object (which
you’ll learn more about on Day 7, “DataSets and XML”). Simply put, the WriteXml
method writes the contents of the DataSet in XML format to the stream you specify. An
overloaded version accepts a value of the XmlWriteMode enumeration as the second argu-
ment that specifies what is to be written. By passing the DiffGram value as the second

LISTING 5.5 continued

ANALYSIS

NEW TERM

07 3869 ch05 5/20/02 1:25 PM Page 123

argument, an XML document that shows before-and-after versions of modified rows and
new rows is created. The following code is used to generate the DiffGram:

MemoryStream s = new MemoryStream();
DataSet dsMod = books.GetChanges();

dsMod.WriteXml(s,XmlWriteMode.DiffGram);
s.Position = 0;
XmlTextReader xmlTr = new XmlTextReader(s);

Here, a MemoryStream is also used to store the XML document and a new DataSet is
first created to hold only the changed data. A DiffGram is then written to the stream with
the WriteXml method, and its position is reset to 0 before instantiating the
XmlTextReader that will be used to read the document. The resulting XML document
that incorporates the same changes as the one in Listing 5.4 can be seen in Listing 5.6.

LISTING 5.6 A DiffGram. This listing shows an XML DiffGram produced by the WriteXml
method.

<diffgr:diffgram xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”
xmlns:diffgr=”urn:schemas-microsoft-com:xml-diffgram-v1”>
<ComputeBooksTitles>
<Titles diffgr:id=”Titles1” msdata:rowOrder=”0”
diffgr:hasChanges=”modified>
<ISBN>06720001X </ISBN>
<Title>ADO 2.0 Programmers Reference</Title>
<Description>Way too long</Description>
<Author>Sussman, David/Homer, Alex</Author>
<PubDate>1998-10-01T00:00:00.0000000-05:00</PubDate>
<Price>29.99</Price>
<Discount>9.5687</Discount>
<BulkDiscount>10</BulkDiscount>
<BulkAmount>50</BulkAmount>
<CatID>21b60927-5659-4ad4-a036-ab478d73e754</CatID>

</Titles>
<Titles diffgr:id=”Titles3” msdata:rowOrder=”2”
diffgr:hasChanges=”inserted>
<ISBN>077802000X</ISBN>
<Title>Teach Yourself Enterprise ADO.NET in 21 Days</Title>
<Author>Fox, Dan</Author>
<PubDate>2001-04-15T00:00:00.0000000-05:00</PubDate>
<Price>31.99</Price>
<Publisher>Sams</Publisher>

</Titles>
</ComputeBooksTitles>
<diffgr:before>
<Titles diffgr:id=”Titles1” msdata:rowOrder=”0”>
<ISBN>06720001X </ISBN>
<Title>ADO 2.0 Programmers Reference</Title>

124 Day 5

07 3869 ch05 5/20/02 1:25 PM Page 124

Changing Data 125

5

<Description>Great Book</Description>
<Author>Sussman, David/Homer, Alex</Author>
<PubDate>1998-10-01T00:00:00.0000000-05:00</PubDate>
<Price>29.99</Price>
<Discount>9.5687</Discount>
<BulkDiscount>10</BulkDiscount>
<BulkAmount>50</BulkAmount>
<CatID>21b60927-5659-4ad4-a036-ab478d73e754</CatID>

</Titles>
<Titles diffgr:id=”Titles2” msdata:rowOrder=”1”>
<ISBN>06720006X </ISBN>
<Title>Advanced MS Visual Basic 6/+CD/2nd edition</Title>
<Author>Mandelbrot Set International Ltd</Author>
<PubDate>1998-10-01T00:00:00.0000000-05:00</PubDate>
<Price>59.99</Price>
<Discount>9.57</Discount>
<BulkDiscount>20</BulkDiscount>
<BulkAmount>75</BulkAmount>
<CatID>21b60927-5659-4ad4-a036-ab478d73e754</CatID>
<Publisher>Msft </Publisher>

</Titles>
</diffgr:before>

</diffgr:diffgram>

The key point that should strike you when comparing Listing 5.5 with Listing 5.6 is that
the DiffGram schema includes complete representations of the before-and-after states of
a modified row and includes the before views in the diffgr:before tag and the after
views simply inside the root element. Modified rows have their hasChanges attribute set
to “modified,” whereas new rows have theirs set to “inserted.” Note also that deleted
rows simply appear in the diffgr:before element and, as you would expect, have no
after representation.

Obviously, you can also capitalize on the DiffGram format if you need to pass XML to
update a data store.

Handling Changes
Today’s final brief discussion deals with notifying the DataTable as to when rows should
be “committed” to the table. In other words, at some point you need to know that
changed, deleted, and inserted rows can simply be treated as regular rows, most likely
because they are now synchronized to the data store.

LISTING 5.6 continued

07 3869 ch05 5/20/02 1:25 PM Page 125

Using AcceptChanges
The DataSet, DataTable, and DataRow classes all expose AcceptChanges methods that
perform the same function although, of course, only in the scopes appropriate for the
object. As hinted at previously, when AcceptChanges is called on any of the objects, it
performs the following tasks in order:

1. It calls the EndEdit method for any rows where changes are pending, causing
Proposed values to be copied to Current values.

2. It changes the rows with the row states of Added and Modified to Unchanged, cre-
ating an Original version for added rows and copying the Current version to the
Original for modified rows.

3. Rows with the Deleted state or that were detached from the table are removed
from the table.

4. It clears out any RowError information and sets the HasErrors property to False.

Of course, as mentioned earlier today, calling AcceptChanges can cause exceptions to be
thrown if you call it, for example, on the deleted row. In addition, remember that rows in
other tables might be affected by calling AcceptChanges on a row in a parent table when
the AcceptRejectRule property of a foreign key constraint (ForeignKeyConstraint) is
set to Cascade.

Using RejectChanges
Obviously, the RejectChanges method is exposed on the same objects as
AcceptChanges, but has the reverse effects:

1. It calls the CancelEdit method for any rows where changes are pending, causing
Proposed values to be destroyed.

2. It changes the rows with the row states of Deleted and Modified to Unchanged,
reverting the Original values to the Current values for Modified rows.

3. Rows with the Added state are removed from the table.

4. It clears out any RowError information and sets the HasErrors property to False.

A typical use of RejectChanges is to undo changes if validation errors are placed in the
rows as a result of code run in the events of the DataTable such as RowChanging or
ColumnChanging, as shown in Table 4.2. For example, the method in Listing 5.7 attempts
to resolve a specific error and, if it cannot, calls RejectChanges on the row. After all the
rows have been checked, the method calls AcceptChanges on the entire table.

126 Day 5

07 3869 ch05 5/20/02 1:25 PM Page 126

Changing Data 127

5

LISTING 5.7 Checking rows. This method checks for a specific error condition and cor-
rects it if possible before calling the RejectChanges or AcceptChanges method.

private void checkAddressErrors(ref DataTable dt)
{
if (dt.HasErrors)
{
foreach (DataRow row in dt.GetErrors())
{
if (row.RowError == “Must have a Postal Code or City and State”)
{
row[“PostalCode”] = “66218”;
row.RowError = “”; // clear the error, sets HasErrors to false

}
else
row.RejectChanges();

}
}
dt.AcceptChanges();

}

Note in this code snippet that the GetError method of the DataTable is used to
retrieve all the rows whose RowError property is set in an array of DataRow

objects.

ANALYSIS

Summary
Hopefully today has clarified in your mind how changes are tracked and applied to the
tables in a DataSet using the combination of row states, row versions, GetChanges,
AcceptChanges, and RejectChanges. Having a clear picture of how the DataSet operates
in this regard is a prerequisite to working with data adapters and design enterprise appli-
cations with ADO.NET.

Tomorrow, you’ll look at the concept of the strongly typed DataSet and how it can be
used to increase programmer productivity and reduce programming errors.

Both the DataSet and DataTable expose Reset methods that simply wipe out
all data and columns in the tables, and leave the object in the state it was in
directly after it was instantiated. The Reset method would be appropriate to
use if you want to clear a DataSet or DataTable and reuse it for a different
set of data because neither the data nor structure is preserved.

Note

07 3869 ch05 5/20/02 1:25 PM Page 127

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. How does a data adapter know which rows have changes?

A data adapter, or for that matter your code, can inspect the RowState property of
the DataRow object to determine the current state of the row. Row states include
Added, Deleted, Modified, and Unchanged.

2. How does a DataTable track the old values for a row?

Each row in the DataTable can have up to three different copies or versions
(Current, Original, Proposed) associated with it. The HasVersion method of the
DataRow class is used to determine whether a particular version exists by accepting
a value from the DataRowVersion enumeration. Various versions can be retrieved
using the optional second argument of the Item property (the indexer in C#) of the
DataRow.

3. What is the purpose of the GetChanges method?

The GetChanges method can be used to return a DataTable or DataSet that con-
tains only the rows that have been modified (their row state set to Added, Modified,
or Deleted). An overloaded signature also allows only changes from one or more
of the row states to be returned.

4. What is the relationship between row states, row versions, and a DataView?

A DataView, through its RowStateFilter property, can be used to view a collec-
tion of rows from a DataTable that have a particular combination of RowState and
version. For example, the RowFilter can be set to the ModifiedOriginal value
from the DataRowViewState enumeration to show the Original values from rows
with a row state of Modified. The DataView can then be bound to a control for dis-
play.

Exercise
Today, write a console application that retrieves Reviews from the ComputeBooks data-
base. Then programmatically edit the first row using the BeginEdit and EndEdit meth-
ods. Check the RowState property and HasVersion method before and after calling
EndEdit to see how the values change. Commit the changes to the row after it has been
modified.

128 Day 5

07 3869 ch05 5/20/02 1:25 PM Page 128

Changing Data 129

5

Answers for Day 5
Exercise Answer
One possible solution is as follows:

static void Main(string[] args)
{

SqlConnection con = new SqlConnection(
“server=ssosa;database=compubooks;trusted_connection=yes”);

SqlDataAdapter da = new SqlDataAdapter(“usp_GetReviews”,con);
DataTable reviews = new DataTable(“Reviews”);

da.SelectCommand.CommandType = CommandType.StoredProcedure;
da.SelectCommand.Parameters.Add(

new SqlParameter(“@isbn”,SqlDbType.NChar,10));
da.SelectCommand.Parameters[0].Value = “06720083X”;

// Get the data
try
{

da.Fill(reviews);
}
catch (SqlException e)
{

Console.WriteLine(e.Message);
}

// Edit the row
reviews.Rows[0].BeginEdit();
reviews.Rows[0][“Stars”] = 4;
CheckIt(reviews.Rows[0]);

reviews.Rows[0].EndEdit();
CheckIt(reviews.Rows[0]);

// Commit the changes
reviews.Rows[0].AcceptChanges();

}

static void CheckIt(DataRow r)
{

Console.WriteLine(r.RowState.ToString());
Console.WriteLine(r.HasVersion(DataRowVersion.Current).ToString());
Console.WriteLine(r.HasVersion(DataRowVersion.Default).ToString());
Console.WriteLine(r.HasVersion(DataRowVersion.Original).ToString());
Console.WriteLine(r.HasVersion(DataRowVersion.Proposed).ToString());

}

In this solution, the Main method of the console application calls the usp_GetReviews
stored procedure and passes in an ISBN to retrieve the reviews into a DataTable. The first
row of the table is then edited and its RowState and row versions printed by the CheckIt
method. The row is then committed using the AcceptChanges method.

07 3869 ch05 5/20/02 1:25 PM Page 129

07 3869 ch05 5/20/02 1:25 PM Page 130

DAY 6

WEEK 1

Building Strongly Typed
DataSet Classes

Yesterday you completed a three-day, in-depth look at how a DataSet and its
related classes function by examining how the DataSet tracks its changes. At
this point, you should have a good understanding of how to work with a
DataSet in disconnected scenarios and both its functionality and limitations.

Today’s short lesson will focus on extending the base DataSet class using the
inheritance features built into the common language runtime in order to create
custom DataSet classes. The custom classes are easier for developers to work
with because they provide a more object-oriented means to access the data in
the DataSet. In addition, they reduce programming errors introduced at design
time by providing a strongly typed DataSet class with which to work. Today,
we’ll also examine techniques for persisting a DataSet to disk and passing it
between tiers in a distributed application.

To that end, today you’ll learn the following concepts:

• The purpose and goals of a strongly typed DataSet

• How to create a strongly typed DataSet both programmatically and
graphically in VS .NET

08 3869 ch06 5/20/02 1:23 PM Page 131

• How a strongly typed DataSet is versioned and can be shared between projects

• How a DataSet can be serialized and passed between tiers using .NET Remoting

Strongly Typed DataSet Classes Defined
Implementation inheritance, or inheriting from a class and extending and
reusing the code in its members, is one of the key strengths of the common lan-

guage runtime and of the languages it supports, as mentioned on Day 1, “ADO.NET in
Perspective.” Not only does it promote reuse by allowing developers to extend the exist-
ing implementation of a class, it also allows you to program polymorphically by creating
methods that accept arguments of the base class but that can be used with any of the
derived classes. As a result, using implementation inheritance is a natural way to design
classes that implement specific behavior but rely on a core set of members that can be
coded once in a base class.

132 Day 6

NEW TERM

Which Inheritance Should I Use?

As mentioned on Day 1, in addition to implementation inheritance, the common language run-
time also includes the concept of interface inheritance, both of which promote the writing of
polymorphic code. Because both are now available, you need to decide which to use when
designing your applications. Basically, implementation inheritance should be used when the
derived class follows an “is a” relationship with the base class. For example, an employee “is a”
person and so the behavior (implementation of the members) of the person class is probably
suitable to be reused in the employee class. The “is a” rule certainly holds for a custom DataSet
that certainly “is a” DataSet.

On the other hand, interface inheritance should be used when multiple classes need to expose
the same semantics but implement them in different ways. For example, ADO.NET includes the
IDataAdapter interface that can be implemented by different .NET Data Providers to provide a
consistent set of functionality, but that might be implemented very differently. This is obvious
when you consider that one data adapter may communicate with SQL Server in its Fill method
while the other communicates with a proprietary hierarchical file system.

When you think about it, the DataSet fits perfectly into this pattern because an instance
of DataSet simply reflects a particular set of data that has a particular structure in terms
of its table, columns, relationships, and data types. Further, a DataSet has core function-
ality (GetChanges, AcceptChanges, Merge, et al.) that is best written once and called
upon in any instance of a DataSet.

In this section, you’ll learn about the purpose and goals of strongly typed
DataSet classes, how to create them, and how they can be versioned and shared

NEW TERM

08 3869 ch06 5/20/02 1:23 PM Page 132

Building Strongly Typed DataSet Classes 133

6

between projects. Simply put, a strongly typed DataSet is a derived DataSet class that
exposes the tables, rows, and columns in the DataSet with specific types rather than the
standard DataTable, DataRow, and DataColumn types. In addition, a strongly typed
DataSet exposes columns contained in a table as properties such as Title, Author, and
Price.

Purpose and Goals
Historically, one of the problems that developers have run into again and again is map-
ping the rows and columns in tables of a relational database or other data store to native
data structures (classes, arrays, structures, or user-defined types) exposed by their pro-
gramming language of choice. In the past, this has entailed writing custom code to read
and write the database data to and from the data structures. Not only did this require
more coding, but it also brought with it more overhead as additional objects and collec-
tions of objects had to be created and managed. In addition, some languages—such as
VBScript—used in prior versions of ASP didn’t even support the constructs such as
classes necessary to create a mapping layer.

The mapping of database data to an object model in VB 6 and prior versions
was especially inefficient because scores of COM objects were often created.
As a result, different techniques were created to realize the benefits of an
object-based approach (as discussed later today), while still maintaining per-
formance. I advocated one technique, the Lightweight Business Object
Model (LBOM), in Chapter 15 of my book Pure Visual Basic.

Note

Of course, the primary reason developers strive to create a mapping layer in the first
place is to be able to work with the data directly rather than through an abstracted con-
struct such as a Recordset. In addition, “objectifying” the data reduces programming
errors because the class, structure, or user-defined type directly exposes the column
information in a strongly typed field or property rather than as a generic item in a collec-
tion. Not only does this reduce runtime and logic errors by giving developers more visi-
bility to the data, when coupled with the IntelliSense feature of the VS .NET IDE, it also
makes them more productive by reducing the guesswork involved in determining the
names of columns and their data types. For example, the following code snippet from
yesterday fills the books DataSet and accesses the Description column of the first row:

books = new DataSet(“ComputeBooksTitles”);

da.Fill(books, “Titles”);
DataRow title = books.Tables[“Titles”].Rows[0];

08 3869 ch06 5/20/02 1:23 PM Page 133

title[“Description”] = “This book is too long”;

With a strongly typed DataSet, the code snippet could be rewritten as follows:

books = new BooksDs();

da.Fill(books);
TitlesRow title = books.Titles.Rows[0];

title.Description = “This book is too long”;

In ADO.NET, the need to write custom code to populate and synchronize data between a
data provider and a class has been alleviated by providing a wizard that can create a
strongly typed DataSet, like the BooksDs object shown in the previous code snippet,
based on an XML Schema Definition (XSD). Simply put, XSD is an XML grammar that
can be used to define the structure of an XML document. It so happens, as you’ll learn
tomorrow, that the structure of a DataSet is also defined by an XSD. In fact, the XSD
can be created graphically from scratch or directly from a database connection in the
Server Explorer window.

134 Day 6

As mentioned briefly on Day 1, the common language runtime includes a
type checker that ensures that variables are accessed only in a type-safe
manner, so that the common language runtime can allocate the proper
amount of memory for the object and so that a variable can’t point to mem-
ory it’s not supposed to. In that sense, all common language runtime lan-
guages are strongly typed. In fact, in the past, VB wasn’t particularly
strongly typed and frequently coerced types in assignment statements and
parameter passing. Even though VB .NET still supports automatic type con-
version, it also includes a new level of type safety with the Option Strict
statement. Turning Option Strict on forces VB .NET developers to explicitly
do the versions using the CType function or the methods of the Convert
class. VC# .NET is always strongly typed and so casts are required.

Note

The examples in this section assume that you have a VC# .NET console appli-
cation project open if you want to follow along.

Note

Creating and Populating
To use a strongly typed DataSet, you first must create it. In this section, we’ll look at
several techniques you can use to create the DataSet and then discuss how it can be pop-
ulated and manipulated in code.

08 3869 ch06 5/20/02 1:23 PM Page 134

Building Strongly Typed DataSet Classes 135

6

Creating the DataSet
The easiest way to create a strongly typed DataSet involves using the graphical designer
inherent in VS .NET. To activate the designer, right-click on the project and select Add
New Item. The Add New Item dialog then allows you to select from the list of templates
grouped into categories that you can explore under the Local Project Items node on the
left side of the dialog, as shown in Figure 6.1. You’ll find the DataSet under the Data
group.

FIGURE 6.1
The Add New Item dia-
log. This dialog adds a
new DataSet to the
current project.

In this case, give the DataSet the name TitlesDs.xsd and click Open. The design surface
then appears, ready for you to graphically create the structure of the DataSet. From this
point, you can either use the Toolbox to drag and drop building blocks of an XSD
schema onto the design surface, or use the Server Explorer to drag and drop database
tables onto the designer. Obviously, for most developers, it will be easier to use the latter
method because it doesn’t require knowledge of XSD. In this way, you can at least jump-
start the creation of the XSD and edit it from there.

Alternatively, if you already have an XSD schema that you received from a
trading partner or that you built with a third-party tool such as XML Spy, you
can import it into VS .NET by selecting Add Existing Item after right-clicking
on the project. The schema will then be loaded and graphically displayed in
the designer. When you do so, you have the option of adding five annota-
tions (typedName, typedPlural, typedParent, typedChildren, and nullValue)
that the code generator will use to customize the names of the classes gen-
erated. For more information on these annotations, see the “Using
Annotations with a Typed DataSet” topic in the online documentation.

Tip

08 3869 ch06 5/20/02 1:23 PM Page 135

To drag-and-drop tables, you’ll need to create a data connection as described on Day 2,
“Getting Started.” When the data connection to the ComputeBooks database is estab-
lished, drag and drop the Titles and Reviews tables onto the designer surface. You’ll
notice that the tables include all the columns with their correct data types and primary
key identified and are mapped to elements in the XSD schema. Not surprisingly, each
table will also map to a DataTable in the generated DataSet. From here, you can edit the
list of columns in the DataSet in order to change their names or add and remove
columns. In this case, we don’t need all the columns of the Titles table, so you can
delete the Cover, CatID, and Publisher columns and add the CategoryName and PubName

columns with a data type of string.

Finally, you need to add a relationship between the Titles and Reviews table by right-
clicking on the Reviews element and selecting Add, New Relation, just as was done on
Day 2. In this case, select Titles as the parent element and Reviews as the child ele-
ment. Both the fields should be set to ISBN. The properties at the bottom of the dialog
should be set to have an update rule of None, a delete rule of Cascade, and an
accept/reject rule of Cascade. These properties map directly to the properties discussed
on Day 4, “DataSet Internals.” As you’ll recall from Day 4, creating a DataRelation
object as we’re doing here implies creating a ForeignKeyConstraint, but the reverse
isn’t true. Because we want to be able to traverse the relationship, leave the Create for-
eign key constraint only checkbox blank.

After the structure of the DataSet has been established, you can right-click on it and
select Preview DataSet to view the objects that will make up the DataSet and their prop-
erties. Although you can’t edit the properties in this dialog, you can edit some of them
(such as Namespace, Prefix, and Version) in the properties window. In this case, change
Namespace to http://www.compubooks.com/TitlesDs and Version to “1.0.” The end
result is the designer shown in Figure 6.2.

136 Day 6

To view the XML that makes up the XSD, click on the XML pane attached to
the bottom of the design surface. Note that you can also edit the schema
directly in this pane, and it even supports IntelliSense to make it easier to
code the XML.

Tip

You’ll notice from Figure 6.2 that the diagram denotes the fact that the relationship is a
one-to-many relationship between Titles and Reviews, where one title may be associat-
ed with many reviews. Also, the designer doesn’t point to the columns being related (in
this case, ISBN in both tables) but simply connects the tables as a whole, thereby making
it appear as if perhaps ISBN was related to Discount.

08 3869 ch06 5/20/02 1:23 PM Page 136

Building Strongly Typed DataSet Classes 137

6

If you right-click on the TitlesDs.xsd file in the Solution Explorer, you’ll notice that the
Generate DataSet option is checked. This implies that a strongly typed DataSet has
already been created and is being constantly updated as changes are made to the graphi-
cal representation in the designer. To view the DataSet class, click the Show All Files
icon in the toolbar of the Solution Explorer window. Doing so allows you to drill down
on the TitlesDs.xsd file to reveal the TitlesDs.cs and TitlesDs.xsx files. The .cs file holds
the code generated by the wizard that includes the class derived from DataSet, whereas
the .xsx file is an XML document that holds layout information for the components
added to the designer surface.

FIGURE 6.2
The TitlesDs DataSet.
This figure shows the
designer surface of
TitlesDs after it has
been edited.

Use the Command Line

Alternatively, you can generate a strongly typed DataSet using the command-line Xml
Schemas/DataTypes support utility (XSD.exe). Given an XSD schema, this utility supports the
/dataset or /d option to generate a subclassed DataSet. For example, if you already had a
schema generated in XML Spy called TitlesDs.xsd, you could create a strongly typed C# DataSet
in the TitlesDs.cs file with the following command:

XSD.exe TitlesDs.xsd /dataset /l:CS /namespace:Computebooks.Data

In this case, the /namespace option instructed the code generator to place the new class in the
ComputeBooks.Data namespace. The newly created .cs file can then be added to your project
using the Add Existing Item menu option.

08 3869 ch06 5/20/02 1:23 PM Page 137

138 Day 6

To run the command-line utilities that ship with VS .NET, open a command window using the
Visual Studio .NET Command Prompt icon in the Visual Studio .NET Tools program group under
Microsoft Visual Studio .NET.

Both the graphical and command-line tools rely on the TypedDataSetGenerator class in the
System.Data namespace to do their work.

By double-clicking on the TitlesDs.cs file, you can examine the code that was generated.
At the highest level, the source code file contains the classes shown in Table 6.1.

TABLE 6.1 Classes Generated in the TitlesDs.cs Source Code File

Class Description

TitlesDs Derived from DataSet and represents the highest-level class.

ReviewsDataTable A child class of TitlesDs and derived from DataTable. Used to
hold the data from the Reviews table and exposed as the Reviews
property of the TitlesDs class.

ReviewsRow A child class of TitlesDs and derived from DataRow. Exposes
strongly typed properties for each of the columns in the Reviews
table along with the TitlesRow that is its parent.

ReviewsRowChangeEvent A child class of TitlesDs and derived from EventArgs. Used to
hold event state information such as the ReviewsRow the event was
fired on and passed to events of the ReviewsDataTable.

TitlesDataTable A child class of TitlesDs and derived from DataTable. Used to
hold the data from the Titles table and exposed as the Titles
property of the TitlesDs class.

TitlesRow A child class of TitlesDs and derived from DataRow. Exposes
strongly typed properties for each of the columns in the Titles
table along with a method to retrieve an array of ReviewsRow
objects that are its children.

TitlesRowChangeEvent A child class of TitlesDs and derived from EventArgs. Used to
hold event state information such as the TitlesRow the event was
fired on and passed to events of the TitlesDataTable.

As you can see from Table 6.1, the generated code implements all aspects of a DataSet
as you learned on Day 4, but does so using classes derived from the base ADO.NET
classes DataSet, DataTable, and DataRow and that reflect the actual table and column
information from the database. You can also view the structure of the TitlesDs class by
switching to the Class View in the Solution Explorer and drilling down on the namespace

08 3869 ch06 5/20/02 1:23 PM Page 138

Building Strongly Typed DataSet Classes 139

6

in which the class exists. By default, the DataSet will exist in the global namespace for
the project, although that can be easily changed by editing the namespace declaration in
the source file. In this case, we would want to change the namespace to
ComputeBooks.Data to reflect the fact that the class is owned by the ComputeBooks
organization and falls in the realm of the data for the organization. All the strongly typed
DataSet classes and data access classes would likewise be grouped together in this
namespace.

If you want the code you write to conform to the naming and style guide-
lines that Microsoft used when developing the Services Framework, you
should follow the design guidelines included in the online documentation.
Search for “design guidelines for class library developers” in the index, and
you’ll find a whole host of topics from naming conventions to error han-
dling guidelines to common design patterns used in the Framework.

Tip

By examining the generated code, you’ll notice several key features—four of which
we’ll discuss here—that make the TitlesDs DataSet a strongly typed DataSet.

First, you’ll notice that the TitlesDs class exposes a property for each DataTable, like
so:

public ReviewsDataTable Reviews {
get {

return this.tableReviews;
}

}

public TitlesDataTable Titles {
get {
return this.tableTitles;

}
}

In both cases, the property is read-only and returns a private instance variable
instantiated in the private InitClass method called from the constructor of the

class. This is what enables developers using this code to avoid having to manipulate the
DataTableCollection directly.

ANALYSIS

The use of the InitClass method called from the constructor to initialize
each class, and use of the InitVars method to ensure that private variables
are initialized when the class has been instantiated, are two common fea-
tures you’ll find for the classes generated by the wizard.

Note

08 3869 ch06 5/20/02 1:23 PM Page 139

Second, you’ll notice that the ReviewsRow and TitlesRow classes contain properties that
return a strongly typed value for each column, as shown in Listing 6.1 for the
ReviewsRow class.

LISTING 6.1 The ReviewsRow class. This class exposes the columns of the table as proper-
ties that map back to the underlying ReviewsDataTable.

public class ReviewsRow : DataRow {

private ReviewsDataTable tableReviews;

internal ReviewsRow(DataRowBuilder rb) :
base(rb) {

this.tableReviews = ((ReviewsDataTable)(this.Table));
}

public System.Guid ReviewID {
get {
return ((System.Guid)(this[this.tableReviews.ReviewIDColumn]));

}
set {
this[this.tableReviews.ReviewIDColumn] = value;

}
}

public string ISBN {
get {
return ((string)(this[this.tableReviews.ISBNColumn]));

}
set {
this[this.tableReviews.ISBNColumn] = value;

}
}

public string ReviewText {
get {
return ((string)(this[this.tableReviews.ReviewTextColumn]));

}
set {
this[this.tableReviews.ReviewTextColumn] = value;

}
}

public System.Byte Stars {
get {
return ((System.Byte)(this[this.tableReviews.StarsColumn]));

}
set {
this[this.tableReviews.StarsColumn] = value;

140 Day 6

08 3869 ch06 5/20/02 1:23 PM Page 140

Building Strongly Typed DataSet Classes 141

6

}
}

public TitlesRow TitlesRow {
get {
return ((TitlesRow)(this.GetParentRow(
this.Table.ParentRelations[“TitlesReviews”])));

}
set {
this.SetParentRow(value, this.Table.ParentRelations[“TitlesReviews”]);

}
}

}

You’ll notice from Listing 6.1 that the properties reference strongly typed
DataColumn objects exposed as properties by the ReviewsDataTable class. These

properties simply get and set data in the underlying ReviewsDataTable object exposed
through the tableReviews variable. In addition, Listing 6.1 shows that the generated
code automatically creates a property that references the parent TitlesRow defined by the
data relation you created in the graphical designer. By looking at the TitlesRow class,
you’ll also see that it includes a method, GetReviewsRows, which returns an array of
ReviewsRow objects that correspond to its child rows identified in the DataRelation.

Third, the generated code includes strongly typed methods that can be used to add rows
to the tables. For example, the ReviewsDataTable class includes a NewReviewsRow
method and an overloaded AddReviewsRow method that can be used together to create a
new row and add it to the DataTable as in Listing 6.2.

LISTING 6.2 Adding a new row. These methods can be used to add a new ReviewsRow to
the ReviewsDataTable and show how strongly typed methods are implemented.

public ReviewsRow NewReviewsRow() {
return ((ReviewsRow)(this.NewRow()));

}

public void AddReviewsRow(ReviewsRow row) {
this.Rows.Add(row);

}

public ReviewsRow AddReviewsRow(System.Guid ReviewID,
TitlesRow parentTitlesRowByTitlesReviews,
string ReviewText, System.Byte Stars) {

ReviewsRow rowReviewsRow =((ReviewsRow)(this.NewRow()));

LISTING 6.1 continued

ANALYSIS

08 3869 ch06 5/20/02 1:23 PM Page 141

rowReviewsRow.ItemArray = new object[] {
ReviewID,
parentTitlesRowByTitlesReviews[0],
ReviewText,
Stars};

this.Rows.Add(rowReviewsRow);
return rowReviewsRow;

}

In Listing 6.2, the NewReviewsRow method simply creates a new row by calling
the base class implementation of NewRow and then casts it to the type

ReviewsRow. The first AddReviewsRow method accepts a ReviewsRow object and simply
adds it to the collection; the second includes arguments for each of the properties of the
row, including the parent TitlesRow.

Finally, each class created for a table, TitlesDataTable and ReviewsDataTable, con-
tains a method that finds a particular row by its primary key column. For example, the
ReviewsDataTable contains the FindByReviewID method that uses the Find method of
the DataRowCollection class as discussed on Day 3, “Working with DataSets”:

public ReviewsRow FindByReviewID(System.Guid ReviewID) {
return ((ReviewsRow)(this.Rows.Find(new object[] {
ReviewID})));

}

The method then returns the found row, casting it to the ReviewsRow type.

Populating the DataSet
Now that the DataSet has been created and added to the project, you can use it either
programmatically or graphically. For example, you can drag and drop it on a Web Form
or other designer surface as you did on Day 2 and then associate it with a data adapter
through the Data Adapter Configuration Wizard.

However, before doing so you need to consider what the code at the database server
might be used to populate the DataSet. In the case of TitlesDs, remember that we didn’t
simply accept the default columns when we dropped the tables onto the design surface.
Because we edited the column list of the Titles table, we need to make sure that we
write SQL that is true to that list.

As we’ll cover in more detail on Day 10, “Working with Commands,” when using SQL
Server, we would typically use stored procedures because of their performance and secu-
rity. So, to populate the DataSet, we’ll use a stored procedure that includes a SELECT

142 Day 6

LISTING 6.2 continued

ANALYSIS

08 3869 ch06 5/20/02 1:23 PM Page 142

Building Strongly Typed DataSet Classes 143

6

statement to retrieve the data for the Titles table and then one to retrieve the Reviews,
as shown in Listing 6.3.

LISTING 6.3 The usp_GetTitlesReviews stored procedure. This SQL Server stored proce-
dure retrieves data from the Titles and Reviews tables.

CREATE PROCEDURE usp_GetTitlesReviews
@publisher nchar(5) = NULL
AS

IF @publisher IS NULL
BEGIN
SELECT ISBN, Title, a.Description,
Author, PubDate, Price,
Discount, BulkDiscount, BulkAmount,
b.Description As CategoryName,
c.Name As PubName

FROM Titles a JOIN Categories b ON a.CatID = b.CatID
JOIN Publishers c ON a.Publisher = c.PubCode

SELECT ReviewID, ISBN, ReviewText, Stars
FROM Reviews

END
ELSE
BEGIN
SELECT ISBN, Title, a.Description,
Author, PubDate, Price,
Discount, BulkDiscount, BulkAmount,
b.Description As CategoryName,
c.Name As PubName

FROM Titles a JOIN Categories b ON a.CatID = b.CatID
JOIN Publishers c ON a.Publisher = c.PubCode

WHERE a.Publisher = @publisher

SELECT ReviewID, a.ISBN, ReviewText, Stars
FROM Reviews a JOIN Titles b ON a.ISBN = b.ISBN
WHERE b.Publisher = @publisher

END

The interesting thing to note in Listing 6.3 is that the publisher parameter is
effectively optional because the procedure includes an IF statement to handle the

case where the parameter isn’t passed or is NULL.

ANALYSIS

08 3869 ch06 5/20/02 1:23 PM Page 143

In addition, you’ll see that the SELECT statement that returns data from the Titles table
uses JOIN clauses to get the Description column from the Categories table and the
Name column from the Publishers table, and aliases them to the CategoryName and
PubName columns, respectively, as used in the DataSet. Although the DataSet could have
also included tables to hold the Categories and Publishers data separately, it makes
more sense to use JOIN clauses to return just the descriptive information if the tables are
simply lookup tables. In other words, because the DataSet isn’t designed to allow editing
of the Categories or Publishers tables, it’s less complex and more efficient to directly
incorporate the data that you want to include in the TitlesRow through a table join.

It should also be noted that the procedure returns two result sets, one for each table in the
DataSet.

The usp_GetTitlesReviews stored procedure can then be used to populate the TitlesDs
DataSet. The code in Listing 6.4 populates the DataSet and then manipulates its data
using its exposed types.

LISTING 6.4 Populating the TitlesDs DataSet from the usp_GetTitlesReview stored
procedure. This listing uses a SqlDataAdapter to populate TitlesDs and access its data.

SqlConnection con = new SqlConnection(connect);
SqlDataAdapter da = new SqlDataAdapter (“usp_GetTitlesReviews”, con);

da.SelectCommand.CommandType = CommandType.StoredProcedure;

TitlesDs books = new TitlesDs();

books.EnforceConstraints = false;

da.MissingMappingAction = MissingMappingAction.Passthrough;
da.TableMappings.Add(“Table”,”Reviews”);
da.TableMappings.Add(“Table1”,”Titles”);

da.Fill(books);
books.EnforceConstraints = true;

144 Day 6

Alert readers will have no doubt noticed that if this stored procedure need-
ed to include several optional parameters in the WHERE clause, the Transact-
SQL in Listing 6.3 would grow in complexity. To view a more sophisticated
stored procedure that handles multiple arguments, see the usp_GetTitles
stored procedure that is installed with the ComputeBooks database and that
you used on Day 3.

Note

08 3869 ch06 5/20/02 1:23 PM Page 144

Building Strongly Typed DataSet Classes 145

6

TitlesDs.TitlesRow titleRow;
titleRow = books.Titles.FindByISBN(“06720002X”);

if (titleRow != null)
{

string bookTitle = titleRow.Title;
string author = titleRow.Author;

TitlesDs.ReviewsRow reviewRow = books.Reviews.AddReviewsRow(
System.Guid.NewGuid(),titleRow,”This was a pretty good book”,4);

reviewRow.AcceptChanges();
}

The code in Listing 6.4 uses SqlConnection and SqlDataAdapter objects to
connect to the SQL Server and to encapsulate the call to the stored procedure.

When the books object is instantiated, the constructor of the TitlesDs class executes and
creates the tables and relation that are exposed through its properties. As a result, before
the Fill method is even called, the DataSet contains two empty tables connected by a
data relation with all the columns fully defined. The EnforceConstraints property of
the DataSet is then set to False to ensure that the foreign key constraint isn’t activated
in the event that the Reviews table is loaded first.

LISTING 6.4 continued

ANALYSIS

Of course, the code in Listing 6.4 would need to be in a source code file
with the using ComputeBooks.Data; statement at the top and you would
need to use the System.Data and System.Data.SqlClient namespaces.

Tip

The next three lines of code dealing with the MissingMappingAction and
TableMappings collection will be discussed in more detail on Day 12, “Using Data
Adapters.” For now, it suffices to say that the MissingMappingAction determines what
happens when the columns from the database table encounter columns in an existing
DataTable. The TableMappings are used to map the result sets returned from the stored
procedure to the tables in the DataSet.

The DataSet is then populated with the Fill method, which executes the stored proce-
dure. After the data is loaded, the EnforceConstraints property is set to true to enable
the foreign key constraint. At this point, if the Reviews table contains any rows that don’t
match a row in the Titles table, a ConstraintException will be thrown.

08 3869 ch06 5/20/02 1:23 PM Page 145

To access an individual row in the TitlesDataTable, the listing then uses a variable of
type TitlesRow to return the row from the FindByISBN method of the TitlesDataTable
class. If the row is found, the Title and Author properties will return the name of the
book and its author or authors. Finally, the AddReviewRows method of the ReviewsRow
class is used to add a new review to the title that was found. Note that the primary key of
the Reviews table is a GUID, so the NewGuid method of the Guid structure is used to gen-
erate the value. The AcceptChanges method of the new row is then called to set the row
state to Unchanged.

Versioning and Sharing
In software development, any time you create an explicit construct to use in favor of an
abstracted one in order to increase developer productivity—for example, by making it
simpler and less error-prone to access data—you introduce a new dependency that you
must manage. This is true of strongly typed classes such as the DataSet as well.
However, the runtime characteristics of the common language runtime make it relatively
easy to share and version a class such as TitlesDs both on a single machine and among
developers in an organization.

First, because the TitlesDs class and any other strongly typed DataSet classes you cre-
ate might be used in multiple projects, you should consider factoring them into their own
assembly. As mentioned on Day 1, an assembly is the unit of versioning, deployment,
and security in the .NET Framework. By placing all the strongly typed DataSet classes
and perhaps even data access classes used to populate them in a single assembly, you can
version and deploy them as a single unit. To do so, simply open a new Class Library pro-
ject in VS .NET and add all the source files that define the DataSet classes you want to
include.

To create a version number for the assembly, edit the AssemblyVersion attribute defined
in the AssemblyInfo.cs (or .vb) file in the VS .NET project. By default, the attribute will
be set to “1.0.*”, which will automatically increment the last two parts of the version
number referred to as the revision and build numbers each time the project is compiled.
As long as the first two parts of the version number—the major and minor build num-
bers—remain the same, by convention the assembly is said to be compatible with other
versions of the same assembly.

As a result you should change only the major and minor versions when changes
in types within the assembly will cause errors to be generated in a client applica-

tion using the assembly. However, absent a binding policy, if you deploy a new version
of the assembly to the application directory of a client (referred to as a private
assembly), the common language runtime’s class loader will find it, load it, and attempt

146 Day 6

NEW TERM

08 3869 ch06 5/20/02 1:23 PM Page 146

Building Strongly Typed DataSet Classes 147

6

to use it. If you’ve renamed types in the assembly or deleted types that the client is rely-
ing on, you might encounter a TypeLoadException or other exception that your client
code would have to handle.

Although beyond the scope of this book, a client application also uses its
application configuration file to check for the presence of a binding policy
that determines which version of an assembly to load. As a result, an admin-
istrator can specify that a certain client application can bind with only a par-
ticular version of an assembly. Application configuration files can be built
using the Microsoft .NET Framework Configuration icon in the
Administrative Tools group.

Tip

In the case of strongly typed DataSet classes, you would want to deploy a new version if
the data requirements of the application change and you need to add or remove columns
from the DataSet. To minimize the amount of rework you would have to do in this event,
you should avoid placing custom code in the generated class if possible. That way, you
can make your changes in the graphical designer and regenerate the DataSet without
having to write any new code. Although it might be tempting to add custom methods to
the DataSet class to populate it and synchronize it with a data store, this is the primary
reason you should create a separate data access class. Doing so allows you to modify
either without touching the code for the other.

As part of the compilation process, you can optionally compile your assembly with a
strong name using the AssemblyKeyFile attribute. Adding a strong name enables your
assembly to be placed in the Global Assembly Cache (GAC) so that it’s accessible
machinewide. To ensure that all .NET code (managed code) running on the machine can
use the new assembly version if its binding policy allows, you should place it in the
assembly cache.

In fact, even if a particular client application relies on a specific version of
your assembly, you can still accommodate it by adding multiple versions of
the assembly to the GAC.

Note

When you compile the project, the resulting DLL will be your assembly, complete with a
manifest that describes its types and its dependencies on other types, such as those in the
System.Data namespace.

08 3869 ch06 5/20/02 1:23 PM Page 147

In addition to deploying DataSet classes in an assembly, you need to consider possible
changes to the underlying database from which the DataSet typically receives its data.
As you’ll learn on Day 12, the MissingMappingAction and MissingSchemaAction prop-
erties of the data adapter are used to specify how the data adapter responds when the data
from the data store conflicts with the structure of the DataSet. For now, suffice it to say
that using the MissingMappingAction.Passthrough value enables new columns added
to the result set retrieved by the data adapter to be appended to the existing column list in
the DataTable objects. In other words, adding a column to the SELECT statement in a
stored procedure doesn’t necessarily break the code in Listing 6.4. However, as is obvi-
ous, the new column won’t be able to be referenced with a strongly typed property but
will be accessible via the Columns collection of the DataTable object and the Item and
Item array properties of the DataRow object.

DataSet Serialization
On Day 1, you were introduced to the concept of the DataSet by learning that it’s the
core of the disconnected programming model in ADO.NET. Because it’s useful in dis-
connected scenarios and distributed applications, it must be able to be serialized and
deserialized when passed between tiers in an application or persisted to disk. In this final
section for today, you’ll learn how the DataSet is passed between tiers in a distributed
application and how you can persist it to disk in a disconnected applications.

Passing DataSets
By default, an instance of a class in .NET can be passed by value or by reference to, as
well as returned from, any method exposed by an object that lives in the same
Application Domain. However, in distributed applications, the presentation and data
access code may reside on different servers and thus different AppDomains.

148 Day 6

If your development team authors classes in multiple languages, for exam-
ple, by creating one DataSet in VB and another in C#, you can’t include both
source files in a VS .NET project. However, you can compile them individually
into .NET modules using the appropriate command-line compiler and then
create a multi-file assembly using the Assembly Linker (AL.exe) command-
line utility. See the online help for details.

Tip

08 3869 ch06 5/20/02 1:23 PM Page 148

Building Strongly Typed DataSet Classes 149

6

In order for an object to be referenced or copied across AppDomains, it must be
able to be, in .NET parlance, remotable. A remotable type is one that derives

from System.MarshalByRefObject or System.MarshalByValueComponent, implements
the ISerializable interface, or is marked with the Serializable attribute. Deriving
from MarshalByRefObject allows an object to be simply referenced from another
AppDomain, but it doesn’t allow it to be copied. The other three options in the previous
list all allow the object to be serialized. Because the DataSet needs to be copied, it’s
derived from MarshalByValueComponent, implements the ISerializable interface, and
is marked with the Serializable attribute. This allows a DataSet created in one
AppDomain, perhaps residing in a separate process or on a separate machine, to be
passed to a different AppDomain.

Although the presence of the Serializable attribute alone allows a .NET type to be seri-
alized to XML automatically using a generic format, you’ll notice that the DataSet
implements ISerializable in order to implement a custom algorithm to perform the
serialization. This is the case so that the DataSet can fully represent changes made to its
data through the DiffGram grammar discussed yesterday. You can get a glimpse of some
of the work the DataSet does by examining the code in the TitlesDs class. You’ll notice
that much of it is devoted to overriding methods of the base class that have to do with
serialization. The ShouldSerializeTables, ShouldSerializeRelations,
GetSchemaSerializable, ReadXmlSerializable, and especially the protected construc-
tor that accepts an object of type SerializationInfo all work to ensure that the DataSet
can be serialized to and from XML. Equivalent code exists in the base DataSet class and
so is invisible to developers when working with generic DataSet objects.

Once a type is able to be serialized, it can then be copied between AppDomains
using .NET Remoting. Briefly, .NET Remoting is the set of .NET Framework

components that allow two pieces of managed code (a client and a server) running in

What’s an AppDomain?

Although not discussed on Day 1, Application Domains (AppDomains) are parti-
tions inside a process set up by the common language runtime to provide isola-

tion and fault tolerance. You can think of AppDomains as lightweight processes controlled by
the common language runtime that offer better performance than using a technique such as
process spawning prevalent in the Unix world. Typically, a client application will have a single
AppDomain created by the common language runtime when the application loads. However,
you can programmatically create additional AppDomains through the System.AppDomain class.
Server applications such as ASP.NET, on the other hand, can and do create multiple
AppDomains to service multiple requests or clients and maintain isolation between them.

NEW TERM

NEW TERM

NEW TERM

08 3869 ch06 5/20/02 1:23 PM Page 149

separate AppDomains to communicate. The client and the server communicate via an
HTTP or TCP channel that is specified in application configuration files or configured
directly in code within the application. Remoting allows a client to instantiate a class that
lives in the server process (a MarshalByRefObject) in order to call its methods. A
method in the server class can then create a DataSet (a MarshalByValueComponent) and
pass a copy of it back to the client. The object, such as a DataSet, is then serialized for
transport either in an XML format wrapped in a SOAP message or in a compact binary
format. Which formatter is used can also be configured in the application configuration
files. When the serialized DataSet reaches the client, it’s then deserialized into an actual
DataSet object. The end result is that a copy of the DataSet now exists on the client and
can be manipulated just as any other DataSet. A diagram of this process can be seen in
Figure 6.3.

150 Day 6

FIGURE 6.3
.NET Remoting. This
diagram depicts a
DataSet as it is remot-
ed using .NET
Remoting.

Client Process

Call GetTitles()

Deserialized

AppDomain

Server Process

Data Store

GetTitles()

Serialized

Populate DataSet

AppDomain

.NET Remoting
(TCP or HTTP channel

and SOAP or binary
formatter)

A typical scenario for this process includes a managed data access class hosted in a
Server Application in Component Services. In this case, the class resides in a separate
AppDomain because it’s running in a separate process (AppDomains don’t cross operat-
ing system processes). When the client calls a method of the data access class such as
GetTitles, the method communicates with the database to retrieve the results and popu-
late a DataSet. The DataSet is then passed back to the client using .NET Remoting as
described earlier.

For an overview of .NET Remoting, see Chapter 8 of my book Building
Distributed Applications with Visual Basic .NET, published by Sams.

Note

08 3869 ch06 5/20/02 1:23 PM Page 150

Building Strongly Typed DataSet Classes 151

6

Persisting to Disk
In addition to the scenario where a DataSet is passed between tiers of an application, a
common use for serialization is in a truly disconnected application. In these types of
applications, the client might need to work with the DataSet offline and then only later
reconnect to the network and synchronize its changes with a data store.

Fortunately, the ability of the DataSet to store and track its changes makes it ideal for
this type of application. Coupled with the support of classes in the .NET Framework,
persisting a DataSet to disk is almost trivial.

To illustrate how this can be done, consider the code in Listing 6.5 that shows methods to
save and load a DataSet from the file system.

LISTING 6.5 Saving and loading a DataSet. These methods use the XmlSerializer class
to save and load a DataSet using XML.

public Boolean SaveDs(DataSet ds, string fileName)
{
// Open the file for reading
FileStream fs;
try
{
fs = new FileStream(fileName,FileMode.Create,
FileAccess.Write,FileShare.Write);

}
catch (IOException e)
{
throw new Exception(“Cannot open “ + fileName , e);

}

// Serialize to the file
try
{
XmlSerializer ser = new XmlSerializer(ds.GetType());
ser.Serialize(fs,ds);

}
catch (Exception e)
{
throw new Exception(“Cannot save “ + ds.DataSetName, e);
}

Another example of where serialization is used is in returning a DataSet
from an XML Web Service, as you’ll learn on Day 18, “ADO.NET and XML
Web Services.”

Note

08 3869 ch06 5/20/02 1:23 PM Page 151

finally
{
fs.Close();

}

return true;
}

public DataSet LoadDs(String fileName, Type dsType)
{

FileStream fs;
XmlReader xr;

// Make sure the file exists
if (File.Exists(fileName))
{
fs = new FileStream(fileName,FileMode.Open,
FileAccess.Read,FileShare.Read);

xr = new XmlTextReader(fs);
}
else throw new Exception(fileName + “ does not exist”);

// Deserialize
XmlSerializer ser = new XmlSerializer(dsType);
DataSet ds = new DataSet();

try
{
if (ser.CanDeserialize(xr))
{
ds = (DataSet)ser.Deserialize(xr);
}

}
catch (Exception e)
{

throw new Exception(“Could not load “ + fileName,e);
}

return ds;
}

Listing 6.5 contains two methods, SaveDs and LoadDs, which use the
XmlSerializer class from the System.Xml.Serialization namespace. The

XmlSerializer class can be used with any class that includes the Serializable
attribute. As you can see from SaveDs, the DataSet to serialize and the file name
and path are passed to the method. The method then opens the file for reading and

152 Day 6

LISTING 6.5 continued

ANALYSIS

08 3869 ch06 5/20/02 1:23 PM Page 152

Building Strongly Typed DataSet Classes 153

6

instantiates the XmlSerializer, passing it the type to serialize. If all goes well, the
Serialize method can then be called, which serializes the DataSet to the stream passed
as the first argument. If you inspect the books.xml file, you’ll notice that it contains both
the XSD and the complete DiffGram for the DataSet.

You can also see from Listing 6.5 that the SaveDs and LoadDs methods accept and return
the generic DataSet class, and so can also be used with any derived DataSet class
through polymorphism.

As you’ll see tomorrow, this functionality overlaps the functionality of the
WriteXml, WriteXmlSchema, InferXmlSchema, ReadXml, and ReadXmlSchema
methods of the DataSet class.

Note

The LoadDs method then does the opposite by first making sure that the passed-in file
exists and then opening the file for reading. This method also accepts an argument that
specifies the type to deserialize to. This is necessary so that you can pass strongly typed
DataSet objects into the method and be able to cast them back to their strong type once
the method has completed. Because the file will be an XML file, it’s passed to the con-
structor of an XmlTextReader. This is done so that the CanDeserialize can be called to
determine whether the document will be able to be deserialized. If so, the Deserialize
method is called returning a DataSet object.

The client code to use these methods might look something like the following.

TitlesDs books = new DataSet();

// Fill the DataSet

books.ExtendedProperties.Add(“SaveTime”,DateTime.Now);
SaveDs(books,”books.xml”);

// Now shut down the app and return later

DataSet newBooks = new DataSet();
String strTime;

newBooks = (TitlesDs)LoadDs(“books.xml”,newBooks.GetType());

strTime = “DataSet was saved at “ +
books.ExtendedProperties[“SaveTime”].ToString();

You’ll notice from this snippet that the ExtendedProperties collection was used to store
the time the DataSet was saved to disk and can then be read once the DataSet is deseri-
alized.

08 3869 ch06 5/20/02 1:23 PM Page 153

Summary
Today was devoted to the ins and outs of strongly typed DataSet classes. By now you
should have a good understanding of how to create them, what the code generator creates
for you, how to use them, and some of the issues that arise in terms of deployment and
distribution. In summary, strongly typed DataSet classes are extremely useful for provid-
ing an object-oriented means for accessing data while preserving the great functionality
you get for free with the DataSet.

Although you’ve been exposed to the XML nature of the DataSet, tomorrow we’ll finish
out the week by taking a top-to-bottom look at how XML is fundamental to the DataSet.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. Do strongly typed DataSet classes rely on the implementation or interface inheri-

tance as supplied by the common language runtime?

A strongly typed DataSet class is an example of utilizing the implementation
inheritance feature of the common language runtime. This means that the derived
class inherits not only the method signatures but also their functionality, and can
override that functionality as desired.

2. What are four ways you can create a strongly typed DataSet?

You have the option of designing a strongly typed DataSet from scratch graphical-
ly using the designer, by dragging and dropping the database table on the designer
from the Server Explorer window, by importing an existing XSD document, or by
using the Xml/Schemas DataType Support Utility (XSD.exe).

3. How does the strongly typed DataSet class expose tables in its
DataTableCollection object?

It exposes them as strongly typed properties that refer to child classes that derive
from DataTable.

4. Why is a DataSet said to be remotable?

A DataSet is remotable because it’s derived from MarshalByValueComponent and
is marked with the Serializable attribute. Together these enable a DataSet object
to be passed between tiers in a distributed application across AppDomains. In addi-
tion, the DataSet implements the ISerializable interface to perform custom seri-
alization using the DiffGram grammar.

154 Day 6

08 3869 ch06 5/20/02 1:23 PM Page 154

Building Strongly Typed DataSet Classes 155

6

Exercise
Today, create a strongly typed DataSet that includes the Orders and OrderDetails

tables. Then write a method that populates the DataSet using the usp_GetOrders stored
procedure.

Answers for Day 6
Exercise Answer
First, you must create the strongly typed DataSet by adding a new DataSet to your pro-
ject and dropping the Orders and OrderDetails onto the designer surface from the
Server Explorer. Next, be sure to create the relation between the tables on the OrderId
columns because each Order is associated with many OrderDetails rows. Then select
Generate DataSet from the menu by right-clicking on the designer surface.

Assuming that the strongly typed DataSet class is called OrdersDs, a method you could
possibly use to populate it follows:

public virtual OrdersDs GetOrdersByCust(Guid customerId)
{

SqlConnection con = new SqlConnection(_connect);
SqlDataAdapter da = new SqlDataAdapter(“usp_GetOrders”,con);

// Create the strongly typed instance
OrdersDs orders = new OrdersDs();

// Setup the call to the stored procedure
da.SelectCommand.CommandType = CommandType.StoredProcedure;
da.SelectCommand.Parameters.Add(

new SqlParameter(“@CustomerID”,SqlDbType.UniqueIdentifier));
da.SelectCommand.Parameters[0].Value = customerId;

// handle the error
da.TableMappings.Add(“Table”,”Orders”);
da.TableMappings.Add(“Table1”,”OrderDetails”);
da.MissingSchemaAction = MissingSchemaAction.Error;

// Get the data
try
{

da.Fill(orders);
return orders;

}
catch (SqlException e)
{

08 3869 ch06 5/20/02 1:23 PM Page 155

// handle the error
return null;

}
}

The GetOrdersByCust method accepts a Guid to represent the CustomerID and then pass-
es it to the usp_GetOrders stored procedure. For the data to map to the appropriate
tables in the OrdersDs instance (orders), you need to create table mappings for the
default tables. In addition, the MissingSchemaAction property is set to Error to ensure
that the incoming schema is identical to the schema in the strongly typed DataSet.

156 Day 6

08 3869 ch06 5/20/02 1:23 PM Page 156

DAY 7

WEEK 1

XML and the DataSet
Today’s discussion will bring us to the end of Week 1 and complete our look at
the first of the two major components of ADO.NET, the DataSet. Although
you’ve seen glimpses of how the DataSet is based on XML, today you’ll go
deeper and explore how XML can be read from, defined, loaded to, and syn-
chronized with a DataSet object using its various methods and properties.

If you aren’t familiar with XML, I recommend you pick up a copy
of Sams Teach Yourself XML in 21 Days, Second Edition by Devan
Shepherd and take a look at the XML tutorials and FAQs at
http://msdn.microsoft.com/xml. Today’s lesson assumes a basic
understanding of XML.

Tip

As mentioned on Day 1, “ADO.NET in Perspective,” the widespread adoption
of XML for representing and exchanging data over the Web made it imperative
that Microsoft also make it easy for developers to use XML in the .NET
Framework. You’ve seen over the last four days that developers using
ADO.NET can work with their data in an object-model paradigm using the
DataSet object, and even represent it in a strongly typed fashion by relying on

09 3869 ch07 5/20/02 1:16 PM Page 157

inheritance in the .NET Framework. However, at the same time, a DataSet can be fully
represented in terms of its structure and data as XML. The joining of the object model
approach with XML into a single coherent programming model is one of the key differ-
entiators between .NET and competing frameworks, such as J2EE, for building enterprise
applications.

Today you’ll learn the following concepts:

• How to output DataSet contents as XML and to specify the format of the XML

• How an XSD schema maps to the structure of a DataSet and how the structure can
be directly loaded from an XSD document

• How to load a DataSet from an XML document

• How to program against a DataSet as if it were XML

Writing Data as XML
As you learned yesterday, a DataSet can be serialized and deserialized to and from XML
using the XmlSerializer class of the System.Xml.Serialization namespace. This
process occurs when a DataSet is remoted across AppDomains or returned from an
XML Web Service.

However, the DataSet also exposes the GetXml and WriteXml methods, which can be
called directly to serialize the DataSet to XML. These methods function identically by
writing out the contents of the DataSet using the Current row version that includes all
modified and added rows and omits all deleted rows. For example, using the TitlesDs
strongly typed DataSet defined in yesterday’s lesson, the following code can be written
to find a particular Sams title and lower its price by 10%:

Dim books As TitlesDs
Dim strXml As String
Dim titleRow As TitlesDs.TitlesRow

books = GetTitlesReviews(“Sams”) ‘ populate the DataSet
titleRow = books.Titles.FindByISBN(“06720083X”)
titleRow.Price = titleRow.Price * Convert.ToDecimal(0.90)

strXml = books.GetXml()

After the price has been lowered, the DataSet is written to XML and stored in a String
variable using the GetXml method. The string can be written to a file or simply returned
to the presentation tier. Listing 7.1 shows the relevant parts of the resulting XML.

158 Day 7

09 3869 ch07 5/20/02 1:16 PM Page 158

XML and the DataSet 159

7

LISTING 7.1 Writing a DataSet as XML. This XML snippet shows the portions affected by
the previous code snippet.

<TitlesDs xmlns=”http://www.computebooks.com/TitlesDs”>
<Reviews>
<ReviewID>9cf97fcc-a6bb-4932-b427-213908427248</ReviewID>
<ISBN>06720083X </ISBN>
<ReviewText>Mediocre to the core</ReviewText>
<Stars>3</Stars>

</Reviews>
<Reviews>
<ReviewID>609a2f74-ec76-4e4e-835c-266f11a32021</ReviewID>
<ISBN>06720083X </ISBN>
<ReviewText>Clearly the greatest book ever written</ReviewText>
<Stars>5</Stars>

</Reviews>
<Reviews>
<ReviewID>5af1077d-77ef-4761-bf1a-6e31b905fa10</ReviewID>
<ISBN>06720083X </ISBN>
<ReviewText>It stunk really badly</ReviewText>
<Stars>0</Stars>

</Reviews>
<Titles>
<ISBN>06720083X </ISBN>
<Title>Pure Visual Basic: a code-intensive premium

reference/versions 5 & 6</Title>
<Description>Great Book</Description>
<Author>Fox, Dan</Author>
<PubDate>1999-09-01T00:00:00.0000000-05:00</PubDate>
<Price>22.491</Price>
<Discount>9.5647</Dpiscount>
<BulkDiscount>10</BulkDiscount>
<BulkAmount>50</BulkAmount>
<CategoryName>Programming</CategoryName>
<PubName>Sams Publishing</PubName>

</Titles>
</TitlesDs>

You’ll notice from Listing 7.1 that because this book has reviews associated with
it, the reviews are returned first, followed by the data for the book itself. This

corresponds to the order in which the tables were added to the strongly typed DataSet in
its InitClass method. The price of the book is now set to $22.49, down from the origi-
nal price of $24.99. You’ll also notice that the XML does not indicate that the price was
modified using a DiffGram, even though AcceptChanges was not called on the row and it
is in the Modified row state. You can also see that the namespace associated with the
DataSet when it was created yesterday is represented in the root element.

ANALYSIS

09 3869 ch07 5/20/02 1:16 PM Page 159

The end result is that you can use the GetXml method when you simply want to quickly
return the current contents of the DataSet as a String and are not concerned with track-
ing changes.

Although the WriteXml method returns the same XML by default, it is much more flexi-
ble in that it includes eight overloaded signatures that allow the XML to be written to a
stream or its derived classes, the System.IO.TextWriter, an XmlWriter, or directly to a
file specified with its path and name. The other four signatures support a second argu-
ment to customize the XML through the XmlWriteMode enumeration. The enumeration
values include DiffGram, which will write the XML using the DiffGram grammar you
learned about on Day 5, “Changing Data”; IgnoreSchema, which is the default; and
WriteSchema, which also writes out the XSD for the DataSet. For example, to write the
DiffGram for a DataSet to an in-memory stream, you can use the following code:

Dim ms As New MemoryStream()

books.GetChanges.WriteXml(ms, XmlWriteMode.DiffGram)

In this case, the GetChanges method is first called on the DataSet to filter by the modi-
fied rows before writing the DiffGram to the MemoryStream using the WriteXml method.

160 Day 7

Unless you actually want to write the XML to a String, using the WriteXml
method is more efficient. This is because a string doesn’t have to be created
before the XML is written to a file or memory, as in this case.

Tip

Assuming that the same change to the price is still in effect, the resulting XML from the
previous code snippet will contain the Titles element only, and not the Reviews ele-
ments, even though the reviews are linked via a DataRelation. To write out XML for
just one book, you could create a new DataSet and copy into it the Titles row that was
changed along with the related rows from the Reviews table. Listing 7.2 shows the code
snippet necessary to do so with the strongly typed TitlesDs DataSet.

LISTING 7.2 Copying from a DataSet. The WriteTitleXml function copies a row and its
related rows to a new DataSet and returns the XML.

Public Function WriteTitleXml(ByRef books As TitlesDs, _
ByRef titleRow As TitlesDs.TitlesRow) As String
Dim aBook As TitlesDs
Dim rowVals() As Object
Dim reviewRows() As TitlesDs.ReviewsRow

09 3869 ch07 5/20/02 1:16 PM Page 160

XML and the DataSet 161

7

‘ Make a new copy of the DataSet
aBook = CType(books.Clone(), TitlesDs)

‘ Add the title row
rowVals = titleRow.ItemArray
aBook.Titles.Rows.Add(rowVals)

‘ Add the reviews rows
reviewRows = titleRow.GetReviewsRows
Dim row As TitlesDs.ReviewsRow
For Each row In reviewRows
rowVals = row.ItemArray
aBook.Reviews.Rows.Add(rowVals)

Next

Return aBook.GetXml()
End Function

You’ll notice in Listing 7.2 that the original TitlesDs DataSet and the
TitlesRow object are both passed into the method. The method then creates a

new DataSet with the same structure using the Clone method. The ItemArray property
is then used to extract an array of values for the TitlesRow, which is then added to the
new DataSet using the Add method of the DataRowCollection. To retrieve the related
rows from the Reviews table, the strongly typed DataSet exposes the GetReviewsRows
method that uses the DataRelation to return an array of ReviewsRow objects. Each row
is then added to the new DataSet using the Add method of the DataRowCollection for
the Reviews table. Finally, the XML for the new DataSet is returned using the GetXml
method.

Affecting the XML Format
The format of the XML shown in Listing 7.1 is controlled by the XSD generated when
the DataSet was created in the graphical designer, as you saw yesterday. By default, the
data for each DataTable appears consecutively, is placed in an element named with the
table name, and each column is placed in a sub-element of the table. However, you can
override these defaults either programmatically, using the properties of the objects in the
DataSet, or graphically, in the designer. The former option will, of course, be useful
when you are not using a strongly typed DataSet.

For example, assume that books is an instance of the TitlesDs DataSet. The following
code snippet customizes the XML that will be generated when the GetXml or WriteXml
method is called or when the DataSet is serialized to XML:

LISTING 7.2 continued

ANALYSIS

09 3869 ch07 5/20/02 1:16 PM Page 161

books.Titles.Columns(“ISBN”).ColumnMapping = MappingType.Attribute
books.Reviews.Columns(“ReviewID”).ColumnMapping = MappingType.Attribute
books.Reviews.Columns(“ISBN”).ColumnMapping = MappingType.Attribute
books.Relations(0).Nested = True
books.Prefix = “cbks”

Here you’ll note that the ColumnMapping property can be used to specify how a column
in the DataSet is represented using the MappingType enumeration. Other values include
Element (the default), Hidden, and SimpleContent. In this case, the primary keys of
the two tables, along with the ISBN column of the Reviews table, will be rendered as
attributes.

162 Day 7

The Hidden value of the MappingType attribute is useful for hiding columns
in the table that are used only for relating tables within the DataSet and
thus are auto-incremented. Basically, you would use Hidden with any col-
umn that you don’t want a client of the DataSet to display to a user.
However, marking a column as Hidden still allows it to be tracked when the
DataSet is serialized with the XmlSerializer object. The hidden column is
attached to the XML in a special attribute, called hiddenColumn, of the ele-
ment for each row.

Tip

In addition, the Nested property of the DataRelation used to relate the two tables
through their foreign key constraint is set to True so that rather than displaying the tables
one after the other, the data from the child table (Reviews) is rendered as a child element
of the particular parent element (Titles) to which it belongs. In this case, the ordinal
value of the relation is used because there is only one in the collection. Finally, the
Prefix attribute of the DataSet is set in order to associate a prefix with the XML name-
space populated when the DataSet was created yesterday. The end result is XML like
that shown in Listing 7.3.

LISTING 7.3 Reformatted XML. This listing shows the XML of TitlesDs after the proper-
ties in the previous snippet are applied.

<cbks:TitlesDs xmlns:cbks=”http://www.computebooks.com/TitlesDs”>
<Titles ISBN=”06720083X “ xmlns=”http://www.computebooks.com/TitlesDs”>
<Title>Pure Visual Basic: a code-intensive premium

reference/versions 5 &6</Title>
<Description>Great Book</Description>
<Author>Fox, Dan</Author>
<PubDate>1999-09-01T00:00:00.0000000-05:00</PubDate>
<Price>22.491</Price>
<Discount>9.5647</Discount>

09 3869 ch07 5/20/02 1:16 PM Page 162

XML and the DataSet 163

7

<BulkDiscount>10</BulkDiscount>
<BulkAmount>50</BulkAmount>
<CategoryName>Programming</CategoryName>
<PubName>Sams Publishing</PubName>
<Reviews ReviewID=”9cf97fcc-a6bb-4932-b427-213908427248” ISBN=”06720083X”>
<ReviewText>Mediocre to the core</ReviewText>
<Stars>3</Stars>

</Reviews>
<Reviews ReviewID=”609a2f74-ec76-4e4e-835c-266f11a32021” ISBN=”06720083X”>
<ReviewText>Clearly the greatest book ever written</ReviewText>
<Stars>5</Stars>

</Reviews>
<Reviews ReviewID=”5af1077d-77ef-4761-bf1a-6e31b905fa10” ISBN=”06720083X”>
<ReviewText>It stunk really badly</ReviewText>
<Stars>0</Stars>

</Reviews>
</Titles>

</cbks:TitlesDs>

Of course, the ColumnMapping property can be set in the graphical designer by dropping
down the list next to the column name and selecting A for attribute, for example, rather
than leaving it as the default of E (element). Likewise, the Nested property can be set
graphically by clicking on the relationship and changing the IsNested property in the
properties window to True.

LISTING 7.3 continued

If you forget to set the ColumnMapping and Nested properties while design-
ing a strongly typed DataSet, you can re-open the .xsd file by double-
clicking on it and then setting the properties. Doing so will regenerate the
code for the DataSet, visible by clicking on the Show All Files button on the
toolbar. Alternatively, you can edit the generated code and add code like
that shown in the previous snippet to the InitClass method of the derived
DataSet class.

Tip

Creating the XSD Schema
As you saw yesterday, you can create a strongly typed DataSet using the graphical
designer. When you do so, the designer is actually creating an XSD document behind the
scenes that is visible by clicking on the XML pane at the bottom of the designer. This is
shown in Listing 7.4. In the XML pane, you can edit the XML being produced and even
take advantage of IntelliSense.

09 3869 ch07 5/20/02 1:16 PM Page 163

LISTING 7.4 The XSD document. This XSD was produced by the XML Schema Designer
for the TitlesDs strongly typed DataSet.

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”TitlesDs” targetNamespace=”http://www.computebooks.com/TitlesDs”
elementFormDefault=”qualified” attributeFormDefault=”qualified”
xmlns=”http://www.computebooks.com/TitlesDs”
xmlns:mstns=”http://www.computebooks.com/TitlesDs”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” version=”1.0”>

<xs:element name=”TitlesDs” msdata:IsDataSet=”true”>
<xs:complexType>

<xs:choice maxOccurs=”unbounded”>
<xs:element name=”Reviews”>

<xs:complexType>
<xs:sequence>

<xs:element name=”ReviewID”
msdata:DataType=”System.Guid, mscorlib,
Version=1.0.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”
type=”xs:string” />

<xs:element name=”ISBN” type=”xs:string” />
<xs:element name=”ReviewText” type=”xs:string” />
<xs:element name=”Stars” type=”xs:unsignedByte” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”Titles”>

<xs:complexType>
<xs:sequence>

<xs:element name=”ISBN” type=”xs:string” />
<xs:element name=”Title” type=”xs:string” />
<xs:element name=”Description” type=”xs:string”

164 Day 7

When you right-click on the XML designer and select the Generate DataSet
option, the msdata namespace (defined by the URN schemas-microsoft-
com:xml-msdata) is added to the definition of the XML document in the root
schema element, as is shown in Listing 7.4. Attributes from this namespace
are used to add supplementary information to the schema that the DataSet
generator will use to write the code for the derived DataSet class. For exam-
ple, the IsDataSet attribute is added and set to True for the top-level ele-
ment in the DataSet. In addition, as you’ll see shortly, these attributes are
maintained internally by the DataSet and can be seen when using the
GetXmlSchema, WriteXmlSchema, and WriteXml methods of the DataSet.
Essentially, the msdata attributes are what allow an XSD schema to be
mapped to a DataSet behind the scenes.

Note

09 3869 ch07 5/20/02 1:16 PM Page 164

XML and the DataSet 165

7

minOccurs=”0” />
<xs:element name=”Author” type=”xs:string” />
<xs:element name=”PubDate” type=”xs:dateTime” />
<xs:element name=”Price” type=”xs:decimal” />
<xs:element name=”Discount” type=”xs:decimal”
minOccurs=”0” />

<xs:element name=”BulkDiscount” type=”xs:decimal”
minOccurs=”0” />

<xs:element name=”BulkAmount” type=”xs:short”
minOccurs=”0” />

<xs:element name=”CategoryName” type=”xs:string”
minOccurs=”0” />

<xs:element name=”PubName” type=”xs:string”
minOccurs=”0” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
<xs:unique name=”TitlesDsKey2” msdata:PrimaryKey=”true”>

<xs:selector xpath=”.//mstns:Reviews” />
<xs:field xpath=”mstns:ReviewID” />

</xs:unique>
<xs:unique name=”TitlesDsKey3” msdata:PrimaryKey=”true”>

<xs:selector xpath=”.//mstns:Titles” />
<xs:field xpath=”mstns:ISBN” />

</xs:unique>
<xs:keyref name=”TitlesReviews” refer=”TitlesDsKey3”
msdata:AcceptRejectRule=”Cascade” msdata:DeleteRule=”Cascade”
msdata:UpdateRule=”None” msdata:IsNested=”true”>
<xs:selector xpath=”.//mstns:Reviews” />
<xs:field xpath=”mstns:ISBN” />

</xs:keyref>
</xs:element>

</xs:schema>

You’ll notice in Listing 7.4 that the XSD is simply an XML document with a
root-level schema tag that contains tags such as complexType, element,

attribute, and keyref that define the structure of an XML document based on the
XSD. You’ll also notice that the schema is annotated with attributes from the msdata
namespace that control how the schema will map to specific features of the DataSet
class.

Although the syntax for XSD documents is beyond the scope of this book, the XML
Schema Designer makes it easy to get started writing schemas by providing the XML
Schema tab in the Toolbox. The descriptions of the items in the tab found in Table 7.1

LISTING 7.4 continued

ANALYSIS

09 3869 ch07 5/20/02 1:16 PM Page 165

coupled with the online documentation should be enough to get you started designing
your own schema that can be generated as a strongly typed DataSet or used simply with
XML documents.

TABLE 7.1 XML Schema toolbox items. The icons and their descriptions visible in the
XML Schema tab of the Toolbox when designing a DataSet (XSD).

Class Description

element Used to declare an element. When dropped on the design surface, it
creates an element tag with a child complex type that can be filled
with other elements or attributes. Used to define the highest-level
DataTable classes in a DataSet.

attribute Used to declare an attribute of an element. When dropped indepen-
dently on the design surface, it creates an attribute for the highest-
level element in the document.

attributeGroup Used to group a set of attribute definitions so that they can be used
inside a complex type definition. In a DataSet, the attributes are
simply added to the DataTable defined by the complex type.
Enables reuse of the attributes.

complexType Used to define the set of elements and attributes defined by one of
the following child elements: simpleContent (contains a
simpleType or text with attributes but no elements),
complexContent (contains only elements or is empty), group (con-
tains a reference to a group), sequence (contains the specified ele-
ments in the given order), choice (contains only one of the ele-
ments), or all (contains any or none of the elements). In a DataSet,
it is used to represent the DataTable structure. Can also be used to
define abstract contents used as the basis for derived complex types
(analogous to a base class).

simpleType Used to define a type derived from a built-in data type or another
simple type. Can be defined with facets such as restrictions for min
and max values and length, a list of whitespace-separated values, or
an enumeration. The DataSet generator maps only restrictions to
properties that have equivalents in the DataColumn; it does not cre-
ate enumerations as defined in the XSD.

group Used to group a set of element definitions to be used in a complex
type. Can be defined by choice, sequence, or all. In a DataSet, the
elements of the group are simply added to the DataTable. Enables
reuse of the set of the elements.

166 Day 7

09 3869 ch07 5/20/02 1:16 PM Page 166

XML and the DataSet 167

7

any Used to enable any element to appear from this namespace or any
other. Can also specify whether the XML processor should attempt
to validate the contents of this element. Not used in a DataSet.

facet Used inside of a simple type to define the restrictions that can be
placed on it. Facets such as maxLength are read by the DataSet gen-
erator and used to populate the MaxLength property of the
DataColumn object.

anyAttribute Used to enable any attribute to appear from this namespace in a
complex type or attribute group. Can also specify whether the XML
processor should attempt to validate the attribute. Not used in a
DataSet.

key Used to define an element or attribute as unique, non-nullable, and
always present data for the define scope. When selected, a dialog is
displayed where you can define the key. In a DataSet, the key is
mapped to the primary key of the DataTable using the PrimaryKey
attribute of the msdata namespace. Primary keys can also be
defined using the unique element.

Relation Used to define the data relation and invokes the dialog shown in
Figure 2.6 of Day 2, “Getting Started.” In the XSD, a keyref ele-
ment is created that refers to the key or unique element from the
parent. Its attributes from the msdata namespace control the rules
for cascading updates and deletes and automatically accepting
changes.

As a rule, keep in mind that each time you define a complex type, you are defining a
DataTable, and that the elements and attributes within the complex type will be repre-
sented as columns in that table. To nest complex types, you have two options. First, you
could create them separately and then create relations between them with the IsNested
property set to True. In that way, the XML generated from the DataSet will be nested.
However, this has the downside of not actually being represented in the XSD because
setting the IsNested property simply adds the IsNested attribute from the msdata name-
space to the keyref element in the XSD.

Alternatively, you have the option of defining a nested complex type directly by choosing
the Unnamed complexType option from the Type drop-down when defining the element.
Then you can name and create the elements and attributes of the child type. In this case,
the DataSet generator will automatically create a hidden column (MappingType.Hidden)

TABLE 7.1 continued

Class Description

09 3869 ch07 5/20/02 1:16 PM Page 167

and a DataRelation in the child DataTable that refers to the primary key column of the
parent type and whose Nested property is set to True. Creating the Reviews complex
type for the TitlesDs DataSet using this technique would look like the diagram in
Figure 7.1 (contrasted with Figure 6.2).

168 Day 7

FIGURE 7.1
Nested complex types.
This is a screenshot of
the XML Schema
Designer when the
Reviews element is
created as a child ele-
ment of Titles.

Creating the Schema Dynamically
Although creating a schema to serve as the basis for a strongly typed DataSet at design
time using the schema designer is recommended and ensures a correct schema, there are
scenarios in which this is not practical. For example, consider the situation in which you
want to dynamically create schemas based on database tables in order to send those
schemas to a trading partner. Or when you receive a schema, or simply an XML docu-
ment, from a trading partner and want to create a DataSet to handle the incoming data.
In these scenarios, you can use the FillSchema method of a data adapter, or the
ReadXmlSchema and InferXmlSchema methods of the DataSet class.

Although the diagram in Figure 7.1 doesn’t show it, the relationship
between the two complex types is, of course, predicated on the ISBN ele-
ment of each.

Note

09 3869 ch07 5/20/02 1:16 PM Page 168

XML and the DataSet 169

7

Filling from a Database
When you want to dynamically create schemas based on database tables in order to send
those schemas to a trading partner, you could create a method that writes the XSD
schema to a file based on the result set returned from a SQL Server stored procedure, as
shown in Listing 7.5.

LISTING 7.5 Creating the schema from a database. The WriteSqlSchema method popu-
lates the structure of a DataSet using the FillSchema method of the data adapter.

Public Sub WriteSqlSchema(ByVal storedProc As String, _
ByVal filePath As String, ByVal tableNames() As String)

Dim con As New SqlConnection(_connect)
Dim da As New SqlDataAdapter(storedProc, con)
Dim ds As New DataSet()

da.SelectCommand.CommandType = CommandType.StoredProcedure

Try
If Not tableNames Is Nothing Then
‘ Add the table mappings
Dim t, dsTab As String
Dim i As Integer
For Each t In tableNames
If i = 0 Then
dsTab = “Table”

Else
dsTab = “Table” & i.ToString

End If
da.TableMappings.Add(dsTab, t)
i += 1

Next
End If

‘ Fill the DataSet
da.FillSchema(ds, SchemaType.Mapped)
ds.WriteXmlSchema(filePath)

Although the methods discussed in this section also work with the XML Data
Reduced (XDR) grammar that Microsoft introduced before XSD became a
World Wide Web Consortium (www.w3c.org) recommendation, you should
use XSD whenever possible because it’s the standard and because support
for XDR is not guaranteed in future releases of the .NET Framework.

Note

09 3869 ch07 5/20/02 1:16 PM Page 169

Catch e As SqlException
‘ Handle SQL Server errors

Catch e As Exception
‘ Handle other errors here (IO)

End Try
End Sub

The WriteSqlSchema method in Listing 7.5 first creates the connection and data
adapter that will be used to communicate with the data store; in this case, with

SQL Server. In addition to being passed the name of the stored procedure to execute and
the path of the file to write to, the method accepts an array of table names that will be
used to map the tables returned from the database to DataTable objects created in the
DataSet. As you can see, the array of table names is traversed and each is added to the
TableMappings collection of the data adapter using the Add method. The dsTab variable
denotes the default name in the DataSet that each table will be given by the data adapter,
whereas t denotes the new name. By adding new table mappings, you override the
default behavior in which the data adapter creates tables named Table, Table1, and so on
for each result set returned from the SelectCommand of the data adapter.

The FillSchema method is then called and passed both a DataSet object to fill and a
value from the SchemaType enumeration. FillSchema automatically opens and closes the
database connection, and is also overloaded to accept a single DataTable as well as an
entire DataSet along with a specific table mapping to use. In this case,
SchemaType.Mapped instructs the FillSchema method to use any existing table mappings
and schema for the DataSet rather than ignoring them, as can be done by passing the
SchemaType.Source value to the method.

170 Day 7

LISTING 7.5 continued

ANALYSIS

Although not used in Listing 7.4, the FillSchema method also returns either
a single DataTable object or an array of DataTable objects depending on
whether the SelectCommand of the data adapter returns one or more than
one result set.

Note

When FillSchema executes, it populates the AllowDBNull, AutoIncrement, MaxLength,
ReadOnly, and Unique properties of the DataColumn objects from data provided by the
data source while not returning any data. In SQL Server, this is accomplished by the data
adapter executing the SET NO_BROWSETABLE ON statement before executing the command
and turning it off afterward. If a primary key is present, it creates a unique element in the
XSD to represent it. In the case where a primary key is not present, it looks for unique

09 3869 ch07 5/20/02 1:16 PM Page 170

XML and the DataSet 171

7

constraints and uses their combination as the primary key as long as none of them allows
nulls. Columns that are not named are simply named Column1, Column2, and so forth as
you might expect.

Unfortunately, the OleDbDataAdapter creates a DataTable object for only the
first result set returned, while SqlDataAdapter can handle multiple result
sets. However, if you must use OLE DB, you can use the Fill method of the
OleDbDataAdapter and make sure that the MissingSchemaAction property is
set to AddWithKey.

Tip

As you probably would have guessed, the FillSchema method cannot create relation-
ships between tables even if more than one result set is returned by the SelectCommand
and the base tables have a foreign key relationship. This is because it does not retrieve
foreign key constraints from the database.

Finally, the XSD is written to the file using the WriteXmlSchema method, which we’ll
explore in more detail shortly.

Loading from a Schema
Of course, in addition to programmatically constructing the schema from a database, you
could also create it directly from an existing XSD using the ReadXmlSchema method of
the DataSet class. This technique might come in handy if you need to dynamically cre-
ate DataSet objects that correspond to schemas that cannot be specified at design time. It
can also be used in derived DataSet classes to maximize flexibility and maintainability
in your application.

For example, rather than create a strongly typed DataSet using the XML Schema
Designer and the DataSet generator, you might want to create your own class that inher-
its from DataSet and then, in its constructor, call the ReadXmlSchema method to load a
schema from the file system, as shown in Listing 7.6.

LISTING 7.6 A weakly typed DataSet. This complete DataSet class loads its structure at
runtime when the constructor is called.

<Serializable()> _
Public Class OrdersDs : Inherits DataSet

Public Sub New()
MyBase.New()
initclass()

End Sub

09 3869 ch07 5/20/02 1:16 PM Page 171

Public Sub New(ByVal info As SerializationInfo, _
ByVal context As StreamingContext)
MyBase.New()
InitClass()
Me.GetSerializationData(info, context)

End Sub

Private Sub InitClass()
‘ Read in the schema
Try
Me.ReadXmlSchema(“OrdersDs.xsd”)

Catch e As Exception
Throw New TypeInitializationException(“Cannot load OrdersDs.xsd”, e)

End Try
End Sub

End Class

In Listing 7.6, the OrdersDs DataSet is derived from DataSet and includes the
private InitClass method that attempts to load the schema using the

ReadXmlSchema method. Note that the file is hard-coded here, but that ReadXmlSchema is
overloaded to accept an XmlReader, stream, or TextReader as well. If the file can’t be
loaded because it can’t be found or is an invalid schema, an exception will be thrown and
the exception will be caught and encapsulated as the InnerException of the standard
TypeInitializationException. Although in this example the file passed to
ReadXmlSchema ostensibly contains only the XSD, ReadXmlSchema can also read an in-
line schema (one that is present along with the data) from an XML document.

172 Day 7

LISTING 7.6 continued

ANALYSIS

The Serializable attribute and the constructor that accepts the
SerializationInfo and StreamingContext objects from the
System.Runtime.Serialization namespace must be present in the event the
DataSet is passed between AppDomains.

Note

If the DataSet already contained a schema, it would have been augmented by the
ReadXmlSchema method by adding new tables and columns where appropriate. If, howev-
er, the data type of an existing column conflicts with the new schema information, an
exception will be thrown. Data types will conflict if, for example, the XSD type in the
new schema maps to a different .NET type, as shown in Table 7.2.

09 3869 ch07 5/20/02 1:16 PM Page 172

XML and the DataSet 173

7

TABLE 7.2 XSD to .NET types. This table shows the XSD type and .NET equivalent.

XSD Type .NET Type

anyURI System.Uri

base64Binary, hexBinary System.Byte()

Boolean System.Boolean

Byte System.SByte

Date, dateTime, gDay, gMonthDay, System.DateTime

gYear, gYearMonth, month, time,
timePeriod

decimal, integer, negativeInteger, System.Decimal

nonNegativeInteger,
nonPositiveInteger,
positiveInteger

Double System.Double

duration System.TimeSpan

ENTITIES, IDREFS, NMTOKENS System.String()

ENTITY, ID, IDREF, language, Name, System.String

NCName, NMTOKEN, normalizedString,
notation, string, token

Float System.Single

int System.Int32

long System.Int64

QName System.Xml.XmlQualifiedName

short System.Int16

unsignedShort System.UInt16

unsignedInt System.UInt32

unsignedLong System.UInt64

Although all the rules for how an XSD maps to a DataSet are beyond the scope of this
book and can be found in the online documentation, the following general rules apply:

• A DataTable is created for each complexType element. Each element and attribute
of the complexType are mapped to columns.

• If one complexType is nested inside another, a foreign key constraint, data relation,
and hidden column are created on the child table.

• Data types in the schema map to the .NET types as shown in Table 7.2.

09 3869 ch07 5/20/02 1:16 PM Page 173

• unique elements are mapped to unique constraints in the DataTable and the
AllowDBNull property of the column is set to True.

• key elements are mapped to unique constraints and the AllowDBNull property of
the column is set to False.

• keyref elements are mapped to a foreign key constraint and a corresponding data
relation.

• The maxLength restriction on a simpleType maps to the MaxLength property of the
DataColumn.

Even though these rules are a good start, they obviously don’t contain all the information
that can be specified in a DataSet. As a result, you can also add to the XSD the attributes
from the msdata namespace mentioned previously before you read it in using the
ReadXmlSchema. This can be done either by editing the document directly, using a tool
such as XML Spy or VS .NET, or programmatically, using the classes of the System.Xml
namespace. For example, you can either stream through the XML using the
XmlTextReader and XmlTextWriter or use the Document Object Model as exposed
through the XmlDocument class. To give you an idea for how this would be accomplished,
the AddPk method shown in Listing 7.7 adds the IsPrimaryKey attribute to a key element
of the XSD document passed into the method. I’ll leave it to you to explore the
XmlDocument class and its members.

174 Day 7

Alert readers will notice that the msdata namespace declaration is added to
the key element directly rather than to the top-level schema element as is
done by the XML Schema Designer. The code could easily be modified to
add the namespace declaration first and then add the primary key attribute.

Tip

LISTING 7.7 Modifying the XSD. This method marks one of the key elements of the XSD
as the primary key prior to reading it into a DataSet.

Public Function AddPk(ByVal keyElement As String, _
ByVal xsdFile As String) As Boolean

Dim xml As New XmlDocument()
Dim key As XmlNode
Dim keys As XmlNodeList
Dim att As XmlAttribute

Try
xml.Load(xsdFile)
att = xml.CreateAttribute(“msdata”, “IsPrimaryKey”, _
“urn:schemas-microsoft-com:xml-msdata”)

att.Value = “true”

09 3869 ch07 5/20/02 1:16 PM Page 174

XML and the DataSet 175

7

keys = xml.GetElementsByTagName(“xs:key”)
For Each key In keys
If key.Attributes(“name”).Value = keyElement Then
key.Attributes.Append(att)
xml.Save(xsdFile)
Return True

End If
Next

Return False ‘ The keyelement was not found
Catch e As XmlException
‘ Handle XML errors

Catch e As Exception
‘ Others

End Try

End Function

Loading from a Document
In the event the ReadXmlSchema method is not passed an XSD or an XML document with
an in-line schema, it will automatically attempt to infer the schema from the document.
This also can be accomplished directly by calling either the InferXmlSchema or the
ReadXml method whose overloads accept an XML document through an XmlReader, file
path, stream, or TextReader.

Regardless of the method used to infer the schema from a document, the framework uses
certain inference rules, the most important of which are as follows:

• Elements that have attributes or child elements map to tables. The attributes and
child elements are mapped to columns.

• Elements with multiple occurrences are mapped to a single table.

• Attributes, and elements that have no attributes or child elements and that do not
repeat, are mapped as columns.

• If the root element of the document has no attributes and no child elements that
map to columns, it is mapped to a DataSet. Otherwise, it is mapped to a table.

• If a nested or child element is inferred as a table, a DataRelation and
ForeignKeyConstraint are created between the child and parent table, and prima-
ry key columns are created in both tables.

• If an element is mapped to a table and has a text value but no child elements, a col-
umn called tablename_Text is created for the text of the element. However, if the
element has text and also has child elements, the text is ignored.

LISTING 7.7 continued

09 3869 ch07 5/20/02 1:16 PM Page 175

Something that might not be immediately obvious from these rules is that the process of
inferring the schema is non-deterministic. By that, I mean that two XML documents cre-
ated from the same schema will not necessarily create identically structured DataSet
objects due to the presence or absence of data. This is the case because schemas can
define optional elements and might or might not contain repeating elements. This is a
good reason to use schemas wherever possible and resort to inference only where neces-
sary.

To see these rules applied, consider the XML document shown in Listing 7.8, which rep-
resents sales information for ComputeBooks titles.

LISTING 7.8 Sales data. The XML shown here represents sales figures by time period and
title for ComputeBooks stores.

<Sales>
<Title ISBN=”06720001X”>
<TimePeriod Date=”1/2002”>
<Store id=”31B32710-C58A-4483-BB84-4D12865C7772”>
<Units>16</Units>
<BulkUnits>56</BulkUnits>
<Revenue>456.50</Revenue>
</Store>
</TimePeriod>
<TimePeriod Date=”2/2002”>
<Store>
<Units>31</Units>
<BulkUnits>75</BulkUnits>
<Revenue>789.77</Revenue>
</Store>
</TimePeriod>
</Title>
<Title ISBN=”06720002X”>
<TimePeriod Date=”1/2002”>
<Store id=”31B32710-C58A-4483-BB84-4D12865C7772”>
<Units>321</Units>
<BulkUnits>50</BulkUnits>
<Revenue>6789</Revenue>
</Store>
<Store id=”57E088EF-3929-41A6-B35F-79048B965489”>
<Units>33</Units>
<BulkUnits>0</BulkUnits>
<Revenue>612.67</Revenue>
</Store>
</TimePeriod>
</Title>
</Sales>

176 Day 7

09 3869 ch07 5/20/02 1:16 PM Page 176

XML and the DataSet 177

7

The following code snippet could then be used to infer the schema from this document:

Dim sales As New DataSet()

sales.InferXmlSchema(“sales.xml”, Nothing)

The end result is a DataSet with no data and the following structure:

DataSet: TableName = Sales

Tables (3):

Title (Title_Id, ISBN)

TimePeriod (TimePeriod_Id, Date, Title_Id)

Store (Units, BulkUnits, Revenue, id, TimePeriod_Id)

Relations (2):

TimePeriod_Store (ForeignKeyConstraint that relates TimePeriod_Id
columns in Store and TimePeriod)

Title_TimePeriod (ForeignKeyConstraint that relates Title_Id columns in
TimePeriod and Title)

You’ll notice from the preceding description that when the DataSet is inferred, the Sales
element (the root element) is mapped to the DataSet rather than being mapped to a table.
This is because it has no attributes and its child elements are mapped to tables. Three
tables are then created because the Title, TimePeriod, and Store elements all have both
attributes and child elements that were mapped as columns. Because the Store element
was nested inside the TimePeriod element and the TimePeriod inside the Title, two
ForeignKeyConstraint objects were created and added to the
DataRelationCollection. In addition, primary keys for each of the parent tables
(Title_Id and TimePeriod_Id) were created as auto-incrementing integer columns.
Within the DataTable objects, the columns each have their ColumnMapping property set
appropriately. For example, the ISBN column is set to MappingType.Attribute, whereas
the Title_Id column is set to MappingType.Hidden.

Obviously, the inferred DataSet in this case accurately represents the data,
but it does so with the added baggage of columns that needn’t have been
created and data types that might not be preferred. The ISBN column of the
Title table, the Date column of the TimePeriod table, and the id column of
the Store table could just as well have served as primary keys. However,
without being able to define them as such in a schema, the framework

Note

09 3869 ch07 5/20/02 1:16 PM Page 177

You’ll also notice from the code snippet following Listing 7.8 that the InferXmlSchema
method accepts a second argument, which in this case was set to Nothing. The argument
can contain an array of namespaces that are to be ignored during the creation of the
DataSet. This allows you to read in a document and ignore namespaces that contain data
meant for other purposes.

As mentioned previously, the InferXmlSchema method simply creates the schema and
does not load any data. To both infer the schema and load the data, you can use the
ReadXml method. This overloaded method accepts the same input (XmlReader,
TextReader, stream, and filename) as InferXmlSchema, but also accepts an optional sec-
ond argument that specifies how the XML data is read into the DataSet through the
XmlReadMode enumeration, as shown in Table 7.3.

TABLE 7.3 XmlReadMode enumeration. This enumeration is used to specify how the
ReadXml method processes the XML it is given.

Value Description

Auto The default. When set to Auto, the ReadXml method will automatically set the
XmlReadMode appropriately, depending on the contents of the XML. It will use
DiffGram when it detects a DiffGram, ReadSchema if the DataSet already has a
schema or the document has an in-line schema, and InferSchema otherwise.

DiffGram Reads the DiffGram and applies its changes to the DataSet using the same
semantics as the Merge method. The DiffGram schema must match the schema
of the DataSet or an exception will be thrown.

Fragment Reads XML documents generated by the FOR XML statement in SQL Server
2000 using the default namespace as the in-line schema.

IgnoreSchema Ignores an in-line schema if one exists. Data that does not match the existing
DataSet schema is discarded (new schema information is not inferred).

InferSchema Ignores an in-line schema if one exists and instead infers the schema and loads
the data. If the DataSet contains a schema, it is extended and exceptions are
thrown when existing tables or columns conflict.

ReadSchema Reads an in-line schema if one exists and infers and loads the data, extending
the schema of the DataSet. Unlike InferSchema, an exception is thrown if the
DataSet already contains any of the tables from the in-line schema.

178 Day 7

doesn’t have any way of knowing which column is the key. In addition,
columns that you would probably like to be numeric are mapped to the
System.String data type because the inference process must assume the
widest possible interpretation. These are also reasons to use schemas where
possible rather than relying on inference.

09 3869 ch07 5/20/02 1:16 PM Page 178

XML and the DataSet 179

7

Obviously, the XmlReadMode argument makes the ReadXml method the most flexible in
terms of loading a DataSet from an XML document with or without an in-line schema.
For example, you can use the ReadSchema value when you simply want to load additional
tables to an existing DataSet or the IgnoreSchema when you want to load only data that
matches the existing DataSet structure. The following snippet loads the sales data using
the InferSchema value, which would be automatically set because the document doesn’t
contain an in-line schema and the DataSet doesn’t contain a schema:

Dim sales As New DataSet()

sales.ReadXml(“sales.xml”, XmlReadMode.InferSchema)

All the overloaded signatures of the ReadXml method return the
XmlReadMode used during its processing. This is useful if you don’t use the
second argument or pass it Auto. In that way, you can tell from which read
mode was used, and what the document and DataSet contained.

Note

The DiffGram and Fragment values are particularly interesting because they can be used
with XML generated in different ways. For example, the DiffGram value can be used to
make changes to a DataSet by applying it through the ReadXml method. This would be
useful if your application serializes the DiffGram to a file and then later needs to merge
the DiffGram with new data retrieved from a data store. The Fragment value allows you
to load partial XML documents like those produced by the FOR XML statement in SQL
Server, which you’ll learn more about on Day 10, “Using Commands.”

Using a DataSet as XML
The final section for today deals with how you can simultaneously manipulate a DataSet
both using the objects internal to the DataSet and as XML using the Document Object
Model (DOM). It is appropriate that we finish today’s lesson with this dual programming
model because it represents perhaps the highest point of integration between the DataSet
and XML.

The class that provides the integration between the DataSet and the DOM is the
XmlDataDocument, found in the System.Xml namespace. The XmlDataDocument is
derived from the XmlDocument class and as such contains the methods and properties
used to represent an XML document in memory using the DOM.

09 3869 ch07 5/20/02 1:16 PM Page 179

The purpose of the XmlDataDocument is to provide developers with the option of manipu-
lating DataSet data as if it were simply XML parsed into the node-based hierarchical
structure of the DOM. This enables developers familiar with the Microsoft XML Parser
(MSXML) to manipulate DataSet data in a familiar way. In addition, as you’ll see, using
the XmlDataDocument allows you to do things not possible with the DataSet alone.

The XmlDataDocument can be used in two different ways. First, you can pass a populated
DataSet to its constructor and it will create the hierarchical node structure on the fly
from the data in the DataSet. You can then use the methods of the XmlDataDocument to
manipulate the data. For example, the code in Listing 7.9 loads an XmlDataDocument
from the sales DataSet created in the previous section. The code then iterates through
each Title element and prints the time period recorded for each.

180 Day 7

See the online documentation for more information on the members of the
XmlDocument class.

Note

When an XmlDataDocument is instantiated, it is a fully separate object man-
aged by the runtime that may contain a complete copy of the data from the
DataSet. The two objects are kept in sync using events, so keep in mind that
if the DataSet contains a large amount of data, so too might the
XmlDataDocument. The determination of whether data is copied from one to
another relates to the complexity of the XML document. Although the rules
for this are complex, in general, the more complex the XML data, the more
data will be copied to the DataSet.

Caution

LISTING 7.9 Manipulating a DataSet as XML. This listing shows how you can use the
XmlDataDocument class to work with a DataSet as XML data.

Dim salesXml As New XmlDataDocument(sales)
Dim titles, timePeriods As XmlNodeList
Dim title, timeP As XmlNode
Dim dr As DataRow

titles = salesXml.GetElementsByTagName(“Title”)

For Each title In titles
Console.WriteLine(title.Attributes(“ISBN”).Value)
timePeriods = title.SelectNodes(“TimePeriod”)

For Each timeP In timePeriods
Console.WriteLine(timeP.Attributes(“Date”).Value)

09 3869 ch07 5/20/02 1:16 PM Page 180

XML and the DataSet 181

7

dr = salesXml.GetRowFromElement(CType(timeP, XmlElement))
Console.WriteLine(dr.Item(“TimePeriod_Id”).ToString)

Next
Next

As you can see from Listing 7.9 , the GetElementsByTagName method is used to
retrieve all the Title elements from the document into an XmlNodeList. The list

is then iterated and the ISBN is retrieved from the Attributes collection. The
SelectNodes method of the XmlDataDocument is then used to retrieve another list of
nodes using an XPath query that in this case simply retrieves the TimePeriod elements.
In a similar way, the Date for each time period is printed along with the hidden
TimePeriod_Id column accessible through the GetRowFromElement method. Note that
this column can be accessed only by referencing the DataSet; it isn’t represented in the
XML because it is hidden. The XmlDataDocument also exposes the reverse
GetElementFromRow method that accepts a DataRow and returns the XmlElement that it
represents in the XML.

LISTING 7.9 continued

ANALYSIS

Although the DataSet and XmlDataDocument are kept in sync using events, if
new nodes are added to the XmlDataDocument that do not correspond to
columns in the DataSet, the nodes will be added but will not be synchro-
nized with the DataSet. However, if you attempt to add or remove columns
to a table in the DataSet after it has been mapped to an XmlDataDocument,
you’ll receive an InvalidOperationException.

Tip

The second way to use the XmlDataDocument is to load the XML by using its Load
method after inferring the schema using the exposed DataSet property as shown here.

Dim sales As New DataSet()
Dim salesXml As New XmlDataDocument()
Dim xmlData As New FileStream(“royalty.xml”, FileMode.Open)

salesXml.DataSet.InferXmlSchema(xmlData, Nothing)
xmlData.Position = 0
salesXml.Load(xmlData)

sales = salesXml.DataSet

In this case, a FileStream object is created to read the XML document. The schema for
the underlying DataSet is then created using the InferXmlSchema method. This must be
done first, otherwise, as noted previously, the new nodes in the XmlDataDocument will

09 3869 ch07 5/20/02 1:16 PM Page 181

not map to anything in the DataSet. After the stream is repositioned to the beginning, the
Load method of the XmlDataDocument is used to load the XML. Of course, an alternative
technique that could be used in this example is to simply call the ReadXml method and
allow it to infer the schema.

Finally, the XmlDataDocument is most powerful when using functionality that is not avail-
able when simply using the DataSet. For example, the TransformDs method in Listing
7.10 uses the XmlDataDocument to transform the contents of a DataSet using an XSL
stylesheet and save it to a file. This technique could be very useful, for example, if
ComputeBooks wanted to create static HTML pages from its catalog in a nightly
process.

LISTING 7.10 Transforming a DataSet. This method transforms a DataSet with an XSL
stylesheet using the XmlDataDocument and classes from the System.Xml and related name-
spaces.

Public Sub TransformDs(ByRef ds As DataSet, ByVal xslFile As String, _
ByVal destFile As String)

Dim xmlData As XmlDataDocument
Dim xslTrans As New XslTransform()
Dim xmlWriter As XmlTextWriter

Try
‘ Load the stylesheet and transform
xslTrans.Load(xslFile)

Catch e As Exception
Throw New Exception(“Could not load file “ & xslFile, e)
Return

End Try

Try
‘ Create an XmlTextWriter to write to the file
xmlWriter = New XmlTextWriter(destFile, Nothing)

‘ Populate the XmlDataDocument and do the transform
xmlData = New XmlDataDocument(ds)
xslTrans.Transform(xmlData.DocumentElement, Nothing, xmlWriter)

Catch e As Exception
Throw New Exception(“Could not write to “ & destFile, e)

Finally
xmlWriter.Close()

End Try

End Sub

182 Day 7

09 3869 ch07 5/20/02 1:16 PM Page 182

XML and the DataSet 183

7

Although the ins and outs of XSL and transformations are better left to other
books, notice in Listing 7.10 that the XslTransform object xslTrans first loads

the stylesheet passed in as an argument using the Load method. After opening the desti-
nation file using an XmlTextWriter object, the XmlDataDocument object is populated by
passing the DataSet as an argument to the constructor. The root node of the
XmlDataDocument, in this case xmlData.DocumentElement, is then passed to the
Transform method along with the XmlWriter used to output the results of the transfor-
mation. The Transform method navigates through an XML document using a cursor
model, applying the stylesheet rules found in the XSL document.

Summary
Today you explored the depths of XML integration with the DataSet. This integration
extends from its schema represented as XSD to actually manipulating DataSet as XML
using the XmlDataDocument object. Today’s discussion completes the in-depth look at the
DataSet class you started on Day 3, “Working with DataSets.” As a result, you should
now have a good understanding of how the DataSet can be used in disconnected scenar-
ios in your applications. Next week, we’ll delve in the other major component of
ADO.NET, the .NET Data Providers.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What is the difference between the GetXml and WriteXml methods of the DataSet

class?

GetXml simply returns a string containing the XML representation of the data in a
DataSet, whereas WriteXml is overloaded to support writing to streams, files, the
XmlReader, and TextReader objects. For performance reasons, the WriteXml
method is usually preferred.

2. When mapping a schema to a DataSet, what element in the XSD maps to tables in
the DataSet?

The complexType element of the XSD maps to DataTable objects in the DataSet.

3. What is the process of inference and how is it used by the DataSet?

Inference refers to the process of inferring the XSD from an existing XML docu-
ment. Inference is used when the InferXmlSchema and ReadXml methods are called
and passed XML documents that are schemas or that contain in-line schemas. The

ANALYSIS

09 3869 ch07 5/20/02 1:16 PM Page 183

process uses specific rules to determine which elements map to tables and which to
columns, but the process is non-deterministic in that two documents created from
the schema may produce different DataSet structures. The inference process is also
not necessarily lossless, particularly when elements contain both text and child ele-
ments.

4. What is the purpose of the XmlDataDocument?

The XmlDataDocument class is used to provide a DOM view of a DataSet that is
synchronized with the DataSet using events behind the scenes. The
XmlDataDocument class enables developers to work with the data as if it were an
XML document and can then utilize the features of XML documents such as
XPath queries and XSL transformation.

Exercise
Write a method that reads the provided sales.xml file into a DataSet. Then change its
XML representation by changing the id attribute of the Store element to an element and
then writing the new schema and data to a file.

Answers for Day 7
Exercise Answer
One possible solution is shown in the following listing. Note that because of the infer-
ence rules, the Store element is actually represented in the third of the three DataTable
objects created.

Dim dsSales As New DataSet()

‘ Read in the file
dsSales.ReadXml(“sales.xml”, XmlReadMode.InferSchema)

‘ Change the mapping to element
dsSales.Tables(2).Columns(“id”).ColumnMapping = MappingType.Element

‘ Write out the schema and data
dsSales.WriteXml(“sales2.xml”, XmlWriteMode.WriteSchema)

184 Day 7

09 3869 ch07 5/20/02 1:16 PM Page 184

In Review
I hope you’ve enjoyed your first week of Sams Teach Yourself
ADO.NET in 21 Days! Days 1 and 2 should have given you a
good introduction to ADO.NET and helped you to understand
the history and thought process that went into its design and
implementation. As you can tell by now, ADO.NET wasn’t
designed to solve every problem, but really focuses on the
two most common programming models used in today’s dis-
tributed Web-based applications: accessing data in a discon-
nected fashion and streaming through data on the server.

The rest of the week focused on the first of the two program-
ming models and should have forced you to look into almost
every nook and cranny of the DataSet object. By now, you
should feel very comfortable manipulating DataSet objects
both graphically and programmatically.

So kick back and take a break (although not a long one) and
get ready for next week, when you’ll dig into the second
major component of ADO.NET, its .NET Data Providers.

WEEK 1 1

2

3

4

5

6

7

10 3869 WIR1 5/20/02 1:18 PM Page 185

10 3869 WIR1 5/20/02 1:18 PM Page 186

At a Glance
The focus of this week is on the .NET Data Providers that
ship with VS .NET and provide access to a variety of data
stores. Throughout the week you’ll learn about different
aspects of the providers, culminating in a discussion of actu-
ally developing your own custom provider!

This week begins with Day 8’s general and gentle introduc-
tion to .NET Data Providers. This day details the objects that
compose the .NET Data Providers along with their responsi-
bilities.

The remainder of the week discusses each of these compo-
nents in turn by focusing on connections and transactions,
command objects, data readers, data adapters, accessing SQL
Server data, working with other providers such as the ODBC
.NET Data Provider, and building your own custom .NET
Data Provider. These lessons detail not only how to use the
components, but also recommend specific techniques when
dealing with issues that surround them, such as connection
pooling, output parameters, and both local and distributed
transactions.

By the end of the week, you should be able to access data on
a variety of data stores using the appropriate provider and the
appropriate objects for your particular scenarios.

WEEK 2 8

9

10

11

12

13

14

11 3869 WAG2 5/20/02 1:18 PM Page 187

11 3869 WAG2 5/20/02 1:18 PM Page 188

DAY 8

WEEK 2

Understanding .NET Data
Providers

Today you begin a new week devoted to learning about the architecture
and functionality of .NET Data Providers (referred to simply as

providers from here on out). Providers are the second major component of
ADO.NET (the DataSet being the first) and serve as the mechanism to commu-
nicate with various data stores. Although you had intermittent contact with
providers last week, this week you’ll explore all facets of providers, not only
learning how a provider is architected, but also drilling down into each individ-
ual component of a provider and walking through its functionality in detail.

Today’s discussion will focus on the classes and interfaces provided by
ADO.NET that serve as the blueprint that Microsoft and other vendors can use
for building providers. Specifically, today you will learn the following con-
cepts:

• The classification and responsibilities of providers and the classes they
contain

• The classes and interfaces in ADO.NET and their key members

NEW TERM

12 3869 ch08 5/20/02 1:18 PM Page 189

Provider Architecture
As mentioned on Day 1, “ADO.NET In Perspective,” a provider’s main responsibilities
include connecting and disconnecting with a data store, performing transaction manage-
ment, handling exceptions, executing parameterized queries and commands, and then
either processing the results directly or interacting with the DataSet object. To that end,
ADO.NET provides classes and interfaces in the System.Data and System.Data.Common

namespaces that are used as a template for developers building providers to work with
specific data stores.

190 Day 8

As you look at these common interfaces, you might be wondering why, for
the most part, the interfaces such as IDataReader are in the System.Data
namespace, but the classes such as DbDataAdapter are in
System.Data.Common. The reason is that the classes in System.Data.Common
are meant to be used only by developers implementing providers, whereas
the interfaces are used both by developers of providers and users wanting
to write polymorphic code against multiple providers.

Note

As you’re well aware by now, Microsoft ships the SQL Server provider in the
System.Data.SqlClient namespace (referred to simply as SqlClient) and the

OLE DB provider in the System.Data.OleDb namespace (referred to as OleDb). In addi-
tion, the ODBC provider is available as a download from the MSDN Web site. The
SqlClient provider is an example of a specific provider (sometimes referred to as a
native or targeted provider) that communicates with a single data store (SQL Server
7.0 or later) and exposes functionality particular to that data store. Both the OleDb are
ODBC providers are examples of generic providers (sometimes referred to as bridge or
broad providers) that act as a managed interface to data that is accessed through an
OLE DB provider or ODBC driver, respectively. As such, these generic providers don’t
offer any functionality not already exposed by the OLE DB provider or ODBC driver.
Obviously, specific providers offer not only the opportunity for exposing functionality
available to the data store, such as returning XML directly from SQL Server, but also
offer performance improvements because the extra layer of abstraction is eliminated. For
example, SqlClient talks to SQL Server directly using the Tabular Data Stream (TDS)
protocol.

NEW TERM

Microsoft is also working on additional providers. For example, beta 1 of the
Oracle .NET Data Provider was released on MSDN in early May of 2002, and
it is rumored that a DB2 provider is not far behind.

Note

12 3869 ch08 5/20/02 1:18 PM Page 190

Understanding .NET Data Providers 191

8
The provision of the classes and interfaces for building providers not only promotes a
common programming model but also actually allows you to write code polymorphically
to mask the provider being used. (We’ll discuss one technique for doing so on Day 17,
“ADO.NET in the Data Services Tier.”) In addition to implementing the standard classes
and interfaces, providers typically implement additional classes that provide error han-
dling and other services, as shown in Figure 8.1 and explained in Table 8.1.

As I’ll mention on Day 21, “Futures and Wrap-Up,” look for features
in future releases of ADO.NET that make it easier to write provider-
independent code.

Note

TABLE 8.1 Provider components. This table details each of the primary components of a
provider and what each is used for.

Component Description

Data Adapter Implemented using the IDbDataAdapter or IDataAdapter interfaces of the
System.Data namespace and/or the DbDataAdapter and DataAdapter classes
of the System.Data.Common namespace. The data adapter is used to populate
a DataSet from a connection to a data store and synchronize changes made
to the DataSet with the data store.

Connection Implemented using the IDbConnection interface of the System.Data name-
space and used as the means to send queries and commands to the data
store. Connection objects control the transactional behavior of the data store
and typically raise events and exceptions when the connection state changes
or when errors are encountered.

FIGURE 8.1
Provider architecture.
This diagram high-
lights the objects typi-
cally exposed by a
provider. The high-
lighted objects have
classes or interfaces
provided by ADO.NET.

Error

IDbConnection

IDataReader
CommandBuilder

IDbTransaction

IDataParameter
IDbDataParameter

DbDataPermission
DbDataPermissionAttribute

IDbCommand

Exception

.NET Data Provider

IDbDataAdapter
DbDataAdapter

DataAdapter
IDataAdapter

Data Adapter

Connection

Transaction

Permissions

Parameters

Data Reader

Command Builder

Command

Exception

Errors

IDataParameterCollection

12 3869 ch08 5/20/02 1:18 PM Page 191

Transaction Implemented using the IDbTransaction interface of the System.Data name-
space. Associated with a connection object and used to initiate, commit, and
roll back logical units of works in the data store.

Permissions Implemented using the DbDataPermission and DbDataPermissionAttribute

classes of the System.Data.Common namespace. These classes are used with
the code access security system in .NET and, in fact, are derived from class-
es in the System.Security namespace. They are used to ensure that a user
has a security level adequate to access data through the provider. Providers
derive classes from these so that both imperative and declarative security
checks can be specified directly in the code and made by the runtime when
the code is loaded or executed.

Command Builder Not implemented by all providers; as a result, there is no corresponding
class or interface for developers to use. The primary purpose is to automati-
cally build the insert, update, and delete commands used by the data adapter
to populate and synchronize data between a DataSet and a data store.

Command Implemented using the IDbCommand interface of the System.Data namespace
and used to encapsulate a command, typically some variant of SQL, that
may be executed through a connection object. Commands may be associated
with one or more parameters passed to the data store. For relational data
stores, commands can typically be either dynamic (containing SQL SELECT,
INSERT, UPDATE, and DELETE statements) or refer to procedures or packages
stored on the server.

Data Reader Implemented using the IDataReader and IDataRecord interfaces of the
System.Data namespace and used to stream through data returned from a
command object in a forward-only, read-only manner. Data readers expose
the second major programming model in ADO.NET using a streamed and
connected approach as opposed to a cached and disconnected approach
exposed through the DataSet.

Parameter Implemented using the IDataParameter, IDbDataParameter, and
IDataParameterCollection interfaces of the System.Data namespace. The
first two interfaces listed are used to implement actual parameter classes that
map to a name-value pair of a specific data type passed to a command
object. The third interface is used to create classes that hold collections of
parameters that can be associated with a command object.

192 Day 8

TABLE 8.1 continued

Component Description

12 3869 ch08 5/20/02 1:18 PM Page 192

Understanding .NET Data Providers 193

8
Error Not implemented by all providers; as a result, there are no classes or inter-

faces in the System.Data namespace to use as templates. Providers imple-
ment custom error classes to expose individual errors generated by the data
store. In that way, errors can be exposed with properties consistent for the
data store. Providers also implement classes used to hold a collection of
errors so that if the data store throws more than one error they can all be
encapsulated in a single object.

Exception Not implemented by all providers and so ADO.NET does not contain a
generic Exception class. Providers derive their own exception from
System.Exception and use it to point to the collection of errors generated by
the data store. By using a custom exception class, clients can more easily
construct structured exception handling blocks to deal with errors generated
by the provider.

For the remainder of today, you’ll walk through each of the items in Table 8.1 and
explore it in more detail.

TABLE 8.1 continued

Component Description

The items shown in Table 8.1 and Figure 8.1 are the primary classes and
interfaces. Of course, supplementary classes and interfaces are used within
each of the primary items shown here.

Note

As a final note, as mentioned on Day 1, the idea of having different providers to access
different data stores at the programmatic level is a departure from the architecture used
by Microsoft in DAO, RDO, and ADO. In all those programming models, the idea was
that code specific to the data store was abstracted at a lower level into the OLE DB
provider or ODBC provider so that the code written by developers differed only slightly,
even when accessing different data stores. These small differences included things such
as connection strings, the variant of SQL used, and the names of objects such as stored
procedures.

Although relying on common interfaces provided by ADO.NET goes some way toward
allowing provider-independent code to be written, ADO.NET does not provide the uni-
form programming model of ADO. This is intentional. The reason is that the cost of
building a programming model like ADO—where the Recordset object provided both
streamed, batch, and immediate access to the underlying data—is confusion on the part

12 3869 ch08 5/20/02 1:18 PM Page 193

of developers, which results in inefficient code. A good deal of the confusion is related to
the fact that OLE DB providers and ODBC drivers don’t expose the same set of func-
tionality, so ADO would reset properties based on the functionality available. A typical
example is when the ADO developer wants to use a dynamic cursor in order to see
changes to the database as they occur, only to find out that the CursorType property of
the Recordset object was reset from adOpenDynamic to adOpenStatic, resulting in all
the records being downloaded to the client or middle tier, thereby expending extra
resources.

Provider Functionality
In this section, we’ll explore each of the provider components shown in Table 8.1 and
look at their functionality at a high level by detailing the methods, properties, and events
that are typically exposed by a provider.

Data Adapter
The data adapter is the bridge between the DataSet and the data store and, as such, is the
most important component for providers that want to implement the disconnected pro-
gramming model for which ADO.NET was primarily built. In fact, vendors who want to
create the simplest provider possible can simply implement (inherit from) the
IDataAdapter interface or derive from the DataAdapter class.

You’ll notice that several different base classes and interfaces are shown in Figure 8.1.
DataAdapter is an abstract class that implements the IDataAdapter interface and pro-
vides the basic functionality that all providers inherit from. The DbDataAdapter class is
also abstract and is derived from DataAdapter to provide the basis for data adapters that
work with relational databases. The IDbDataAdapter interface implements IDataAdapter
with the addition of properties to refer to select, insert, update, and delete the commands.
The result is that providers such as SqlClient and OleDb create their data adapters by
inheriting from DbDataAdapter, implementing the IDbDataAdapter interface, and adding
custom and overloaded members to implement their own functionality and provide
strongly typed access. For example, the SqlDataAdapter class adds its own constructors
that accept SqlConnection objects and a strongly typed implementation of the select,
insert, update, and delete command properties. Table 8.2 lists the primary members for a
data adapter.

194 Day 8

12 3869 ch08 5/20/02 1:18 PM Page 194

Understanding .NET Data Providers 195

8
TABLE 8.2 Data adapter members. These are primary members implemented by
providers.

Member Description

Properties

AcceptChangesDuringFill Property inherited from DataAdapter that specifies whether
AcceptChanges is called on a row after it is added to a table.

ContinueUpdateOnError Property inherited from DataAdapter that specifies whether to
generate an exception when an error occurs during the Update
method or whether to add error information to the row and
continue.

SelectCommand, DeleteCommand, Properties that reference strongly typed command
InsertCommand, UpdateCommand objects used by the data adapter to manipulate data in the data

store.

MissingMappingAction Property inherited from DataAdapter that specifies the action
to take when incoming data does not have a matching table or
column in the DataSet during the Fill method.

MissingSchemaAction Property inherited from DataAdapter that specifies the action
to take when the schema of the DataSet used in the Fill
method does not match the incoming data.

TableMappings Property inherited from DataAdapter that references a
DataTableMappingCollection object that stores the mappings
between the incoming data and a DataSet.

Methods

Fill Overloaded and overridden method from DataAdapter and
DbDataAdapter that populates a DataSet with data from the
data store based on SelectCommand.

FillSchema Overloaded method inherited from DbDataAdapter that adds a
table to a DataSet and configures the schema to match the
data store.

GetFillParameters Overridden method inherited from the DbDataAdapter class
that returns an array of parameters set by the user in the
SelectCommand object.

Update Overloaded method inherited from DbDataAdapter that calls
the insert, update, and delete commands appropriately to mod-
ify the data store based on row states in the DataSet,
DataTable, or DataRow passed to the method.

12 3869 ch08 5/20/02 1:18 PM Page 195

Events

FillError Event implemented by DbDataAdapter that is raised when an
error occurs in the Fill method.

RowUpdated Event raised during the Update method after an update com-
mand has been executed.

RowUpdating Event raised during the Update method before an update com-
mand is executed.

Connection
Providers implement connection classes by implementing the IDbConnection interface
and then adding their own custom members that provide provider-specific functionality,
such as specifying additional attributes that affect the way the connection operates or
implementing events that are fired in order to communicate back from the data store.
Table 8.3 lists the members of the IDbConnection interface.

TABLE 8.3 Connection members. These are primary members implemented by providers
from the IDbConnection interface.

Member Description

Properties

ConnectionString Property that gets or sets the string used to open a connection.

ConnectionTimeout Property that specifies how long to wait while trying to open a connection
before raising an exception.

Database Property that specifies the name of the current database that the connection
will use.

State Property that gets the current state of the database using the
ConnectionState enumeration.

Methods

BeginTransaction Overloaded method that begins a new transaction on the connection for the
data source. Providers return a strongly typed transaction object.

ChangeDatabase Method that changes the current database for an open connection.

Close Method that closes the connection to the database.

CreateCommand Method that creates and returns a command object associated with the
connection.

Open Method that opens a connection using the attributes of the
ConnectionString property.

196 Day 8

TABLE 8.2 continued

Member Description

12 3869 ch08 5/20/02 1:18 PM Page 196

Understanding .NET Data Providers 197

8
As mentioned, in addition to the fundamental members shown in Table 8.3, providers
implement specific members as well. For example, the OleDbConnection class includes
additional Provider, DataSource, and ServerVersion properties that specify the OLE
DB provider in use, the location and filename of the data source, and the version of the
database server that is being used, respectively. In addition to those, the SqlConnection
class adds PacketSize and WorkstationId to get the size of the network packets being
exchanged between the client and SQL Server and the name of the client machine. Both
providers also implement the InfoMessage and StateChange events in order to receive
messages from the database and be alerted when the state of the connection changes.

Transaction
The transaction class implements the transaction semantics for a particular instance of a
connection object. In other words, if the connection object’s BeginTransaction method
is called, a new transaction object is created that controls how the transaction behaves
and when it is committed or rolled back. Providers implement the transaction class by
inheriting from IDbTransaction, whose members are shown in Table 8.4.

TABLE 8.4 Transaction members. These are primary members implemented by providers
from the IDbTransaction interface.

Member Description

Properties

Connection Property that references the connection object that created the transaction.
Providers implement a strongly typed version.

IsolationLevel Property that specifies the locking behavior for the transaction using the
IsolationLevel enumerated type.

Methods

Commit Method that commits the database transaction. Should throw an exception if
the transaction has already been committed or rolled back.

Rollback Method that rolls back or un-does a transaction after BeginTransaction has
been called. Should throw an exception if the transaction has already been
committed or rolled back.

You should notice from Table 8.4 that the programming model for transactions in
ADO.NET implies an unchained model where, unless the BeginTransaction method is
called, each individual command that is executed against a database is an implicit trans-
action. Commands can then be aggregated into their own logical unit of work explicitly
using the BeginTransaction, Commit, and Rollback methods.

12 3869 ch08 5/20/02 1:18 PM Page 197

Permissions
Providers have the option of creating specific permission classes that work with .NET’s
Code Access Security (CAS) to enable administrators and developers to control access to
the data store. Although a complete discussion of CAS is beyond the scope of this book,
the basic idea is that CAS controls access to protected resources such as databases, the
file system, the system registry, printing, and others by providing the following:

• Permissions and sets of predefined permissions (FullTrust, Internet, and
Nothing, among others) that represent high-level and granular access to various
system resources

• The capability of users and administrators to set policies in one of
three levels (Enterprise, Machine, User) that define the code groups

(code groups are logical groupings that contain permission sets and into which
code is placed at runtime based on a membership condition) and permission sets

• The capability for code (developers) to request permissions (both declaratively and
imperatively) it requires, would be nice to have, or does not require to run

• The capability of the common language runtime to determine, based on evidence,
whether the code has the required permissions by their inclusion in a code group

198 Day 8

A Quick CAS Overview

.NET’s Code Access Security model relies on the concept of evidence to determine whether code
has the required permissions for execution. Evidence includes the Authenticode signer of the
code, the URL from where the code was downloaded, the strong name, the zone (such as the
Internet Zone), and the application directory, in addition to optional custom attributes.

At load time, the common language runtime uses the evidence to determine which code
groups at each policy level the assembly belongs to. After the common language runtime deter-
mines which code groups the code belongs to, it combines the permissions defined for each
policy level. Finally, the common language runtime intersects the permissions from each policy
level so that the resulting permission set contains only the permissions that all policy levels have
in common. The set of permissions that has been calculated is compared to attributes defined
in the code when it is loaded or executed, depending on where the permission is used, to
determine which permissions are actually granted. If permissions that the code requires have
not been granted, a SecurityException is thrown.

As an example, CAS allows administrators to edit the machine policy for a Web server to
make sure that only code with specific evidence (for example, an assembly with a partic-
ular strong name or code signed with a digital signature) can access SQL Server by
adding the SQL Server permission to the permission set used by the appropriate code

NEW TERM

12 3869 ch08 5/20/02 1:18 PM Page 198

Understanding .NET Data Providers 199

8
group. This provides a much higher level of security than simply securing resources
based on the identity of the account running the code.

Administrators modify policies, code groups, and permission sets through the Microsoft
.NET Framework Configuration MMC snap-in found in the Administrative Tools group.
Figure 8.2 shows a screenshot of the utility with a dialog showing the editing of the
SqlClient permission for the permission set.

By default, all code on the local machine runs under the FullTrust permis-
sion set, which allows unrestricted access to SQL Server. In other words,
under the FullTrust permission set, all managed code can attempt to con-
nect to a SQL Server by using the SqlConnection object. Of course, in order
to actually gain access to the database server, the code must also supply the
proper credentials.

Note

Vendors implementing providers can create both declarative and imperative classes that
can be used at the assembly, class, and method levels to make sure that the code has the
appropriate permissions before accessing the data store. The abstract DbDataPermission
class is used as the base class for imperative permission, whereas the
DbDataPermissionAttribute class is the abstract base class for imperative permissions.
The classes themselves are derived from CodeAccessPermission and

FIGURE 8.2
Editing a permission.
This dialog can be
used to edit the
SqlClient permission
for a particular per-
mission set.

12 3869 ch08 5/20/02 1:18 PM Page 199

CodeAccessSecurityAttribute of the System.Security namespace, respectively. The
only member that DbDataPermission and DbDataPermissionAttribute add to the base
classes is the AllowBlankPassword property. Setting this property to True allows the
connection string to omit the password, whereas setting it to False makes sure that a
password is used to connect to the data store.

To use CAS security declaratively, you can use attributes at the assembly, class, and
method levels. For example, the declaration of a data access class that works against
SQL Server might look like the following code snippet:

<SqlClientPermissionAttribute(Security.Permissions.SecurityAction.Demand, _
AllowBlankPassword:=False)> _
Public Class ComputeBooksData : Inherits ComputeBooksDABase
‘ members

End Class

In this snippet, the SqlClientPermissionAttribute is placed at the class level with its
Action property set to Demand and AllowBlankPassword set to False. Setting Action to
Demand simply means that code in this class (and any code higher in the call stack) needs
to have permission to use SqlClient. Alternatively, the declaration could have used the
SecurityAction.Assert value to indicate that only the ComputeBooksData class needs to
be granted the permission. This is convenient because calling code won’t necessarily be
granted permission to access SQL Server. The SecurityAction enumeration also
includes additional values to request permissions at the assembly level, deny a permis-
sion, and deal with permissions for derived classes.

200 Day 8

Although using Assert sounds great (and unsecure), there is a catch. To
assert permissions, the code (in this case, the assembly that
ComputeBooksData is in) must have the assertion security permission (defined
using the SecurityPermissionAttribute). Assertion is included by default in
the FullTrust, LocalIntranet, and Everything permission sets.

When a method contains a declarative demand for the SqlClientPermission
and its assembly has not been granted the permission, the
SecurityException is raised only if the method contains one of the objects
from the SqlClient namespace, such as SqlDataAdapter or SqlConnection.

Tip

Permissions can also be used imperatively within a method like as shown in Listing 8.1.

12 3869 ch08 5/20/02 1:18 PM Page 200

Understanding .NET Data Providers 201

8
LISTING 8.1 Using imperative security. This method uses imperative security to demand
the SqlClientPermission.

Public Function GetTitles() as DataSet
Dim perm As New SqlClientPermission(_
PermissionState.Unrestricted, False)

Try
perm.Demand()
‘ Go on to execute queries

Catch e As SecurityException
‘ Handle security errors

Catch e As Exception
‘ Handle other errors

End Try

End Function

In Listing 8.1, the permission object is explicitly created and its Demand method
is called at the appropriate time. The constructor of the SqlClientPermission

class accepts either the None or Unrestricted values from the PermissionState enu-
meration. Using None specifies that no access to the resource is required, whereas using
Unrestricted means that the method requires full access to the resource. The second
argument to the constructor populates the AllowBlankPassword property, so, in this
example, blank passwords aren’t allowed.

It’s a good practice to at least declaratively mark your assemblies that contain data access
code with the appropriate permission class so that any security exceptions can be found
at load time rather than waiting until the method is called and finding that the assembly
doesn’t have the appropriate permissions. To do so, you can place the following line of
code in the AssemblyInfo.vb (or .cs) file:

<Assembly: SqlClientPermission(SecurityAction.RequestMinimum)>

ANALYSIS

When declaring attributes, the Attribute suffix is not required.Note

Command
The command object encapsulates a query or data modification to execute against a data
store through a connection object. Command objects are also referenced in the
SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand properties of the
data adapter used to fill a DataSet and synchronize it with the data store. If you’ve

12 3869 ch08 5/20/02 1:18 PM Page 201

worked with ADO 2.x, the command objects exposed in ADO.NET will no doubt seem
familiar because the Command object in ADO exposed many of the same properties.

Vendors implement command classes in a provider by inheriting from the IDbCommand
interface and then adding custom members to expose specific functionality of the
provider. The most common members of a command class are shown in Table 8.5.

TABLE 8.5 Command members. These are primary members implemented by providers
from the IDbCommand interface.

Member Description

Properties

CommandText Property that specifies the text of the command to run against the data
store.

CommandTimeout Property that specifies how long to wait before terminating the execution
of a command.

CommandType Property that specifies how the CommandText property is interpreted using
a value from the CommandType enumeration.

Connection Property that references the strongly typed connection object through
which this command will be executed.

Parameters Property that references a collection of strongly typed parameter objects
associated with the command.

Transaction Property that references the strongly typed transaction object the state-
ment executed by this command will participate in.

UpdatedRowSource Property that specifies how results from a command are applied to a row
being updated using a value from the UpdateRowSource enumeration.

Methods

Cancel Method that attempts to cancel the execution of the command.

CreateParameter Method that creates a new instance of a strongly typed parameter object.
Does not automatically add the new parameter to the collection for the
command.

ExecuteNonQuery Method that executes the command against the data store and returns the
number of rows affected, but not the rows themselves.

ExecuteReader Method that executes the command against the data store and returns a
strongly typed data reader that can be traversed.

ExecuteScalar Method that executes the command against the data store and returns
only the first column of the first row of the result set, regardless of how
many rows and columns are specified by the CommandText.

202 Day 8

12 3869 ch08 5/20/02 1:18 PM Page 202

Understanding .NET Data Providers 203

8

Prepare Method that creates a compiled version of the query on the data store.
This method is not a member of IDbCommand.

ResetCommandTimeout Method that resets the CommandTimeout property to its default value.

As noted in Table 8.5, of the members listed, only the Prepare method isn’t exposed by
the IDbCommand interface, although it’s implemented by both the SqlClient and OleDb
providers. In addition, the SqlClient provider implements an ExecuteXmlReader method
used to process results from queries that contain the FOR XML Transact-SQL keyword
introduced in SQL Server 2000.

As with other provider-specific classes, members of the command object, including
Connection, Transaction, Parameters, CreateParameter, and ExecuteReader, all
return strongly typed objects rather than simply the interfaces in the System.Data name-
space. For example, the declaration of the CreateParameter method of the
OleDbCommand class looks like

Public Function CreateParameter() As OleDbParameter

rather than like this:

Public Function CreateParameter() As IDbParameter

In this way, the members are said to be strongly typed and so clients using the classes
can always work with the types directly rather than only through the interfaces.

TABLE 8.5 continued

Member Description

Methods

Command builders are closely related to commands. We’ll discuss them on
Day 10, “Using Commands.”

Note

One of the other interesting members in Table 8.5 is the UpdatedRowSource property.
This property can be set to one of the values of the UpdateRowSource enumeration (Both,
FirstReturnedRow, None, or OutputParameters) to control how results from a command
are mapped to a row in a DataSet. Both is the default and specifies that both output para-
meters and the first returned row are mapped to the changed row. In other words, when a
data adapter executes the command referenced in its UpdateCommand property in order to
update a row in a database, it will look for the values of output parameters (with the
appropriate SourceColumn property set) and columns in a result set, if one is returned

12 3869 ch08 5/20/02 1:18 PM Page 203

that can be placed back into the changed row. This allows the data store to resynchronize
data generated on the server with data in the DataSet. The result is that the original row
in the DataTable will have its RowState set to Unchanged if the update succeeds.

Data Reader
Data readers are used to expose the second major programming model in ADO.NET:
streamed access to one or more result sets returned from a command object. Clients use a
data reader by iterating over it in a loop using its Read method. In sharp contrast to the
in-memory cache of a DataSet, data readers provide a forward-only read-only model
where a row can be accessed only once and no navigation within the result set is possi-
ble. After the data reader has been exhausted, it can’t be replayed using a second loop.

204 Day 8

Developers familiar with ADO 2.x will note that the data reader and the
DataSet together provide most of the functionality of the Recordset object
in ADO 2.x. In ADO 2.x, the Recordset could be used both to stream
through data by using a forward-only, read-only cursor (cursor type of
adOpenForwardOnly, lock type of adLockReadOnly) and cache data using a dis-
connected Recordset (cursor location of adUseClient, cursor type of
adOpenStatic, lock type of adLockReadOnly).

Note

A provider implements a data reader by creating a class that inherits from both the
IDataReader and IDataRecord interfaces. The IDataReader interface provides the mem-
bers used to provide information about the result set and iterate its rows. The
IDataRecord interface provides the members used to read data from the current row in
the result set.

Client code never actually creates a data reader (in fact, it can’t because the constructor
of the data reader is marked as private), but uses instances returned from the
ExecuteReader method of the command object. The behavior of a data reader in terms
of how rows are streamed to the client is totally dependent on the data store and
provider. However, in most cases, as with SqlClient, the data is static after the command
that creates the reader has executed, so changes made by other users are not visible.

The members typically implemented in a data reader are shown in Table 8.6 and are
drawn from both the IDataReader and IDataRecord interfaces.

12 3869 ch08 5/20/02 1:18 PM Page 204

Understanding .NET Data Providers 205

8
TABLE 8.6 Data reader members. These are primary members implemented by providers
from the IDataReader and IDataRecord interfaces.

Member Description

Properties

Depth Property from IDataReader that returns the nesting level of the
current result set. Always zero for SqlClient but depends on the
capability of the provider.

FieldCount Property from IDataRecord that gets the number of columns in
the current row.

IsClosed Property from IDataReader that indicates whether the data reader
is closed.

Item Overloaded property from IDataRecord that gets the value of a
column based on name or ordinal value in its native data type. In
C#, this is the indexer to the data reader.

RecordsAffected Property from IDataReader that returns the number of rows modi-
fied, inserted, or deleted by the command execution.

Methods

Close Method from IDataReader that closes the data reader.

GetByte, GetBytes Methods from IDataRecord that get the value of the column as a
Byte or a stream of bytes to be placed in an array based on the
ordinal.

GetChar, GetChars Methods from IDataRecord that get the value of the column based
on the ordinal as a character or as stream characters to be placed
in an array based on an offset.

GetDataTypeName Method from IDataRecord that returns the name of the data type
for the column specified by the ordinal.

GetBoolean, GetDateTime, Methods from IDataRecord that return the value of the column as
GetDecimal, GetDouble, the appropriate .NET data type based on the ordinal.
GetFloat, GetGuid, GetInt16,
GetInt32, GetInt64,
GetString, GetTimeSpan

GetFieldType Method from IDataRecord that returns the Type of the field based
on the ordinal value.

GetName Method from IDataRecord that returns the name of the column
based on the ordinal.

GetOrdinal Method from IDataRecord that returns the ordinal of the column
based on the name.

12 3869 ch08 5/20/02 1:18 PM Page 205

GetSchemaTable Method from IDataReader that returns a DataTable that mimics
the structure of the current result set.

GetValue Method from IDataRecord that returns the value of the column at
the given ordinal.

GetValues Method from IDataRecord that returns an array of objects for the
columns in the current row in their native format.

IsDbNull Method from IDataRecord that determines whether the column
specified by the ordinal is equivalent to DBNull.

NextResult Method from IDataReader that moves the data reader to the next
result set returned from the execution of the command object.

Read Method from IDataReader that advances the data reader to the
next record in the result set.

As you can see from Table 8.6, the data reader provides strongly typed access to a result
set by exposing the Get methods of the IDataRecord interface. These methods can be
used both to retrieve the value of a single field (that is, GetString, GetInt32, GetValue,
and so on) or the values of the entire record using the GetValues method. Of course, spe-
cific providers such as SqlClient can augment this ability to return data in types that are
particular to the data store. In fact, as mentioned on Day 1, ADO.NET contains the
System.Data.SqlTypes namespace that includes classes that represent each of the native
types in SQL Server. The SqlDataReader class then uses those types by exposing equiva-
lent Get methods that return the types. For example, the SqlTypes namespace includes
the types SqlBinary, SqlBoolean, SqlGuid, and SqlMoney, among others. The
SqlDataReader class exposes GetSqlBinary, GetSqlBoolean, GetSqlGuid, and
GetSqlMoney methods accordingly.

206 Day 8

TABLE 8.6 continued

Member Description

Methods

What Happened to GetRows?

If you have developed in ADO 2.x in the past, you’ll note that the data reader does not expose
a method analogous to the GetRows method of the Recordset object. The GetRows method of
the Recordset object reads the entire result set (or a specific number of rows) and creates a
multi-dimensional Variant array before closing the Recordset. Developers used GetRows as an
alternative to disconnected Recordsets to improve performance and eliminate COM marshalling
and registration issues when passing data between tiers in a distributed application. However,
because the DataSet provides the same functionality without the performance hit, the GetRows
method is no longer needed. The bottom line is this: If you need to cache the data, use a
DataSet.

12 3869 ch08 5/20/02 1:18 PM Page 206

Understanding .NET Data Providers 207

8
The ability of data readers to work with multiple result sets is, of course, entirely depen-
dent on the provider and the data store. In most cases, multiple result sets can be returned
simply by concatenating SELECT statements in the CommandText property of the command
object or in the stored procedure referenced by the CommandText property. You’ll learn
some specific techniques on Day 11, “Using Data Readers.”

Parameter
Parameters are used to represent arguments passed to a command object and ultimately
to a data store. Parameters are also used to map columns from a result set, return values,
and output parameters back to columns within a DataSet. Providers typically implement
strongly typed parameters by creating a class that inherits from both the IDataParameter
and IDbDataParameter interfaces.

Although most of the properties come from IDataParameter, the
IDbDataParameter interface is used by the VB .NET Data Designers to indi-
cate their precision, scale, and size.

Note

To expose a strongly typed collection of parameters, the command object will then
expose a collection object that inherits from the IDataParameterCollection interface.
For example, the OleDb provider implements the OleDbParameter class that implements
the IDataParameter and IDbDataParameter interfaces. A collection of OleDbParameter
objects are then contained in an OleDbParameterCollection object exposed through the
Parameters property of the OleDbCommand object.

The parameter objects themselves typically support the members shown in Table 8.7.

TABLE 8.7 Parameter members. These are primary members implemented by providers
from the IDataParameter and IDbDataParameter interfaces.

Member Description

DbType Property from IDataParameter that specifies the data type of the
parameter using the DbType enumeration.

Direction Property from IDataParameter that specifies whether the parame-
ter is input-only, output-only, bi-directional, or a return value
using the ParameterDirection enumerated type.

IsNullable Property from IDataParameter that specifies whether the parame-
ter accepts null values.

ParameterName Property from IDataParameter that specifies the name of the
parameter.

12 3869 ch08 5/20/02 1:18 PM Page 207

Precision Property from IDbDataParameter that specifies the precision (the
maximum number of digits used to represent the value) of numer-
ic parameters.

Scale Property from IDbDataParameter that specifies the scale (the
number of decimal places the value is resolved to) of numeric
parameters.

Size Property from IDbDataParameter that specifies the size in bytes
of numeric parameters.

SourceColumn Property from IDataParameter that specifies the name of the col-
umn in the DataSet the value of the parameter will be mapped to.

SourceVersion Property from IDataParameter that specifies the DataRowVersion
to use when populating the value of the parameter.

Value Property from IDataParameter that specifies the value of the
parameter.

In addition to the members shown in Table 8.7, the SqlClient and OleDb providers
expose properties that return a value from the System.Data.SqlDbType and
System.Data.OleDb.OleDbType enumerations, respectively. In both cases, the provider-
specific types are linked to the DbType enumeration, so changing one of the properties
for a particular parameter changes them both.

208 Day 8

TABLE 8.7 continued

Member Description

A table of this linkage and how DbType maps to the .NET Framework types
can be found in the online documentation by searching for the keywords
“parameters, DataAdapter” in the index.

Note

Parameters can be created using the CreateParameter method of the command object or
directly using the New (new in C#) keyword with its overloaded constructor. In both
cases, the parameters must be added to the parameter collection using the Add method of
the derived IDataParameterCollection object. The order in which parameters are added
to the collection might also be important depending on the provider. Provider-specific
characteristics also determine which values from the ParameterDirection enumeration
(Input, InputOutput, Output, or ReturnValue) are valid to use with the Direction
property.

12 3869 ch08 5/20/02 1:18 PM Page 208

Understanding .NET Data Providers 209

8
The SourceColumn and SourceVersion properties are particularly interesting because
they determine how the parameter maps to a DataSet and which version of the data is
updated. For example, the SourceColumn property can be used to map a parameter that
returns a new primary key value from a database server to the primary key column of a
DataSet. This technique is often used with IDENTITY columns in SQL Server, as will be
shown on Day 13, “Working with SQL Server.” The SourceVersion property allows the
UpdateCommand of a DataSet to use a value other than the Current value when perform-
ing an update. This can come in handy when you want to make sure that the Original
value for a particular column is passed back to the data store.

Error and Exception
As noted in Table 8.1, ADO.NET does not provide templates for exposing errors and
exceptions, and so each provider is free to implement them as it sees fit. However, the
Microsoft providers handle errors in a similar fashion. When an error occurs in SQL
Server or the data source that an OLE DB provider is communicating with, both
providers create a strongly typed object that exposes properties that identify the error. In
the case of SQL Server, the SqlError class exposes the properties shown in Table 8.8,
whereas for OleDb, the properties of its OleDbError class are shown in Table 8.9.

TABLE 8.8 SqlError properties. Properties of the SqlError object that provide error
information specific to SQL Server.

Property Description

Class Returns the severity level from SQL Server (1 to 25) with a default of 0.
Levels above 20 are severe and usually close the SqlConnection object auto-
matically.

LineNumber Returns the line number in the Transact-SQL stored procedure or command
batch that caused the error.

Message Returns the text describing the error.

Number Returns the SQL Server error number.

Procedure Returns the name of the stored procedure or remote procedure call (RPC) that
generated the error.

Server Returns the name of the instance of SQL Server from where the error was
generated.

Source Returns the name of the provider that generated the error.

State Returns a Byte value that corresponds to an error, warning, or no data found.

12 3869 ch08 5/20/02 1:18 PM Page 209

TABLE 8.9 OleDbError properties. Properties of the OleDbError class that provide infor-
mation about the error that was found.

Property Description

Message Returns a text description of the error.

NativeError Returns a database-specific error code.

Source Returns the name of the provider that generated the error.

SQLState Returns the five-character ANSI standard code representing the state of the
database.

As you can see from Tables 8.8 and 8.9, there is virtually no overlap between the proper-
ties exposed by SqlError and OleDbError. This is the case because SqlError can
expose very specific information from SQL Server, such as the LineNumber in the
Transact-SQL command batch or stored procedure that caused the error or the name
(Procedure) of the remote procedure call (RPC) or stored procedure that produced the
error. The OleDbError object, on the other hand, exposes generic information such as the
five-character ANSI code that represents the state of the database (SQLState) and data
store–specific information in the NativeError property.

Both providers are capable of generating more than one error, so both implement collec-
tion classes to hold a collection of errors. The SqlErrorCollection and
OleDbErrorCollection both inherit from the ICollection and IEnumerable interfaces
and hold error objects of the appropriate type.

So, when an error occurs, the providers create an error object for each error returned
from the data store and place it in the error collection object. The collection is then refer-
enced through the Errors property of the SqlException or OleDbException object,
which is then thrown by the provider. As a result, the errors collection will always be
populated with at least one error object. As you might expect, the exception objects are
derived from SystemException. In addition, the exception objects expose some of the
same properties as the error objects, most of which are then populated with data from the
first error in the errors collection. For example, the SqlException object exposes the
Class, LineNumber, Number, Procedure, Server, Source, and State properties, all of
which simply wrap the same property in the first SqlError object in the
SqlErrorCollection. However, the Message property of both the SqlException and
OleDbException classes automatically concatenates the Message properties from all the
errors separated by carriage-return line-feeds.

To fully report the errors generated by the provider, you might use a method like that
shown in Listing 8.2.

210 Day 8

12 3869 ch08 5/20/02 1:18 PM Page 210

Understanding .NET Data Providers 211

8
LISTING 8.2 Logging error information. This method logs the errors reported through a
SqlException to the Trace object.

Public Sub LogSqlErrors(ByVal myException As SqlException)
Dim sqlE As SqlError
Dim strMsg As String

‘ Write the header and stack dump
Trace.WriteLine(“SqlException occurred at “ & _
Now.ToLongTimeString & “ in “ & myException.TargetSite.Name)
Trace.WriteLine(myException.StackTrace)

‘ Walk through all of the errors
For Each sqlE In myException.Errors
strMsg = “Source: “ & sqlE.Source & ControlChars.Cr & _

“Number: “ & sqlE.Number.ToString() & ControlChars.Cr & _
“State: “ & sqlE.State.ToString() & ControlChars.Cr & _
“Class: “ & sqlE.Class.ToString() & ControlChars.Cr & _
“Server: “ & sqlE.Server & ControlChars.Cr & _
“Message: “ & sqlE.Message & ControlChars.Cr & _
“Procedure: “ & sqlE.Procedure & ControlChars.Cr & _
“LineNumber: “ & sqlE.LineNumber.ToString()

Trace.WriteLine(strMsg)
Next
Trace.WriteLine(“End of SqlException”)

End Sub

You’ll notice from Listing 8.2 that the LogSqlErrors method accepts a
SqlException object as a parameter and so would be called from the Catch

block of a Try Catch statement. The method then writes information using the Trace
class of the System.Diagnostics namespace. The interesting aspect of the Trace class is
that your application can create listeners that can capture the trace output to a file, the
console, or even a Windows event log. The SqlErrorCollection is then iterated using a
For Each loop and the error properties written to the trace output.

Summary
Today, you learned how .NET Data Providers are architected and you walked through
each of the components that make up a provider. This background information will come
in very handy in the coming week as you explore each of the major components and use
providers in a variety of ways. Tomorrow, you’ll begin by digging into connections and
transactions.

ANALYSIS

12 3869 ch08 5/20/02 1:18 PM Page 211

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What is the difference between a generic and a specific .NET Data Provider?

A generic provider can be used with more than one data store, whereas a specific
provider is implemented to communicate with a single data store. The OleDb and
ODBC providers from Microsoft are examples of generic providers, and the
SqlClient and future Oracle providers are examples of specific providers. Typically,
specific providers will outperform generic providers at the cost of flexibility.

2. Which components of a .NET Data Provider are not provided as templates by
ADO.NET?

As shown in Figure 8.1, the command builder, error, and exception objects are all
implemented independently by each provider because there are no classes or inter-
faces to inherit from in the System.Data or System.Data.Common namespaces.

3. How can a provider allow for secured access to the underlying data store?

Providers have the option of implementing custom permission classes inherited
from DbDataPermission and DbDataPermissionAttribute. These classes allow
both imperative and declarative security checks to be placed in code so that the
common language runtime can verify that a particular assembly has been granted
the permission. Permissions can be created at virtually any granularity.

4. What is the visibility of data returned through a data reader?

That depends on the provider and data store in question. Typically, data returned
from a data reader is static data and so changes made by other users will not be
visible. However, because a data reader remains connected to a data store while it
is being traversed, providers can reflect changes to rows and new rows if needed.

Exercise
Write a custom error handling routine similar to that shown in Listing 8.2 to report errors
when an OleDbException is raised.

Answers for Day 8
Exercise Answer
One possible solution to the exercise is as follows:

212 Day 8

12 3869 ch08 5/20/02 1:18 PM Page 212

Understanding .NET Data Providers 213

8
Public Sub LogOleDbErrors(ByVal myException As OleDbException)
Dim oleDbE As OleDbError
Dim strMsg As String

‘ Write the header and stack dump
Trace.WriteLine(“OleDbException occurred at “ & _
Now.ToLongTimeString & “ in “ & myException.TargetSite.Name)
Trace.WriteLine(myException.StackTrace)

‘ Walk through all of the errors
For Each E In myException.Errors
strMsg = “Source: “ & oleDbE.Source & ControlChars.Cr & _

“NativeError: “ & oleDbE.NativeError.ToString() & ControlChars.Cr & _
“State: “ & oleDbE.SQLState.ToString() & ControlChars.Cr & _
“Message: “ & oleDbE.Message

Trace.WriteLine(strMsg)
Next
Trace.WriteLine(“End of OleDbException”)

End Sub

12 3869 ch08 5/20/02 1:18 PM Page 213

12 3869 ch08 5/20/02 1:18 PM Page 214

DAY 9

WEEK 2

Using Connections and
Transactions

Yesterday you learned about the various components that make up a .NET Data
Provider and how those components rely on base classes and interfaces provid-
ed by ADO.NET. Two of the most important of those components are the con-
nection and transaction objects that handle the communication between a
provider and a data store and allow multiple statements to be executed as a
logical unit of work against the data store, respectively. The command and
transaction objects are presented first because they are the first objects you
would naturally use when writing code to access a data store.

Specifically, today you’ll learn the following concepts:

• How to open and close connections to a data store and how to handle
events

• How to specify connection strings and abstract them for different types of
applications

13 3869 ch09 5/20/02 1:25 PM Page 215

• How connection pooling is exposed and can be used with connection objects in the
SqlClient and OleDb providers

• How to create and manage transactions in local and distributed environments

Opening Connections and Handling Events
Yesterday you saw how the IDbConnection interface could be used by a .NET Data
Provider to implement a class that is used to communicate with a data store. As such, the
connection classes are responsible for all communication between the client and the data
store, including the execution of queries and commands and the processing of any mes-
sages sent back from the data store.

216 Day 9

Because the connection class is responsible for communication, it’s also
implicitly responsible for providing credentials to the data store in order to
be authenticated and authorized to access the data protected by the data
store. As you can imagine, the credentials are provided through the
ConnectionString property, so handling the connection string with care is
an issue you must address. We’ll discuss this later today.

Note

Opening Connections
To open the connection to the data store, you must, of course, call the Open method of an
instance of the connection class and pass it the connection string. The connection object
will then attempt to open the connection and wait as long as specified in the
ConnectionTimeout property, whose default for both SqlConnection and
OleDbConnection is 15 seconds. This property is read-only and can be set as an attribute
of the connection string.

Depending on the results of the Open method, the State property of the connection
object will change accordingly to one of the values of the ConnectionState enumera-
tion. Although the ConnectionState enumeration includes six values (Broken, Closed,
Connecting, Executing, Fetching, and Open), only Closed and Open are implemented in
this release of VS .NET. The code in the following code snippet connects to a SQL
Server database:

SqlConnection con = new SqlConnection(_connect);

try
{
con.Open();

13 3869 ch09 5/20/02 1:25 PM Page 216

Using Connections and Transactions 217

9

// Success con.State = ConnectionState.Open
}
catch (SqlException e)
{
// Failed con.State = ConnectionState.Closed

}

You’ll notice in the previous snippet that the ConnectionString property is populated in
the constructor with a String variable called _connect, although it could also have been
set directly using the ConnectionString property. If the ConnectionString is not initial-
ized before the Open method is called, an InvalidOperationException is thrown. If the
connection is opened successfully, its State will be set to Open. If an exception occurs, it
will still be Closed.

After a connection is open, you can’t change the ConnectionString proper-
ty. To reset the connection, you must call its Close method first, change the
ConnectionString, and then re-open the connection using the Open method.

Tip

Of course, after the connection is open, it can be used to execute command objects. Even
though you can open the connection explicitly, the connection can also be opened and
closed implicitly by the data adapter when its Update method is called.

To break the connection, you can call the Close method. Note that if the connection is
not open, the Close method simply returns.

Handling Events
As you learned yesterday, both the SqlClient and OleDb providers also implement two
connection-based events: StateChange and InfoMessage. The StateChange event is fired
any time the State property of the connection object changes, which, in the initial
release, is when the connection is opened or closed. The InfoMessage event is fired
when the data store generates a message for the client and is useful for retrieving warn-
ing messages and other supplementary information. Keep in mind that if a severe error
actually occurs, an exception will be thrown rather than informational messages.
However, it’s up to the provider to determine when that threshold is reached. For exam-
ple, in SQL Server, if an error is generated with a severity greater than 10, a
SqlException will be thrown rather than generating an informational message.

To illustrate how and why you would want to catch these events, consider the code in
Listing 9.1 where the three methods execute a simple command against SQL Server and
catch the resulting events.

13 3869 ch09 5/20/02 1:25 PM Page 217

LISTING 9.1 Connection events. The three methods in this listing show how to handle
the StateChange and InfoMessage events.

public void PrintEvents()
{

string _connect =
“server=ssosa;database=computebooks;trusted_connection=yes”;

SqlConnection con = new SqlConnection(_connect);

con.StateChange += new StateChangeEventHandler(this.conStateChanged);
con.InfoMessage += new SqlInfoMessageEventHandler(this.conInfoMessage);

try
{

con.Open();
SqlCommand com = new SqlCommand(

“PRINT ‘Hello From ‘ + @@SERVERNAME”,con);
com.ExecuteNonQuery();

}
catch (SqlException e)
{

Console.WriteLine(e.Message);
}
finally
{

con.Close();
}

}

// Handle the StateChange event
private void conStateChanged(object sender, StateChangeEventArgs e)
{

if (e.CurrentState == ConnectionState.Closed)
{

Trace.WriteLine(((SqlConnection)sender).ConnectionString +
“ closed at “ + DateTime.Now.ToLongTimeString());

}
}

// Handle the InfoMessage event
private void conInfoMessage(object sender, SqlInfoMessageEventArgs e)
{

Trace.Write(DateTime.Now.ToLongTimeString() + “:”);
foreach (SqlError err in e.Errors)
{

Trace.WriteLine(“The “ + err.Source + “ has received a severity “ +
err.Class + “ state “ + err.State + “ error number “ + err.Number +
“ on line “ + err.LineNumber + “ of procedure “ + err.Procedure +
“ on server “ + err.Server + “\n” + err.Message);

}
}

218 Day 9

13 3869 ch09 5/20/02 1:25 PM Page 218

Using Connections and Transactions 219

9

As you can see from Listing 9.1, the PrintEvents method simply creates a new
SqlConnection object and initializes it with a connection string passed into the

constructor. The StateChange and InfoMessage events are then mapped to the
conStateChanged and conInfoMessage private methods using the appropriate delegates.
The instances of the StateChangeEventHandler and SqlInfoMessageEventHandler are
both delegates that simply point to the methods they are passed and are then attached to
the events using the += operator.

ANALYSIS

Delegates in .NET are type-safe function pointers that are used as the basis
for events and asynchronous programming in .NET.

Note

In VB, you could dynamically associate the events to their handler using the AddHandler
and RemoveHandler statements or statically using the Handles statement in the declara-
tion of the method used to handle the event.

The event handlers themselves take specific types as their second argument; in this case,
the StateChangeEventArgs and SqlInfoMessageEventArgs classes. The
StateChangeEventArgs class simply exposes the CurrentState and OriginalState

properties that map to the ConnectionState enumeration. The
SqlInfoMessageEventArgs class exposes a subset of the information as the
SqlException class, which includes a collection of SqlError objects. You’ll notice in the
conInfoMessage method that multiple messages may be returned and can be traversed
using a foreach loop. The PrintEvents message simply uses the Transact-SQL PRINT
statement to output a string message of severity 0.

Both event handlers write their output to the Trace object through the WriteLine
method. This is an interesting use of these events because it allows your application to
capture the trace output using a custom listener. Of course, you could always look for
specific messages by inspecting the Class, State, or Number properties of the SqlError
object. In the same way, the OleDbInfoMessageEventArgs class exposes a subset of the
properties of the OleDbException class.

Specifying Connection Strings
As mentioned previously, the connection string contains attributes. The attributes are
specified in a semicolon-delimited list of name-value pairs that are used to identify all
aspects of a connection, including the security information, the context (location of the
data store and the particular database within the data store, if appropriate), and even

13 3869 ch09 5/20/02 1:25 PM Page 219

information that specifies how the connection should behave in particular situations. The
particular attributes are dependent on the provider. This section is a discussion of the
attributes you can use with the SqlClient and OleDb providers.

Regardless of the provider, the values in a connection string may be delimited either with
single or double quotation marks. You need to use quotation marks only if the value con-
tains a space. Any spaces in the string will be ignored, the string is not case-sensitive,
and the string is parsed immediately when the property is set, so you should be prepared
to handle exceptions if you’re building the string programmatically.

220 Day 9

If you do build a connection string programmatically, make sure that users
can’t add their own attributes to the connection by appending a semicolon
followed by the name-value pair in the user ID or password text boxes. In
other words, parse the connection string before opening the connection to
make sure that it contains only the attributes that you require to make your
connection.

Tip

Specifying Connection Strings with SqlClient
The ConnectionString property of the SqlConnection object supports a number of
attributes, many of which are mapped to read-only properties after the connection string
is set. In most cases, the attribute has several aliases that also can be used. Table 9.1
shows the primary attributes. There is also a set of attributes used with connection pool-
ing, which we’ll address later today.

TABLE 9.1 SqlClient connection attributes. This table lists the attributes you can use in
the connection string when using the SqlConnection object.

Attribute Description

Application Name The name of the application connecting to the server or .Net
SqlClient Data Provider if not set. Can be used to identify the
application using the SQL Profiler utility.

AttachDBFileName Aliased to Initial File Name and used to specify the primary file
of an attachable database.

Connect Timeout Aliased to Connection Timeout; defaults to 15 seconds and maps
to the read-only property ConnectionTimeout.

Current Language The SQL Server Language to be used.

Data Source Aliased to Server, Address, Addr, and Network Address. Specifies
the name or network address of the SQL Server. Can use “(local)”
or “.” to specify the default instance of SQL Server on the same
machine. Maps to the read-only DataSource property.

13 3869 ch09 5/20/02 1:25 PM Page 220

Using Connections and Transactions 221

9

Enlist Defaults to true and automatically enlists the connection in the
current thread’s transaction context. Useful in distributed transac-
tion scenarios.

Initial Catalog Aliased to Database and specifies the name of the database. Maps
to the read-only property Database. If the catalog isn’t specified,
the current database will be the default database assigned to the
login.

Integrated Security Aliased to Trusted_Connection and defaults to false. When true, it
attempts to use the current thread’s identity to authenticate against
SQL Server. Valid values are SSPI, true, and yes. Supported on all
network libraries.

Network Library Aliased to Net and defaults to dbmssocn. Specifies the network
library to use when connecting to SQL Server. You change this
from the default of TCP/IP to a different library, such as IPX/SPX
(dbmsspxn), Apple Talk (dbmsadsn), Named Pipes (dbnmpntw),
Multiprotocol (dbmsrpcn), or Shared Memory (dbmsipcn), if the
application is running on a non-TCP/IP network or must support
special features such as encryption.

Packet Size Mapped to the read-only property PacketSize and used to specify
the size in bytes of the network packets used to communicate with
the server. Defaults to 8192.

Password Aliased to Pwd and specifies the password for the SQL Server
login account to use. Not needed when using integrated security.

Persist Security Info Defaults to false; when set to true, removes security information
from the connection string when it is returned through the
ConnectionString property if the connection has been successful-
ly opened.

Use Procedure For Prepare Determines whether SQL Server creates temporary stored proce-
dures when SqlCommand objects are prepared using the Prepare
property. Defaults to 1 (true).

User ID The SQL Server login account to use. It doesn’t need to be set
when using integrated security.

Workstation ID Defaults to the local computer name and can be viewed in the
SQL Profiler to assist in debugging and tracing. Maps to the read-
only WorkstationId property.

TABLE 9.1 continued

Attribute Description

13 3869 ch09 5/20/02 1:25 PM Page 221

Using the attributes shown in Table 9.1, a typical connection string for SQL Server might
look like the following:

String _connect = “server=ssosa;Initial Catalog=ComputeBooks;Enlist=false;”
_connect += “Integrated Security=yes;Application Name=’ComputeBooks Web’;”

In this case, the database server is identified as the server called ssosa and the database to
use is called ComputeBooks. Enlist has been set to false as a small performance
enhancement because, in this case, the connection string won’t be used for connections
that participate in distributed transactions (transactions across data sources). The connec-
tion will use integrated security, which means that SQL Server will try to match the iden-
tity information for the current thread with Windows accounts (users and groups) defined
as valid SQL Server logins. Figure 9.1 shows a screenshot of the SQL Profiler after a
stored procedure has been executed with this connection.

222 Day 9

FIGURE 9.1
SQL Profiler. This util-
ity is useful for debug-
ging code written with
the SqlClient provider.

You’ll notice in Figure 9.1 that the connection was made using the Named Pipes network
library and then the sp_reset_connection followed by the usp_GetTitles stored proce-
dures were executed. Even though TCP/IP is the default network library, in this instance,
the server supported connections only over Named Pipes, so SqlClient used Named
Pipes. Note also that the Application Name is viewable in the Profiler as is the
LoginName that in this case maps to a Windows account.

13 3869 ch09 5/20/02 1:25 PM Page 222

Using Connections and Transactions 223

9
Note that if standard SQL Server security were used, the User Id and Password attributes
(unless the password was blank) would have had to be specified in the connection string.
In addition, by default the Password wouldn’t have been returned in the
ConnectionString property after the connection had been successfully opened. Setting
the Persist Security Info property to true would persist the Password in the connection
string.

Specifying Connection Strings with OleDb
The connection string used with the OleDb provider is similar in many respects, although
only the Provider attribute is required (unless a UDL file is used, as I’ll discuss later).
This attribute points to the OLE DB provider that will be used to connect to the data
store.

Even if the Network Library attribute is set explicitly, the SqlClient provider
can still connect using one of the other network libraries if the server isn’t
listening using the one specified.

Note

In this initial release, the provider doesn’t support OLE DB 2.5 interfaces.
Unfortunately, this means that OLE DB providers such as the Microsoft
Exchange provider (ExOLEDB) can’t be used with the OLE DB .NET Data
Provider. However, you can use any OLE DB provider that doesn’t use those
interfaces that you have installed on your system with the exception of the
OLE DB Provider for ODBC drivers (MSDASQL). To connect to ODBC drivers,
you must use the ODBC .NET Data Provider that is downloadable from
MSDN. The provider also requires MDAC 2.6 or higher, which is installed
along with Visual Studio .NET.

Note

If the provider attribute is not set, an ArgumentException will be thrown immediately
after setting the ConnectionString property as it is parsed. All other attributes are deter-
mined by the provider itself.

You can, of course, determine what attributes a particular provider needs by
creating a new data connection using the server explorer. As you learned on
Day 2, “Getting Started,” a dialog will be presented, allowing you to fill in
the properties. You can then inspect the completed ConnectString property
by clicking on the connection and viewing the Properties window.

Tip

13 3869 ch09 5/20/02 1:25 PM Page 223

So, for example, the following code snippet would successfully open a connection
against SQL Server using the SQL Server OLE DB provider (SQLOLEDB):

OleDbConnection con = new OleDbConnection(
“Provider=sqloledb;server=ssosa;database=computebooks;trusted_connection=yes”);
con.Open();

Typically, providers at least support the Data Source property, so connection strings like
the following shown in the online documentation could be used to connect to a Jet or
Oracle database:

Provider=MSDAORA; Data Source=ORACLE8i7; User ID=scott; Password=tiger
Provider=Microsoft.Jet.OLEDB.4.0; Data Source=c:\bin\LocalAccess40.mdb

As with SqlClient, you could also use the Persist Security Info attribute (initially set to
false) to persist the password in the ConnectionString property. And as with SqlClient,
the ConnectionTimeout, Database, DataSource, and Provider properties are all read-
only properties that can be initially set in the connection string.

Finally, the ConnectionString property can alternatively point to a Microsoft Data Link
file, also called a UDL file because of its .udl extension. Simply put, a UDL file is set up
like an INI file that contains the connection string. UDL files can be easily created by
creating a file with a .udl extension and then double-clicking it to invoke the Data Link
Properties dialog. After it is built, the file can be referenced simply with the File Name
attribute like so:

OleDbConnection con = new OleDbConnection(
“File Name=c:\bin\myconnection.udl”);

Unfortunately, when you use a UDL file like this, the file must be accessed and parsed
each time the connection is opened, resulting in less than optimal performance. As a
result, although UDL files provide an easy means of managing connection strings, they
aren’t recommended.

Storing Connection Strings
After the connection string is specified, it should be securely stored somewhere rather
than hard-coded directly in the application. Obviously, storing the connection string
enables you to more easily change it as you move from development to test to produc-
tion. Although there are obviously plenty of options, the second part of this section
focuses on the two most common scenarios where connection strings may be stored.

224 Day 9

13 3869 ch09 5/20/02 1:25 PM Page 224

Using Connections and Transactions 225

9

Storing Connection Strings for Serviced Components
As you’ll learn about in more detail on Day 17, “ADO.NET in the Data Services
Tier,” a serviced component is one that is derived from the ServicedComponent

class of the System.EnterpriseServices namespace. As a result, a serviced component
can access the run-time services provided by COM+ (Component Services) such as just-
in-time (JIT) activation, distributed transactions, object pooling, loosely coupled events,
and queued components, among others.

NEW TERM

See Chapter 9 of my book Building Distributed Applications with Visual Basic
.NET, published by Sams, for more information on serviced components and
Component Services and .NET.

Note

Related to connection strings, the most interesting aspect of COM+ is its object construc-
tion feature. In a nutshell, object construction is analogous to specifying command-line
parameters for a COM+ component. In other words, you can declaratively specify a
string that will be passed into the component when it’s instantiated by COM+. The way
this works is that the COM+ runtime tests for the presence of an interface called
IObjectConstruct when the component is instantiated. If the interface is found, it calls
its Construct method and passes in the string. The IObjectConstruct interface is a
COM interface and is implemented by the ServicedComponent class, which then exposes
its Construct method as a protected virtual (Overridable in VB .NET) method. This
allows classes derived from ServicedComponent to simply override the method to catch
the construction string. Listing 9.2 shows an example of a serviced component class that
contains the bare minimum to use object construction.

LISTING 9.2 Using object construction. This class uses object construction by overriding
the Construct method and enabling it through the ConstructionEnabled attribute.

using System.EnterpriseServices;

namespace ComputeBooks.Data
{

[ConstructionEnabled(
Default=”server=ssosa;Initial

Catalog=computebooks;trusted_connection=yes”)]
public class ComputeBooksStore : ServicedComponent
{

private string _connect;

13 3869 ch09 5/20/02 1:25 PM Page 225

public string ConstructString
{ //returns the connection string

get
{

return _connect;
}

}

protected override void Construct(string s)
{

// called each time an instance of this class is created
_connect = s;

}

// other methods here
}

}

You’ll notice in Listing 9.2 that the ComputeBooksStore class is derived from
ServicedComponent and that it contains a private string called _connect. This

private variable is assigned the string passed into the overridden Construct method. The
connection string is then made available to descendant classes or clients through the pub-
lic read-only ConstructString property.

You’ll also notice that the class is decorated with the ConstructionEnabled attribute.
The presence of this attribute enables object construction when the serviced component
is registered in a COM+ application. The Default property specifies the default con-
struction string that will be used if it’s not overridden in the Component Services admin-
istrative user interface. Of course, both enabling construction and setting the construction
string can be performed administratively by right-clicking on the component in the
Component Services snap-in (found in the Administrative Tools group) and selecting
Properties. The construction settings can be found on the Activation tab.

226 Day 9

LISTING 9.2 continued

ANALYSIS

Object construction applies to an entire component (that is, a class in .NET).
This implies that all methods in the class will use the same connection
string—a point you’ll need to consider when designing your classes.

Note

Because object construction is a service that you might want to implement in many ser-
viced component classes, it makes sense to include it in a base class. On Day 17, you’ll
take a look at an abstract base class that abstracts features such as object construction
and pooling for serviced components.

13 3869 ch09 5/20/02 1:25 PM Page 226

Using Connections and Transactions 227

9

Storing Connection Strings for ASP.NET Applications
Of course, object construction is an option only if your components are serviced compo-
nents running in COM+. In many cases, your components that use providers will be
accessed directly from ASP.NET pages or from classes instantiated by ASP.NET pages.
In these cases, it makes sense to place the connection string with the other configuration
information for the application.

Each ASP.NET application includes a file called Web.config in its virtual directory. This
file is a simple XML file that contains settings that allow the ASP.NET runtime to make
decisions about how the request is to be processed. Basically, it extends the default pro-
cessing instructions stored in the Machine.config file found in the .NET Framework
installation directory. Examples of the information included in Web.config include the
authorization and impersonation scheme to use, which class (referred to as an HTTP
Handler) will handle the request, and whether the request should be processed by an
HTTP module.

In addition to the processing instructions, the Web.config file can contain an element
called appSettings into which you can place application-specific information in name-
value pairs using an add element, as shown in Listing 9.3.

LISTING 9.3 Storing a connection string. This Web.config file uses the appSettings ele-
ment to store the connection string.

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
<appSettings>
<add key=”SQLConnect” value=”data source=ssosa;
initial catalog=ComputeBooks;user id=user;pooling=true” />

</appSettings>
</configuration>

COM+ 1.5 and Aliasing

At first, it might seem as if object construction is limiting because all instances of
the component, regardless of the process from which they are constructed, will

receive exactly the same connection string. This might not be ideal if you’d like different appli-
cations to use the same component but interact with different databases by using different
connection strings. Although this can’t be done in Windows 2000, Windows .NET Server COM+
1.5 implements a feature called component aliasing. Basically, this feature allows a single
implementation of a component to be referenced by more than one name in the same or a dif-
ferent COM+ application. By simply aliasing the component into a different application, you
can enable construction for the component on the Activation tab, thereby passing in a unique
connection string when the component is instantiated.

NEW TERM

13 3869 ch09 5/20/02 1:25 PM Page 227

In Listing 9.3, the appSettings collection contains one element, called SQLConnect,
which contains the connection string. A class in your application can then access this
value using the static (Shared in VB .NET) AppSettings property of the
ConfigurationSettings class like so:

using System.Configuration;

protected void cmdLogin_Click(System.Object sender, _
System.EventArgs e);

{
ComputeBooksStore store = new ComputeBooksStore(
ConfigurationSettings.AppSettings[“SQLConnect”].ToString());

}

In this case, you’ll notice from the using statement that the ConfigurationSettings
class can be found in the System.Configuration namespace. The particular name-value
pair is then accessed by passing the key value (or the index) to the AppSettings prop-
erty, which exposes a NameValueCollection object that stores the data as a sorted col-
lection of strings. The ComputeBooksStore class then accepts the connection string
through its constructor as shown in Listing 9.4.

LISTING 9.4 Accepting a connection string. This class accepts the connection string in its
constructor.

public class ComputeBooksStore
{

private string _connect;

public string ConnectString
{ //returns the connection string

get
{

return _connect;
}

}

public ComputeBooksStores(string connect)
{

_connect = connect;
}

// other methods here
}

228 Day 9

13 3869 ch09 5/20/02 1:25 PM Page 228

Using Connections and Transactions 229

9To more generically retrieve configuration information, you can use the static GetConfig
method of either the ConfigurationSettings class or the HttpContext class as exposed
through the Context property of the ASP.NET Page class like so:

System.Object o = Context.GetConfig(“appSettings”);
ComputeBooksStore store = new ComputeBooksStore(o[“SQLConnect”].ToString());

Although it might seem attractive to do so, you can’t use a constructor that
accepts connection strings with serviced components. Because COM+ doesn’t
support parameterized construction, serviced components must expose an
empty (default) constructor.

Tip

Because configuration files are encoded as XML, they are case sensitive. In
the previous example, passing the value of “AppSettings” rather than
“appSettings” would result in an unhandled exception.

Note

Although each directory in an ASP.NET application can contain its own Web.config file,
the files are processed hierarchically. Therefore, as long as the Web.config file in the root
directory of the site contains the appSettings element, code in any subdirectories of the
site will be able to access it.

This configuration system is, of course, also available to other .NET applications, such
as Windows Forms applications. These applications can include their own configuration
file, named appname.exe.config, in the application directory. The runtime will refer to it
when the application is loaded. It can contain the same appSettings element in the root
configuration element, as shown previously.

Pooling Connections
In enterprise applications, it is particularly important to pay attention to issues that influ-
ence the scalability of your application. One of the primary issues involved is the han-
dling of connections. This is because connections are generally a limited resource that
consumes overhead on the data store. For some time, the idea of connection pooling has
been used to achieve scalability by allowing an application thread to free a connection as
soon as it is done using it and returning it to a pool of connections that other threads in
the same or a different process may use. The overall result is that fewer connections need
to be maintained by the data store. In other words, the ratio of connections to users is
less than 1 to 1.

13 3869 ch09 5/20/02 1:25 PM Page 229

In this section, you’ll learn how the SqlClient and OleDb providers handle pooling con-
nections to allow applications to scale without consuming precious server resources.

Connection Pooling with SqlClient
Because the SqlClient provider communicates directly with SQL Server, it can’t take
advantage of OLE DB’s connection pooling scheme. Therefore, SqlClient must imple-
ment its own connection pooling. It does this by relying on Component Services. As pre-
viously mentioned, Component Services supports object pooling. This mechanism allows
a predefined number of instantiated object instances to be hosted in a COM+-managed
pool. If an object instance is available, one is handed out to a client application when it
requests a new instance, and subsequently returned to the pool when dereferenced for use
by another client. This scheme allows clients to reuse objects that are expensive to create,
thereby reducing the resources required on the server. SqlConnection is therefore a good
candidate for a pooled component.

To support creating and configuring a connection pool, several additional attributes are
included in the ConnectionString for SqlConnection, as shown in Table 9.2.

TABLE 9.2 SqlClient connection pooling attributes. This table lists the attributes you can
use in the connection string when using connection pooling.

Attribute Description

Connection Lifetime Checked when a connection is returned to the pool and its creation time
is compared to the current time. If the difference exceeds this value, the
connection is destroyed. Used to force connections to be recycled period-
ically. Defaults to 0, which keeps the connection alive until the process
ends.

Connection Reset Defaults to true and specifies whether the connection’s state is reset
before it’s pulled from the pool. Incurs an extra roundtrip to the server,
but could be dangerous when set to false.

Max Pool Size The maximum number of connections allowed in the pool. Defaults to
100.

230 Day 9

In classic ADO, pooling database connections was handled either through
the session pooling mechanism of OLE DB or by the connection pooling code
implemented by the ODBC Driver manager when using the MSDASQL
provider.

Note

13 3869 ch09 5/20/02 1:25 PM Page 230

Using Connections and Transactions 231

9

Min Pool Size The minimum number of connections allowed in the pool. The documen-
tation states that the default is 0; however, tests indicate that two connec-
tions are created for each pool by default.

Pooling Determines whether pooling is enabled. Defaults to true.

As you can see from Table 9.2, the Pooling attribute is by default set to true, so connec-
tions will be pooled automatically. In addition, the Connection Reset attribute is also set
to true, which results in the sp_reset_connection stored procedure being executed on
the connection before it is used by subsequent clients. As you might expect, a small per-
formance benefit will be realized if you set Connection Reset to false because it removes
the extra roundtrip to the server. However, the state of the connection won’t be reset, so
database context changes and other SET statements executed by a previous client would
still be enforced for a new client, possibly leading to corrupted data. A typical connection
string that utilizes pooling might then look like the following:

Server=ssosa;Initial Catalog=ComputeBooks;Pooling=true;
Connection Reset=false;Enlist=true;Min Pool Size=5;trusted_connection=yes;

Of course, in order for connections to be pooled, they must be the same. In fact, the con-
nections are pooled per application domain based on the distinct text of the connection
string. In other words, any difference at all (including spacing and capitalization) will
result in two different pools being created. Obviously, the ideal situation is to pull the
connection strings from a central source, as discussed previously, in order to ensure that
they are added to the pool. Connections are also pooled based on their transaction con-
text if the Enlist attribute is set to true. This allows components running in the same dis-
tributed transaction to pull connections from the pool that have access to the transaction.

Each time a new connection is opened with the Pooling attribute set to true, a new pool
is created that contains the connection. If the Min Pool Size attribute is also specified,
the appropriate number of additional connections are created and added to the pool.

TABLE 9.2 continued

Attribute Description

SqlClient also exposes five performance counters that you can view using
the Performance Monitor utility found in the Administrative Tools group.
These enable you to view both the current number of connections SqlClient
has initiated and the current number pooled.

Note

13 3869 ch09 5/20/02 1:25 PM Page 231

A second issue to consider is the security context of the pooled connections. Because
these connections will be shared by more than one thread, which will likely map to more
than one user, as in the case of ASP.NET applications, you’ll want to make sure that the
connections are made with a shared security context. When using SQL Server standard
security, this means creating an account that has the appropriate permissions to the data-
base or databases accessed by the components. When using a trusted connection, this
means giving permissions to the Windows account under which the thread is running.

In the case of ASP.NET applications that use trusted connections, you would, of
course, want all the threads doing work on behalf of users to be authenticated to

SQL Server using the same account. This can be accomplished by using impersonation
in ASP.NET. Simply put, impersonation allows the ASP.NET worker threads to run under
the identity of an account specified in the Web.config file’s identity element like so:

<identity impersonate=”true” />

If a name and password are provided, they will be used in preference to the token passed
to ASP.NET from IIS. In this way, you can specify any Windows account and give that
account permissions in SQL Server.

As you might be aware, IIS will pass either the IUSR_machinename token when using
anonymous authentication or the token for the account specified by the client when using
basic, digest, or Windows authentication. So, when using basic, digest, or Windows
authentication, you want to make sure that you are impersonating a different account and
not simply setting the impersonate attribute to true. Otherwise, each user would attempt
to log on to SQL Server using the authenticated account as passed from IIS.

By default, however, impersonation is set to false, which means that ASP.NET code will
run under the SYSTEM account used by the ASP.NET runtime process (aspnet_wp.exe).
It’s also possible to change the account under which aspnet_wp.exe executes for all
ASP.NET applications on the server by changing the processModel element in the sys-
tem.Web section of Machine.config as follows:

<system.web>
<processModel enable=”true” username=”domain\user” password=”pwd”/>

</system.web>

232 Day 9

NEW TERM

The username attribute can also be set to SYSTEM (the default) or MACHINE,
which causes the ASP.NET runtime process to run under a special account
called ASPNET, which is created when ASP.NET is installed on the server. In
both cases, the password must be set to AutoGenerate.

Note

13 3869 ch09 5/20/02 1:25 PM Page 232

Using Connections and Transactions 233

9

In the case of serviced components, using a trusted connection means that the identity of
the thread executing the component will be used to create the connection. In serviced
components whose COM+ application is marked as Library (using the administrative
interface or the ApplicationActivation attribute), this will be the thread that created
the component. However, for COM+ applications marked as Server, you can configure
the account used to run the components in the application in a separate DLLHOST.exe
process.

As you probably guessed, because SqlClient is handling the pooling, the client code sim-
ply needs to call the Close method of the SqlConnection object in order to return the
connection to the pool. The programming pattern then is one where the method opens
and closes a connection with each invocation, rather than having the class hold on to an
open connection. Of course, behind the scenes, the connection will be pulled from the
pool and returned to it, thereby increasing performance and reducing the number of con-
nections required.

Remember that the SqlDataAdapter implicitly opens and closes connections
and so works well in this context.

Tip

To programmatically remove a connection from the pool, you simply need to call the
SqlConnection object’s Dispose method. Finally, by default, the pooled SqlConnection
objects are not destroyed until the process that created them ends or the connection is
somehow broken (noticed by the pooler when the connection is actually used).

Connection Pooling with OleDb
The scheme for pooling connections is different when using OleDb than when
using SqlClient in that the support for pooling is provided by the OLE DB infra-

structure (introduced in OLE DB 2.0), and is then made available to all OLE DB
providers. This feature is referred to as OLE DB session pooling (or sometimes as
resource pooling).

The idea in session pooling is that, if enabled, OLE DB creates separate pools for each
distinct set of connection attributes and transactions contexts used by the process. This
creates less contention during the process of locking and finding connections to assign.
In addition, an index is maintained on the pools in each process and makes finding the
correct pool more efficient (rather than having to traverse each pool). In session pooling,
if a connection in the pool hasn’t been used for 60 seconds, it will be closed and

NEW TERM

13 3869 ch09 5/20/02 1:25 PM Page 233

removed from the pool. This value is configurable by modifying the registry, although
OleDb has no connection string attribute equivalent to the Connection Lifetime attribute
of SqlClient to enable connection recycling. Also, in the event a connection becomes
unresponsive, OLE DB will requery the data source at intervals of 5, 10, and 50 seconds
before giving up and destroying the connection.

To enable session pooling for a particular OLE DB provider on a machine-wide basis,
you must edit the system registry. To enable session pooling, you must add a DWORD value
of OLEDB_SERVICES to the HKEY_CLASSES_ROOT\CLSID\provider key, in which
provider is the COM class identifier for the OLE DB provider, such as SQLOLEDB or
MSDAORA. By setting this value to 0xffffffff, all OLE DB services will be enabled,
one of which is session pooling. Session pooling can be disabled by setting this value to
0xfffffffe, and all services except session pooling and automatic transaction enlistment
can be disabled by using 0xfffffffc.

You can also enable or disable session pooling on a per-connection basis by adding OLE
DB SERVICES=-1 to enable all service, OLE DB SERVICES=-2 to disable pooling, or
OLE_DB_SERVICES=-4 to disable pooling and automatic transaction enlistment in the con-
nect string. The latter is the equivalent of setting the Pooling and Enlist attributes to false
in a SqlClient connection string. The result might be a connection code like the follow-
ing:

OleDbConnection con = new OleDbConnection(
“Provider=MSDAORA;OLE_DB_SERVICES=-4;Data Source=ORACLE8i7;
User ID=scott;Password=tiger”);
con.Open();

In this case, pooling and transaction enlistment will be disabled.

Using Transactions
As shown in Figure 8.1, providers can support transactions that implement the
IDbTransaction interface and that are associated to the connection class. Both the
SqlClient and OleDb providers include transaction objects that are created using the
BeginTransaction method of the appropriate connection class. Transactions are obvi-
ously very useful for making sure that multiple commands (statements) executed against
a single data store are treated as a logical unit of work. In that way, if one of the state-
ments fails, all of them can be rolled back (undone). Likewise, if all of them succeed,
they will all be committed (made permanent) on the data store.

234 Day 9

13 3869 ch09 5/20/02 1:25 PM Page 234

Using Connections and Transactions 235

9
In general, if no transaction has been created, commands executed against a data store
operate as a series of implicit transactions. In other words, the scope of the transaction is
limited to single statements that make up the command. An example is an OleDbCommand
object that executes a stored procedure using the ExecuteNonQuery method that both
inserts a row and then deletes a different row from a table. Without any explicit transac-
tion control, each statement (even if it is contained in a stored procedure) is treated as an
implicit transaction. If the insert succeeds and the delete fails, the insert is still persisted
to the data store. Of course, stored procedures and other database objects could contain
specific transactional statements that control how the transaction occurs. The use of a
transaction object in ADO.NET ensures that you can use explicit transactions to control
how and when commits and rollbacks occur.

As you’ll see momentarily, using transactions necessarily implies that the
data store needs to lock data while the transaction is active. As a result,
you’ll want to make sure that your transactions are short-lived, always are
either committed or rolled back, and lock only the data they need to. Failing
to complete a transaction will cause the locks to remain and possibly pre-
vent other users from accessing the data.

Note

As you’ll learn on Day 12, transactions can also be used with data adapters
to ensure that either all the changes to a DataSet are successfully synchro-
nized with the data store or are rolled back. However, note that each of the
command objects associated with the data adapter (SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand) must have its
Transaction property set to the instance of the transaction created with the
BeginTransaction.

Note

Transactions with SqlClient
To use explicit transactions with SQL Server, you can call the BeginTransaction
method of the SqlConnection class. This method creates the SqlTransaction object,
which can then be manipulated using its methods. The BeginTransaction method is
overloaded to accept various combinations of the isolation level and transaction name (a
string used to refer to the transaction). However, the BeginTransaction method can’t be
called unless the connection has been opened. This is because it immediately sets the
isolation level and issues a Transact-SQL BEGIN TRANSACTION statement against the
server. Calling BeginTransaction on a closed connection results in an

13 3869 ch09 5/20/02 1:25 PM Page 235

InvalidOperationException. In addition, closing a connection with a pending transac-
tion will automatically issue a ROLLBACK TRANSACTION statement. As a result, the typical
pattern for using transactions is shown in Listing 9.5.

LISTING 9.5 Using transactions. This partial method shows how transactions are typically
used.

SqlConnection con = new SqlConnection(_connect);
SqlTransaction trans;

try
{

con.Open();
trans = con.BeginTransaction();
try
{

// do other work here
// all is well
trans.Commit();

}
catch (SqlException e)
{

// log the error
trans.Rollback();

}
}
catch (SqlException e)
{

// connection failed
// log error
return;

}
finally
{

con.Close();
}

In this snippet, the connection is instantiated with a connection string and the
transaction object is declared but not created. After the connection is open, the

BeginTransaction method is called. Note that this work is placed in its own try catch

block to ensure that the transaction can be initiated once the connection is opened. In the
nested try catch block, the actual work would be performed and the transaction’s
Commit method called if it succeeded. The catch block is used to handle any SQL Server
errors and call the Rollback method if one is encountered. As you might imagine, the
Commit method executes the Transact-SQL COMMIT TRANSACTION statement while the
Rollback method executes the ROLLBACK TRANSACTION method.

236 Day 9

ANALYSIS

13 3869 ch09 5/20/02 1:25 PM Page 236

Using Connections and Transactions 237

9

As noted previously, the BeginTransaction method accepts an argument in its construc-
tor that specifies the isolation level in which the transaction should run using the
IsolationLevel enumeration. By default, SQL Server operates in ReadCommitted mode,
which means that the transaction can read only data that has been committed on the
server. In addition, share locks are placed on the data only while it is being read. This
ensures that transactions are isolated and not able to read data that could in fact end up
being rolled back.

However, it doesn’t ensure that if the transaction attempts to read the same data twice,
that it will receive the same results. As a result, ReadCommitted is a compromise between
transactions that lock the range of rows they read or modify (Serializable) and those
that don’t lock anything (ReadUncommitted). There are obviously scenarios where each
of the options makes sense. Generally, the higher the isolation level, the less concurrency
your application will support. This is the case because a higher isolation level necessarily
means that more locks will be placed on the data, thereby increasing lock contention and
allowing fewer users to read or write to the database at one time. To use an isolation
level other than the default, you could, for example, use a statement like the following:

trans = con.BeginTransaction(IsolationLevel.ReadUncommitted);

Using ReadUncommitted is particularly effective for applications that simply
need to build quick reports (sometimes referred to as flash reports) on the
status of a database that is used for an OLTP application. Reading the data
without applying any locks is both very fast and won’t interfere with the
locking that the OLTP application has to do.

Tip

Transactions in SQL Server also support the concept of save points. Basically, a
save point is a marker or point in the transaction that can be rolled back to. In

other words, if you use a save point, you can roll back only to the save point and not the
entire transaction. SqlTransaction supports save points by exposing a Save method that
accepts the name of the save point to create. The Save method issues a
SAVE TRANSACTION statement against the server. At some point later, you can execute the
transaction’s Rollback method and pass it the name of the save point. This results in all
the work from the save point to the point at which Rollback was called to be undone.
Although this is handy, keep in mind that any locks created after the save point will still
be held until the entire transaction is either committed or rolled back.

Finally, SQL Server supports the idea of nested transactions. Although you can’t nest
transactions by calling the BeginTransaction method on the same connection more than
once, you can execute commands or call stored procedures that issue their own BEGIN,

NEW TERM

13 3869 ch09 5/20/02 1:25 PM Page 237

COMMIT, SAVE, and ROLLBACK TRANSACTION Transact-SQL statements after you have
called BeginTransaction. SQL Server allows this to occur; however, the actual work of
the transaction and any of its nested transactions is not actually committed until the out-
ermost transaction is committed when you call the Commit method of the
SqlTransaction object. If an inner transaction is rolled back, all the nested transactions
and the outermost transaction are rolled back. This feature of SQL Server is present pri-
marily to support calling stored procedures that contain their own transaction statements.

238 Day 9

Experienced developers might be wondering why the programming model
for transaction seems a little strange. For example, why doesn’t the
SqlConnection class simply expose begin, commit, save, and rollback meth-
ods instead of using a second object? The reason is that this model can be
used to support the parallel transaction feature of the next release of SQL
Server. In parallel transactions, a connection could spawn multiple transac-
tions and so the BeginTransaction method could be called more than once.

Note

Transactions with OleDb
Just as in the SqlClient provider, the OleDb provider includes an OleDbTransaction
class that represents a transaction on the data store communicated with by the
OleDbConnection class. The programming model is identical: New transactions are cre-
ated by calling the BeginTransaction method and are then committed or rolled back
using the methods of OleDbTransaction. The only method that SqlTransaction sup-
ports that OleDbTransaction does not is the Save method. This is because most
providers don’t support the concept of save points.

Transactions in Serviced Components
The use of the BeginTransaction method with the connection object is a means
of using explicit local transactions directly in ADO.NET. A local transaction is

one whose scope is restricted to a single database server. However, the classes you write
in .NET can also participate in distributed transactions by using the services provided by
COM+ (Component Services). A distributed transaction is one that spans multiple data
sources and even sources of different types. For example, a distributed transaction can
coordinate modifications to an Oracle database, a SQL Server database, and a Microsoft
Message Queue (MSMQ) server and ensure that if all the modifications succeed, all will
be committed. However, if one of the changes fails, all will be rolled back. This is done
using a two-phase commit protocol and the Microsoft Distributed Transaction
Coordinator (MSDTC) service that runs on Windows servers. The MSDTC serviced is a
Transaction Processing (TP) monitor. Typically, distributed transactions are used in
enterprise-scale applications that work with multiple data stores.

NEW TERM

13 3869 ch09 5/20/02 1:25 PM Page 238

Using Connections and Transactions 239

9

Code written with both the SqlClient and OleDb providers can participate in distributed
transactions; however, their respective transaction classes aren’t used. Instead, as men-
tioned previously, your .NET class that will participate in the transaction must be a ser-
viced component. A serviced component is a class that is derived from
System.EnterpriseServices.ServicedComponent, which allows the class to utilize the
services of COM+, one of which is distributed transactions. After you have derived from
ServicedComponent, you use attributes to indicate that your class supports or requires
transactions. Finally, the methods in your class must then indicate when the transaction is
complete or needs to be rolled back. The ComputeBooksStore serviced component from
Listing 9.2 has been modified to use distributed transactions as shown in Listing 9.6.

In order for the OleDb .NET Data Provider to participate in transactions, the
data store you are connecting to must support the X/Open transaction-
processing model. In other words, the underlying OLE DB provider must
understand certain commands from the MSDTC service.

Note

LISTING 9.6 Using distributed transactions. This serviced component requires transac-
tions.

namespace ComputeBooks.Data
{

[ConstructionEnabled(
Default=”server=ssosa;Initial Catalog=compubooks;trusted_security=yes”),

Transactions(TransactionOption.Required)]
public class ComputeBooksStores : ServicedComponent
{

private string _connect;

public string ConstructString
{ //returns the connection string

get
{

return _connect;
}

}

protected override void Construct(string s)
{

// called each time an instance of this class is created
_connect = s;

}

public ComputeBooksStores(string connect)
{

13 3869 ch09 5/20/02 1:25 PM Page 239

_connect = connect;
}

// other methods here
public void SaveStore(Object parms[])
{

try
{

// open a connection
// use the parms to execute a command with ExecuteNonQuery
ContextUtil.SetComplete();

}
catch (Exception e)
{

ContextUtil.SetAbort();
// throw an exception

}

}
}

}

In Listing 9.6, you’ll notice that the class has now been decorated with the
TransactionAttribute and, in this case, set to the Required value of the

TransactionOption enumeration. By setting this attribute, you ensure that when any
method of the class is called, a distributed transaction (either an existing one or a new
one) will be created. Other values of TransactionOption include Disabled,
NotSupported, Supports, and RequiresNew. As you can imagine, using Disabled or
NotSupported will in no circumstances allow this class to participate in a distributed
transaction. Using Supports indicates that if a transaction already exists, the methods of
this class will participate. However, a new transaction will not be created. Using
RequiresNew will always create a new transaction for this class.

240 Day 9

LISTING 9.6 continued

ANALYSIS

As you can see, this model supports the idea that individual classes needn’t
know nor be concerned with the transactional behavior of other classes. This
means that transactional components can be loosely coupled, which increas-
es the maintainability and extensibility of your applications.

Note

13 3869 ch09 5/20/02 1:25 PM Page 240

Using Connections and Transactions 241

9

The second aspect of Listing 9.6 to notice is the SaveStore method. This method
includes calls to the SetComplete and SetAbort static methods of the ContextUtil class.
The ContextUtil class is found in System.EnterpriseServices and exposes methods
and properties that serviced components can use to control how they interact with the
COM+ runtime. In this case, calling SetComplete when the method is successful indi-
cates that the component’s vote in the transaction is to commit. Calling SetAbort indi-
cates that the transaction should be aborted. If all other components participating in the
transaction also vote to commit, the MSDTC service will commit them. If any one of the
components votes to abort, all will be rolled back. In addition to voting on the transac-
tion, SetComplete and SetAbort also tell the COM+ runtime to deactivate the object
instance after the method has returned. If you do not want to deactivate the object, you
could alternatively call EnableCommit and DisableCommit.

Rather than having to call the SetComplete and SetAbort methods directly, you can
alternatively decorate each method with AutoCompleteAttribute. This attribute indi-
cates that if the method terminates normally, SetComplete will be called automatically.
Conversely, if an exception is thrown, SetAbort will be called.

As indicated previously, connections are associated with a particular transaction context.
If pooling is enabled when the SaveStore method calls the Open method of the connec-
tion, a connection is pulled from the pool with the appropriate transaction context.

Summary
Today you learned how to create and manage connections and transactions using both the
SqlClient and OleDb providers. Along the way, you learned how to handle connection
events, specify and store connection strings, and manage both local and distributed trans-
actions.

Now that you’re intimately familiar with connections and transactions, you can begin to
use the connections to execute commands against a data store. Tomorrow you’ll take a
look at how the command objects work, particularly how to specify and execute com-
mands.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

13 3869 ch09 5/20/02 1:25 PM Page 241

Quiz
1. When would you want to catch the InfoMessage event of a connection object?

The InfoMessage event is fired when the data store returns non–result set informa-
tion. Typically, this includes warnings, row counts, and other supplementary infor-
mation. You use InfoMessage if you need to catch this information; for example,
when a SQL Server stored procedure returns information using a PRINT statement.

2. Where might you store connection strings and why?

Because connection strings often change and because they may contain security
information, they should be stored in a safe place that can be modified without
recompiling your application. For ASP.NET applications, a good place is in the
Web.config file in the appSettings element. From there it can be programmatically
read. Other .NET applications can use the same strategy in their own configuration
files. For serviced components, you can take advantage of object construction and
store the connection string in the Component Services snap-in.

3. How can you ensure that your application uses connection pooling?

First, make sure that Pooling is set to true when using SqlClient or that OLE DB
session pooling is enabled when using OleDb. Second, make sure that the connec-
tion strings used by the application are identical in every way. Finally, make sure
that the security context used by the connection strings is the same; for example,
when you’re using trusted connections with SQL Server.

4. How can you make sure that two command objects participate in the same logical
unit of work?

Both command objects must have their Transaction property set to the same
transaction object. In addition, the transaction must have been created using the
BeginTransaction method of the connection objects they will both use.

Exercise
Today write a method that executes two statements against the ComputeBooks database
that participate in the same transaction.

Answers for Day 9
Exercise Answer
One possible solution to today’s exercise is the following method, which deletes a partic-
ular order from both the OrderDetails and Orders tables:

242 Day 9

13 3869 ch09 5/20/02 1:25 PM Page 242

Using Connections and Transactions 243

9

virtual void DeleteOrder(String orderId)
{

SqlConnection con = new SqlConnection(_connect);
SqlTransaction trans;

try
{

con.Open();
trans = con.BeginTransaction();
try
{

SqlCommand s1 = new SqlCommand(
“DELETE FROM OrderDetails WHERE OrderID =’” + orderId + “‘“,
con,trans);

SqlCommand s2 = new SqlCommand(
“DELETE FROM Orders WHERE OrderID =’” + orderId + “‘“,
con,trans);

s1.ExecuteNonQuery();
s2.ExecuteNonQuery();
// all is well
trans.Commit();

}
catch (SqlException e)
{

// log the error
trans.Rollback();

}
}
catch (SqlException e)
{

// connection failed
// log error
return;

}
finally
{

con.Close();
}

}

13 3869 ch09 5/20/02 1:25 PM Page 243

13 3869 ch09 5/20/02 1:25 PM Page 244

DAY 10

WEEK 2

Using Commands
The command object, which inherits from the IDbCommand interface, is perhaps
the heart of a .NET data provider. Command objects encapsulate the SQL– or
data store–specific syntax that is executed through a connection object. In
ADO.NET, command objects are used to feed data readers, populate and syn-
chronize DataSet objects, and execute commands that don’t return result sets to
the client. Commands can also be populated with parameters to enable dynamic
execution.

Today you’ll learn about all aspects of command objects and how they work in
both the SqlClient and OleDb providers. Specifically, we’ll cover the following
concepts:

• How to call stored procedures and inline SQL using commands

• How to use the various execute methods to return different types of
results through a command

• How to modify data using commands

• How to pass input parameters to a command and return output parameters
and return values

14 3869 ch10 5/20/02 1:17 PM Page 245

Using Command Objects
To use a command object, you must first instantiate it. The constructor of command
objects is generally overloaded and can accept the statement to execute (CommandText),
the connection through which the command should be executed (Connection), and the
transaction to associate with the connection (Transaction). Keep in mind that, as you
learned yesterday, if the connection object has had its BeginTransaction method called,
you must populate the Transaction property of the command or an
InvalidOperationException will be thrown. For example, a command will typically be
instantiated as follows:

Dim con As New OleDbConnection(_
“Provider=Microsoft.Jet.OLEDB.4.0; Data Source=nwind.mdb”)

Dim com As New OleDbCommand(“Products”, con)
com.CommandType = CommandType.TableDirect

In this case, the OleDbCommand object’s constructor is passed the name of a table in the
database as well as the OleDbConnection object to use.

When you populate the CommandText property, it can be set to any valid command syntax
supported by the provider or data store. Examples include SQL statements, names of
stored procedures, names of tables, or simply executable commands in the language of
the data store. Typically, of course, the commands take the form of stored procedures,
SQL statements, or table names. The type of command is specified using the
CommandType property and enumeration and can be set to the value StoredProcedure,
Text, or TableDirect. Obviously, StoredProcedure is used when the data store supports
procedures or functions on the server, as in SQL Server when CommandText is set to the
name of a stored procedure or in Access (Jet) when it’s set to the name of a query. The
Text value of the CommandType enumeration is used when the command is simply a SQL
statement or a data store–specific command. For example, you would use Text when the
CommandText is populated with the text SELECT * FROM Titles or when it contains the
Transact-SQL command SET DEADLOCK PRIORITY. In both cases, it’s the responsibility
of the data store or provider to parse the command. As shown in the previous code snip-
pet, CommandType can also be set to TableDirect. This works when using the
OleDbCommand object and instructs the provider to retrieve all the rows from the table.
However, the SqlCommand object will throw an exception if a command is executed with
the CommandType set to TableDirect.

Using Stored Procedures Versus Dynamic SQL
As you might have noticed, most of the examples in this book have relied on stored pro-
cedures to encapsulate the SQL used to insert, update, and delete data from the

246 Day 10

14 3869 ch10 5/20/02 1:17 PM Page 246

Using Commands 247

10

ComputeBooks database. The reason for this is simple. Stored procedures offer abstrac-
tion, better performance, and increased security over using dynamic or inline SQL in the
command object. For any data store that supports it, stored procedures are typically the
recommended approach. The benefits of using stored procedures are outlined in the fol-
lowing list:

• Abstraction. By using stored procedures, you can abstract the SQL from the appli-
cations that consume it. This reduces complexity in the application and offers
reusability across applications. In addition, developers more familiar with the
workings of the particular data store can specialize in writing procedures that are
optimized by making sure that they use proper indexes, for example. Simply put,
stored procedures can be thought of as the data access API to your data store.

• Performance. In SQL Server 7.0 and 2000, stored procedures offer
certain reuse of cached execution plans on the server. When a proce-

dure or any statement is executed on the server, an execution plan is created and
placed into the cache. For stored procedures, this execution plan will be reused
with each invocation of the procedure until the SQL Server is restarted. Although
the execution plans are also cached for dynamic SQL statements, the server must
use a matching algorithm to attempt to match each incoming statement with a
cached execution plan. This process, referred to as auto-parameterization, is effi-
cient but not foolproof depending on how arguments are passed to the procedure.
Therefore, it is recommended that you use sp_executesql on dynamically generat-
ed SQL statements if you must use them to ensure that the parameters can be dis-
covered. In addition, stored procedures reduce network traffic because hundreds of
bytes in a complicated SQL statement needn’t be sent over the wire.

• Security. Because stored procedures offer a modular programming model, users
can be granted permission to use them and denied permission to access the under-
lying tables and views. This allows administrators to ensure that the application can
execute only the stored procedures it should be executing.

Of course, there are data stores that don’t support stored procedures and cases in which it
makes sense to write dynamic SQL. For example, if you’re developing a packaged appli-
cation that must work against several data stores that your clients might use, dynamic
SQL makes sense. In these cases, you can certainly use dynamic SQL, even with para-
meters, as you’ll learn later today.

NEW TERM

14 3869 ch10 5/20/02 1:17 PM Page 247

Retrieving Data
Command objects generally support two methods for retrieving data from the data store
that are implemented in the IDbCommand interface: ExecuteReader and ExecuteScalar.
In addition, providers such as SqlClient extend the functionality by including additional
execute methods such as ExecuteXmlReader.

ExecuteReader

The ExecuteReader method is used to return an object that implements the IDataReader
interface in order to provide streamed access to the data store. As you’ll recall from Day
1, “ADO.NET in Perspective,” streamed access is the second programming model, in
addition to disconnected or cached access using the DataSet, that ADO.NET supports.
After a data reader has been opened, its data is exposed as read-only and accessed in a
loop as shown in Listing 10.1 (assuming that com is the command object shown in the
previous snippet).

LISTING 10.1 Executing a data reader. This listing uses a command object to execute and
traverse a data reader.

Dim rowData() As Object
Dim dr As OleDbDataReader

Try
dr = com.ExecuteReader()

Do While dr.Read
dr.GetValues(rowData)
ProcessRow(rowData)

Loop

Catch e As OleDbException
‘ handle error

Finally
If Not dr Is Nothing AndAlso Not dr.IsClosed Then dr.Close()
con.Close()

End Try

248 Day 10

However, even in this case, to access the data most efficiently, you’ll want to
explore ways of adding a layer of abstraction in order to use procedures
where it makes sense. On Day 17, “ADO.NET in the Data Services Tier,” you’ll
learn about the concept of data factories and how they can be used to
abstract the SQL and the providers used for an application.

Note

14 3869 ch10 5/20/02 1:17 PM Page 248

Using Commands 249

10

Although not shown in Listing 10.1, the connection associated with the com-
mand must have been opened before the ExecuteReader method is called; other-

wise, an InvalidOperationException will result. (Only when using a data adapter is the
connection opened and closed implicitly.) You’ll notice in this snippet that the
OleDbDataReader is actually instantiated by the ExecuteReader method and so doesn’t
need to be instantiated with the New operator. Once open, the data reader is traversed
using the Read method, as you’ll learn about in more detail tomorrow. After the data has
been traversed, the Finally block ensures that the data reader is closed and then closes
the connection.

ANALYSIS

The Finally block uses the new VB .NET short-circuited AndAlso operator.
It’s useful in this case because if dr is Nothing, the expression Not
dr.IsClosed would throw an exception. This way, the expression after the
AndAlso won’t be evaluated if the data reader hasn’t been created.

Note

The ExecuteReader method is also overloaded to accept an argument from the
CommandBehavior enumeration. This argument influences how the data reader behaves
and gives hints as to how the provider might optimize the execution of the command.
The enumeration includes the values shown in Table 10.1.

TABLE 10.1 Command behaviors. The CommandBehavior enumeration is used to allow
the provider to optimize the command.

Value Description

CloseConnection Closes the connection object associated with the data reader when the
data reader is closed.

Default Same as not using a command behavior. Typically indicates that the data
reader can return multiple result sets.

KeyInfo The query returns column and primary key information and doesn’t lock
any rows on the data store.

SchemaOnly The query returns column information only.

SequentialAccess Allows large columns of binary data to be read as a stream using the
GetBytes or GetChars method.

SingleResult The query will return a single result set.

SingleRow The query will return a single row for each result set.

As you can see, the command behaviors affect both how the result sets are processed by
the provider and what information is returned from the data store. For example, the

14 3869 ch10 5/20/02 1:17 PM Page 249

SingleResult and SingleRow values typically have no effect on the data store but can be
used by the provider to optimize the way in which the results are processed, thereby
increasing performance. In fact, when using SingleRow, the OleDb provider binds to the
result using the OLE DB IRow interface rather than the IRowset interface and exposes
only a single row in the data reader. KeyInfo, SchemaOnly, and SequentialAccess, on
the other hand, affect what information is returned by the data store and how that infor-
mation is returned. Using SchemaOnly with the ExecuteReader method of the
SqlCommand object prefixes the statement with the SET FMTONLY ON statement, which
returns only column information and no rows. Using KeyInfo prefixes the SET
NO_BROWSETABLE ON statement in order to return primary key information. We’ll discuss
the SequentialAccess value in more detail tomorrow because it affects how data is read
using a data reader. You can also use more than one behavior in a bitwise combination
because the enumeration supports the FlagsAttribute, as illustrated here:

dr = com.ExecuteReader(CommandBehavior.SingleResult Or CommandBehavior.KeyInfo)

Perhaps the most interesting of the values shown in Table 10.1 is CloseConnection. This
behavior is particularly effective when you create methods that return data readers. This
is the case because it allows the calling code to simply close the data reader, and the
underlying connection will be closed automatically. Without this behavior, the calling
code wouldn’t have access to the connection object because it isn’t exposed by the data
reader. This is the key to writing data access and data factory classes that use data read-
ers. This concept is illustrated in the following code snippets:

Public Function ReadTitles() As SqlDataReader
‘ create the connection and command
return com.ExecuteReader(CommandBehavior.CloseConnection)

End Function

The client code can then simply close the data reader when finished, like so:

Try
dr = ReadTitles()
‘ process the rows

Catch e As SqlException
‘ handle error

Finally
If Not dr Is Nothing AndAlso Not dr.IsClosed Then dr.Close()

End Try

Note that unlike in the snippet shown previously, the Close method of the connection
object isn’t called because this code has no access to it. However, the connection will be
closed and thereby released to the connection pool if pooling is enabled when the data
reader is closed.

250 Day 10

14 3869 ch10 5/20/02 1:17 PM Page 250

Using Commands 251

10

ExecuteScalar

As shown in Table 10.1, the ExecuteReader method can be passed the combination of
the SingleRow and SingleResult behaviors in order to return only the first column of
the first row from the result set. Command objects provide an easier way to do this using
the ExecuteScalar method.

ExecuteScalar is effective for returning the results of a SQL statement that uses an
aggregate, such as the SUM, AVG, MIN, MAX, and COUNT functions. For example, Listing 10.2
shows how ExecuteScalar could be used to return the average price of all titles in the
ComputeBooks Titles table:

Although you can specify SQL statements or execute stored procedures that
return multiple rows with ExecuteScalar, you wouldn’t want to. Doing so
increases the burden on the server when you’re only going to use the first
column of the first row. As a rule of thumb, your stored procedures or
SELECT statements should ask only for data that the application will use.

Tip

LISTING 10.2 Using ExecuteScalar. This listing returns data from an aggregate function
using the ExecuteScalar method.

Dim avgSql As String = “SELECT AVG(Price) FROM Titles”
Dim avgPrice As Decimal
Dim com As New SqlCommand(avgSql, con)

com.CommandType = CommandType.Text
Try
con.Open()
avgPrice = CType(com.ExecuteScalar, Decimal)

Catch e As SqlException
Finally
con.Close()

End Try

In this case, you’ll notice that dynamic SQL is used to specify the SELECT state-
ment. Just as with ExecuteReader, the connection must be opened before

ExecuteScalar is called and must be explicitly closed in the Finally block. The
ExecuteScalar method isn’t overloaded and returns the value as a System.Object, so
the CType function is used to cast the value to the appropriate type.

There are occasions when you might want to execute a command that returns multiple
single-value, single-column results. Unfortunately, the ExecuteScalar method doesn’t
support this, so you would need to use a data reader as shown in Listing 10.3.

ANALYSIS

14 3869 ch10 5/20/02 1:17 PM Page 251

LISTING 10.3 Returning multiple result sets. This listing shows how you would return
more than one single-value, single-column result set using a data reader.

Dim sql As String
Dim avgPrice As Decimal
Dim orders As Integer
Dim dr As SqlDataReader

sql = “SELECT AVG(Price) FROM Titles;SELECT COUNT(*) FROM Orders”

Dim com As New SqlCommand(avgSql, con)
com.CommandType = CommandType.Text

dr = com.ExecuteReader()
dr.Read()
avgPrice = dr.GetDecimal(0)

If dr.NextResult() Then
dr.Read()
orders = dr.GetInteger(0)

End If

252 Day 10

Although the documentation says otherwise, you can’t use the SingleRow
command behavior in this case against SQL Server using either SqlClient or
OleDb. Doing so prevents the second result set from being read.

Caution

ExecuteXmlReader

The command object is an excellent place for providers to add their own functionality by
extending the class to include custom execute functions that return data in a specific way.
The SqlClient provider does this by including the ExecuteXmlReader function to return
XML produced by the FOR XML statement that was introduced in SQL Server 2000.

Although a complete discussion of the FOR XML syntax is beyond the scope of this book,
to use the statement, you simply append the FOR XML clause to a SELECT statement. SQL
Server returns the results formatted as XML, based on the mode, which can be RAW,
AUTO, or EXPLICIT. The syntax for a SELECT statement with a FOR XML clause looks like
this:

SELECT ...
FROM ...
[WHERE]
FOR XML RAW | AUTO | EXPLICIT [,XMLDATA] [,ELEMENTS] [,BINARY Base64]

14 3869 ch10 5/20/02 1:17 PM Page 252

Using Commands 253

10

As you might expect, with FOR XML, you can easily transform a result set into XML.
However, you can use the clause only in statements that return data directly to a client
and therefore can be processed using the ExecuteXmlReader method. For example, you
can’t use FOR XML in view- or user-defined function (UDF) definitions, nested SELECT
statements, stored procedures that manipulate the result set, INSERT statements, or
statements that use a COMPUTE BY clause.

Using FOR XML

To give you a brief overview, the three modes of the FOR XML statement are

• XML RAW. XML RAW produces nonhierarchical, generic XML by generating one XML row
element for each row that the query returns and mapping each returned column as an
XML attribute. XML RAW is most useful when you have generic client code that expects flat
XML documents and looks for row elements. Unlike XML AUTO, XML RAW supports the
GROUP BY clause and aggregates. All the XML modes let you return the schema by using
the XMLDATA argument after the FOR XML clause.

• XML AUTO. XML AUTO produces a hierarchical document by transforming into an element
each table that the SELECT clause references. By default, XML AUTO transforms each col-
umn into an attribute unless you use the ELEMENTS argument to create sub-elements.
Keep in mind that XML AUTO doesn’t support the GROUP BY clause; the column order in
the SELECT statement determines the attributes’ nesting order. XML AUTO lets you use
table or column aliases as element or attribute names; however, this mode’s default is to
use the table or view name as the element or attribute name. You can use the BINARY
Base64 argument to return image and binary data in binary base64-encoded format. If
you don’t use BINARY Base64, XML AUTO returns a URL that you can query to return
binary data.

• XML EXPLICIT. XML EXPLICIT is the most sophisticated and most powerful XML mode.
As the name implies, with EXPLICIT mode, you explicitly define the schema for the
returned XML by creating a virtual table that SQL Server translates into XML. Because this
mode is so flexible, it’s particularly good for creating hierarchical documents. EXPLICIT
mode enables you to define each column as an attribute or element and even create ele-
ments not represented in your database. When you use this mode, you must prefix the
result set with two columns, Tag and Parent, which create the hierarchical structure of
the resulting XML. As with the other modes, you also must specify the element and
attribute names within the SELECT clause.

To get an idea for how the ExecuteXmlReader method can be used consider the code in
Listing 10.4.

14 3869 ch10 5/20/02 1:17 PM Page 253

LISTING 10.4 Using ExecuteXmlReader. This listing uses ExecuteXmlReader to return
results from a FOR XML statement in SQL Server 2000.

Dim xlr As XmlReader
Dim xmlSql As String
xmlSql = “SELECT isbn, title, price FROM Titles
xmlSql &= “WHERE Author = ‘Fox, Dan’ FOR XML AUTO, ELEMENTS”

Dim com As New SqlCommand(xmlSql, con)
com.CommandType = CommandType.Text

xlr = com.ExecuteXmlReader()
xlr.MoveToContent()
Do While xlr.Read
‘ parse the XML

Loop

In Listing 10.4, the xmlSql string contains the SELECT statements, which includes
the FOR XML clause. Here the AUTO, ELEMENTS arguments are used to transform

each table and column in the SELECT statement into an element as shown in the following
code snippet. After the method has executed, the resulting XmlReader from the
System.Xml namespace can be used to navigate the document using its Read method. The
resulting XML is shown in Listing 10.5.

LISTING 10.5 XML output. This listing shows the XML fragment output from the FOR
XML statement in Listing 10.4.

<Titles>
<ISBN>06720083X</ISBN>
<Title>Pure Visual Basic: a code-intensive
premium reference/versions 5 & 6</Title>

<Price>24.9900</Price>
</Titles>
<Titles>
<ISBN>06720072X</ISBN>
<Title>Building Distributed Applications with Visual Basic .NET</Title>
<Price>44.9900</Price>

</Titles>

You’ll notice that the XML produced is actually an XML fragment because it doesn’t
have a root element.

254 Day 10

ANALYSIS

14 3869 ch10 5/20/02 1:17 PM Page 254

Using Commands 255

10

Although you can certainly parse the XML in this fashion, the real power of using FOR
XML is to transform the XML generated on the server into HTML or other formats using
XML Stylesheet Language (XSL) transformations. The classes that enable you to do pro-
grammatic transformations can be found in the System.Xml.Xsl and System.Xml.XPath

namespaces. This technique can be used to efficiently generate HTML on the Web server
in an ASP.NET application without using server controls or manually looping through a
data reader. For example, the CreateCatalog method in Listing 10.6 accepts an
XmlReader as an argument and transforms the XML it contains into a stream using the
titles.xsl XSL stylesheet.

LISTING 10.6 Transforming XML. This method transforms the incoming XmlReader like
that produced by the ExecuteXmlReader method and produces a stream that contains
HTML.

Private Function CreateCatalog(ByRef xlr As XmlReader) As Stream

Dim oXsl As New XslTransform()
Dim s As New MemoryStream()
Dim oDoc As XPathDocument

Try
‘ Get an IXPathNavigable interface
oDoc = New XPathDocument(xlr)
‘ Load the XSL stylesheet
oXsl.Load(“titles.xsl”)
‘ Perform the transformation
oXsl.Transform(oDoc, Nothing, s)

s.Position = 0
Return s

Catch e As Exception
Throw New Exception(“Could not create catalog”, e)

End Try

End Function

The XmlReader is analogous to the data reader and is used to provide
streamed access to XML. The System.Xml namespace also provides the
XmlDocument class, analogous to the DataSet, to provide cached access to
XML documents.

Note

14 3869 ch10 5/20/02 1:17 PM Page 255

You’ll notice in this method the XmlReader passed in as xlr is first used in the
constructor of the XPathDocument object. This must be done to create a cache for

reading the input when the transformation is applied. The stylesheet is then loaded using
the Load method and the transformation performed with the overloaded Transform
method. The results of the transformation can be sent to a TextWriter, Stream, or
XmlWriter. In this case, the method takes advantage of polymorphism to place the output
into a MemoryStream that is then returned to the caller.

256 Day 10

ANALYSIS

The Position property of the MemoryStream is reset to 0 before the stream is
passed back to the caller because the transformation will leave the pointer
at the end of the stream.

Note

The titles.xsl stylesheet that could be used with the output shown in Listing 10.5 is
shown in Listing 10.7. This simple stylesheet creates an HTML document that contains a
simple table including the ISBN, title, and price.

LISTING 10.7 Simple XSL. This simple stylesheet creates an HTML document from the
XML returned from SQL Server.

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” />
<xsl:template match=”/”>
<HTML><BODY>
<TABLE>
<xsl:for-each select=”Titles”>
<TR>
<TD><xsl:value-of select=”ISBN” /></TD>
<TD><xsl:value-of select=”Title” /></TD>
<TD><xsl:value-of select=”Price” /></TD>
</TR>

</xsl:for-each>
</TABLE>
</BODY></HTML>
</xsl:template>
</xsl:stylesheet>

After the transformation is applied, the results are as shown in Listing 10.8.

14 3869 ch10 5/20/02 1:17 PM Page 256

Using Commands 257

10

LISTING 10.8 XSL output. This is the HMTL output from the XSL document shown in
Listing 10.7.

<HTML>
<BODY>
<TABLE>
<TR>
<TD>06720083X </TD>
<TD>Pure Visual Basic: a code-intensive

premium reference/versions 5 & 6</TD>
<TD>24.9900</TD>

</TR>
<TR>
<TD>06720606X </TD>
<TD>Building Distributed Application with Visual Basic .NET</TD>
<TD>44.9900</TD>

</TR>
</TABLE>

</BODY>
</HTML>

Of course, in an ASP.NET application, the MemoryStream could then be sent to the
client’s browser through the HttpResponse object.

Modifying Data
In addition to being used to retrieve data, the command object can also be used to exe-
cute statements that don’t return results to the client. Typically, these statements perform
some data modification and are executed using the ExecuteNonQuery method. Because
ADO.NET does not provide any way to modify the schema of a database, the
ExecuteNonQuery method can also be used to execute statements such as CREATE and
ALTER TABLE.

Although a result set isn’t returned from ExecuteNonQuery, any output parameters or
return values are populated, as you’ll learn in the next section. The method does, how-
ever, attempt to return the number of rows affected by the statement. As with the other
execute methods of the command object, an InvalidOperationException will be
thrown if the connection associated with the command isn’t open or if the transaction
property isn’t set and a transaction is in progress.

Because ExecuteNonQuery is most often used for data modification, it’s frequently used
with parameters. The DeleteTitle method in Listing 10.9 shows a simple example of
using ExecuteNonQuery.

14 3869 ch10 5/20/02 1:17 PM Page 257

LISTING 10.9 Making a modification. This method deletes a single row in the Titles
table using a stored procedure.

Public Function DeleteTitle(ByVal isbn As String) As Boolean

Dim con As New SqlConnection(_connect)
Dim com As New SqlCommand(“usp_DeleteTitle”, con)
com.CommandType = CommandType.StoredProcedure

‘ Add the parameter
com.Parameters.Add(new SqlParameter(“@isbn”,isbn))

Try
con.Open()
If com.ExecuteNonQuery() = 1 Then
Return True

Else
Return False

End If
Catch e As SqlException
Finally
con.Close()

End Try

End Function

In this listing, the usp_DeleteTitle stored procedure is passed to the constructor
of the command along with the connection object. The isbn parameter is then

created and added to the parameters collection of the command. Within the Try Catch
block, the connection is opened and the command is executed. If the delete succeeds, the
ExecuteNonQuery method should return 1 and True will be returned. If the row isn’t
found, ExecuteNonQuery will return 0 and False will be returned from the method. The
DeleteTitle method implies that isbn is the primary key or is unique in the table. This
is because ExecuteNonQuery would return a number higher than 1 if the table contained
more than one row with the given ISBN. A SqlException will be thrown only if the con-
nection doesn’t have permissions to access the procedure or if an error is encountered,
such as the violation of a foreign key constraint in the event that another table references
the row.

Of course, command objects are also used by data adapters to insert, update, and delete
rows in the data store based on changes in a DataSet. As you’ll learn in detail on Day
12, “Using Data Adapters,” data adapters execute a command for each row that has been
inserted, updated, or deleted in the tables of a DataSet. When a DataRow is updated, the
data adapter also has the ability to read the first row returned (if there is one) from the
command as well as the output parameters, and to use them to update the DataRow. This

258 Day 10

ANALYSIS

14 3869 ch10 5/20/02 1:17 PM Page 258

Using Commands 259

10

is controlled by the UpdatedRowSource property of the command object, as was dis-
cussed on Day 8, “Understanding .NET Data Providers.”

The UpdatedRowSource property will be set to None if the command is gener-
ated by a command builder such as SqlCommandBuilder.

Note

Controlling the Command
In addition to the methods and properties already discussed, the command object exposes
several members that enable you to control its behavior, including the timeout interval,
cancellation, and preparing commands.

First, command objects expose CommandTimeout properties. This property controls how
long the command will wait to attempt to execute before throwing an exception. Both
SqlClient and OleDb default this property to 30 seconds, which you might consider
reducing because users often abandon an application if it appears that nothing is happen-
ing for more than 15 seconds or so. You might experience a timeout if the rows on the
server that you’re attempting to read or write have been locked while a transaction is in
process. This is the primary reason you want to make sure that any transactions you start
will be finished as quickly as possible by either calling the Rollback or Commit methods
of the transaction object.

Keep in mind that a command might not time out until after the execute
method returns and when the data is being read. For example, when using
a data reader, the command might appear to execute, but when the rows
are being retrieved, it might run into one that is locked by another user. In
that case, processing would stop and wait for the interval specified in the
CommandTimeout property before throwing an exception. As a result, you’ll
need to trap for exceptions when reading data.

Caution

In some cases, you’ll also be able to cancel the execution of a command against a data
store by calling its Cancel method. For example, if you open a SqlDataReader using the
ExecuteReader method of the SqlCommand object, you can subsequently call the Cancel
method before the command has finished streaming the rows to the client. When this
occurs, an exception will be thrown with the message Operation cancelled by user.
In both the SqlClient and OleDb providers, if the command isn’t currently executing or
the request to cancel fails, no exception is thrown.

14 3869 ch10 5/20/02 1:17 PM Page 259

Finally, command objects expose the Prepare method. This method instructs the data
store or provider to create a prepared or compiled version of the command so that it can
be reused without incurring the overhead of recompiling it. For example, by invoking the
Prepare method before executing a SqlCommand, the SqlClient provider will call the
sp_prepexec system stored procedure to create a compiled version of the command. In
that way, on subsequent executions, the compiled statement can be referenced directly,
thereby increasing performance in the same way that precompiled stored procedures do.
When the command is closed, the sp_unprepared stored procedure is executed to
remove the compiled statement.

260 Day 10

Even though the OleDbCommand object supports this property, all providers
might not. As a result, calling Prepare might not have any effect. Keep in
mind as well that because Prepare is a method, it should be called after the
command’s properties, such as CommandType, have been fully configured.

Note

Handling Parameters
As you’ve seen many times throughout this book, command objects use parameters to
provide arguments to the command being executed against the data store. You can either
create parameters for the particular provider directly by using the New operator or by
using the CreateParameter method of the command object. In the case of the former,
the constructor is overloaded and can be used to populate almost all the properties shown
in Table 8.7. In the case of the latter, the CreateParameter method simply returns a new
instance of the parameter and doesn’t allow you to provide any of the default values for
the property. In both cases, the parameter must be explicitly added to the parameters col-
lection (exposed through a class that implements IDataParameterCollection interface)
of the command object using its Add method.

Parameters can be used to both send data into a command and to return data to the client.
We’ll explore both aspects in the following sections.

Handling Input Parameters
Perhaps the most common use of parameters is to pass values into a stored procedure
executed through a command. Listing 10.10 shows a typical example where the
SaveTitles method accepts a DataSet and uses a data adapter to synchronize insertions
and updates with the ComputeBooks database.

14 3869 ch10 5/20/02 1:17 PM Page 260

Using Commands 261

10

LISTING 10.10 Using parameters. This method creates and populates the parameters
collection of a SqlCommand object for use in a data adapter.

Public Function SaveTitles(ByVal dsTitles As DataSet) As DataSet

If dsTitles Is Nothing OrElse dsTitles.HasChanges = False Then
Return Nothing

End If

Dim cmSave As New SqlCommand(“usp_SaveTitle”, _sqlCon)
Dim da As New SqlDataAdapter()

da.UpdateCommand = cmSave
da.UpdateCommand.CommandType = CommandType.StoredProcedure
da.InsertCommand = da.UpdateCommand

With cmSave
.Parameters.Add(New SqlParameter(“@isbn”, SqlDbType.NVarChar, 10, “isbn”))
.Parameters.Add(New SqlParameter(_

“@description”, SqlDbType.NVarChar, 2048, “Description”))
.Parameters.Add(New SqlParameter(_

“@title”, SqlDbType.NVarChar, 100, “Title”))
.Parameters.Add(New SqlParameter(_

“@author”, SqlDbType.NVarChar, 250, “Author”))
.Parameters.Add(New SqlParameter(“@price”, SqlDbType.Money, 4, “Price”))
.Parameters.Add(New SqlParameter(_

“@pubDate”, SqlDbType.DateTime, 4, “PubDate”))
.Parameters.Add(New SqlParameter(_

“@publisher”, SqlDbType.NChar, 5, “Publisher”))
.Parameters.Add(New SqlParameter(_

“@catId”, SqlDbType.UniqueIdentifier, 8, “CatId”))
End With

Try
da.Update(dsTitles)

Catch e As SqlException
‘ Check for errors
If dsTitles.HasErrors Then
Return dsTitles.GetChanges(DataRowState.Modified)

Else
_throwcompubookexception(“SaveTitles error”, e)
Return Nothing

End If
Finally
If Not _sqlCon Is Nothing Then _sqlCon.Close()

End Try

End Function

14 3869 ch10 5/20/02 1:17 PM Page 261

What you should notice about the SaveTitles method is that parameters are cre-
ated using the New operator and added to the collection in a single statement.

Because these parameters are of type SqlParameter, the second argument to the con-
structor uses the appropriate SqlDbType, which maps to the DbType enumerated type as
we discussed on Day 7. If you use one of the constructors that doesn’t specify the type,
DbType.String will be the default. The Direction property of each parameter isn’t set
because in this case all are input parameters (ParameterDirection.Input), which is the
default. In this case, the Value property of each parameter will be set by the data adapter
when the command is executed for a DataRow that has been inserted or updated.

One of the other interesting things to note about using parameters with the SqlClient
provider is that when the provider creates the Transact-SQL statement to execute against
the server, it uses named rather than positional arguments, the opposite of what was
done in early versions of ADO 2.x. In others words, the Transact-SQL that would be
generated in the case of the usp_DeleteTitle stored procedure shown earlier would be
equivalent to

exec usp_DeleteTitle @isbn=’006720034X’

If the procedure accepted additional arguments, they would be appended in a comma-
delimited list. Using named arguments means that you can create stored procedures in
SQL Server whose parameters are defaulted to NULL, as shown in Listing 10.11.

LISTING 10.11 Optional parameters. Because SqlCommand supports positional arguments,
your stored procedures can accept NULL values so that you don’t have to create the
SqlParameter objects.

CREATE PROCEDURE usp_GetTitles
@ISBN [nvarchar](10) = NULL,
@Author [nvarchar](250) = NULL,
@Publisher [nchar](5) = NULL

AS
declare @where nvarchar(250)
declare @author_w nvarchar(100)
declare @Publisher_w nvarchar(100)
declare @sql nvarchar(500)

set @author_w = ‘’
set @Publisher_w = ‘’

set @where = ‘WHERE’
if @isbn is not null set @where = @where +
‘ isbn = ‘’’ + @isbn + ‘’’’ + ‘ and ‘
if @author is not null set @author_w = ‘ author like ‘’%’

262 Day 10

ANALYSIS

14 3869 ch10 5/20/02 1:17 PM Page 262

Using Commands 263

10

+ @author + ‘%’’’ + ‘ and ‘
if @publisher is not null set @publisher_w = ‘ Publisher = ‘’’
+ @publisher + ‘’’’ + ‘ and ‘

set @sql = ‘SELECT * FROM Titles ‘ + @where + @author_w + @publisher_w
set @sql = substring(@sql,1, LEN(@sql)-4)
exec sp_executesql @sql
GO

In this way, your code can be made more efficient because the SqlCommand object
needn’t contain any parameters if you don’t plan on passing a value into these argu-
ments. In this case, the usp_GetTitles stored procedure executes queries with different
WHERE clauses, depending on which arguments are passed in.

LISTING 10.11 continued

Whether the OleDbCommand object uses positional or named arguments is
dependant on the OLE DB provider. For example, when using the SQLOLEDB
provider with OleDbCommand, positional arguments are used rather than
named arguments. This implies that you must add all the parameters to the
parameters collection.

Tip

Input parameters can also be used with dynamic SQL by simply inserting the parameter
into the SQL statement and then adding it to the parameters collection, as shown in the
following code snippet:

Dim com As New SqlCommand(“SELECT * FROM Titles WHERE ISBN = @isbn”, con)
com.CommandType = CommandType.Text
com.Parameters.Add(New SqlParameter(“@isbn”, “06720001X”))

As with positional and named arguments, the syntax you can use to specify the parame-
ters and how they can be named is dependent on the OLE DB provider.

Handling Output Parameters and Return Values
The Direction property of parameter objects can also be set to InputOutput, Output, or
ReturnValue. Each of these three options enables you to read information returned from
the data store. As implied by the name, InputOutput enables you to both pass a value
into the command and retrieve a (possibly) new value assigned by the command. Output
can be used to return new parameters. ReturnValue can, for example, catch the value
returned from a stored procedure.

14 3869 ch10 5/20/02 1:17 PM Page 263

To illustrate the use of output parameters, consider the stored procedure shown here:

CREATE PROCEDURE usp_RevByBook
@isbn nchar(10),
@revenue money OUTPUT,
@units integer OUTPUT
AS

SELECT @units = SUM(Quantity), @revenue = SUM(Quantity * UnitPrice)
FROM OrderDetails
WHERE ISBN = @isbn
GO

In this case, the procedure calculates the number of units of a particular ISBN that have
sold and how much revenue has resulted. Rather than return the results in a result set,
you can write code that retrieves the output parameters. For simple results like this, using
output parameters is more efficient because a result set needn’t be created on the server
and the code on the client to retrieve the values is simpler, as shown in Listing 10.12.

LISTING 10.12 Using output parameters. This code calls a stored procedure that returns
data through output parameters.

Dim com As New SqlCommand(“usp_RevByBook”, con)

With com
.CommandType = CommandType.StoredProcedure
.Parameters.Add(New SqlParameter(“@isbn”, “06720222X”))
.Parameters.Add(New SqlParameter(“@revenue”, SqlDbType.Money))
.Parameters(“@revenue”).Direction = ParameterDirection.Output
.Parameters.Add(New SqlParameter(“@units”, SqlDbType.Int))
.Parameters(“@units”).Direction = ParameterDirection.Output

End With

con.Open()
com.ExecuteNonQuery()
rev = CType(com.Parameters(“@revenue”).Value, Decimal)
units = CType(com.Parameters(“@units”).Value, Integer)
con.Close()

Note that after the parameters have been created, their Direction property is set to
Output. After the command has been executed using ExecuteNonQuery, the values can
then be read using the Value property.

Return values are typically used with stored procedures and are ideal for returning a
value that indicates the success or failure of the stored procedure. For example, it’s very
common to use the return value from a SQL Server stored procedure to return the new

264 Day 10

14 3869 ch10 5/20/02 1:17 PM Page 264

Using Commands 265

10

value inserted into the identity column for a table. You’ll learn more about identity
columns on Day 13, “Working with SQL Server.”

In SQL Server, if no value is specified for the return value using a RETURN
statement, 0 will be returned. Also, SQL Server always returns an integer
value from a stored procedure.

Note

As with output parameters, the only requirement to using return values is that you add
the parameters to the collection and set its Direction property to ReturnValue.

Summary
Commands are integral to ADO.NET because they are used both by data adapters and
data readers to retrieve and modify data. Today you learned about command objects and
how they can be used to retrieve and modify data. You also learned how parameters are
created and added to the parameters collection of the command. During the next two
days, you’ll learn more about the data readers and data adapters that use command
objects.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. Why would you use stored procedures rather than dynamic or inline SQL?

If stored procedures are supported by your data store, you should consider using
them because they can be used to implement a layer of abstraction for your appli-
cations, as well as increase both performance and security. However, you might
want to use inline SQL if your application needs to supports multiple data stores.

2. Which execute method might you use when executing a SQL statement that uses
an aggregate function?

Typically, SELECT statements that use aggregate functions such as SUM, MIN, MAX,
COUNT, and AVG can be easily executed using the ExecuteScalar method. This
method returns the first column of the first row of the result set so that you needn’t
use a data reader.

14 3869 ch10 5/20/02 1:17 PM Page 265

3. When would you use the ExecuteXmlReader method of the SqlCommand object?

This method returns an XmlReader from a command that uses the SQL Server 2000
FOR XML statement. This comes in handy if you want to return data from SQL
Server as XML in order to send it to a trading partner or transform it for use on a
Web site.

4. In what situations would you use output parameters?

Output parameters are particularly effective when you need to return only one or a
few values from a stored procedure. Using output parameters reduces the cost of
execution on the server because a result set doesn’t need to be created and makes
the code you have to write simpler on the client.

Exercise
Write a method and stored procedure that selects all orders based on a given date range
and returns a SqlDataReader.

Answers for Day 10
Exercise Answer
One possible solution might be the following:

Stored Procedure:

CREATE PROCEDURE usp_OrdersByDate
@startdate smalldatetime,
@enddate smalldatetime,
@revenue money OUTPUT
AS

SELECT * FROM Orders
WHERE OrderDate BETWEEN @startdate AND @enddate
ORDER BY OrderDate

GO

Method:

Public Function GetOrder(ByVal connect As SqlConnection, _
ByVal startDate As Date, ByVal endDate As Date) As SqlDataReader

Dim com As New SqlCommand(“usp_OrdersByDate”, connect)
Dim dr As SqlDataReader

266 Day 10

14 3869 ch10 5/20/02 1:17 PM Page 266

Using Commands 267

10

If connect.State = ConnectionState.Closed Then
Throw New Exception(“Must have an open connection”)

End If

With com
.CommandType = CommandType.StoredProcedure
.Parameters.Add(New SqlParameter(“@startdate”, SqlDbType.SmallDateTime))
.Parameters.Add(New SqlParameter(“@enddate”, SqlDbType.SmallDateTime))
.Parameters(“@startdate”).Value = startDate
.Parameters(“@enddate”).Value = endDate

End With

Try
dr = com.ExecuteReader(CommandBehavior.CloseConnection)
Return dr

Catch e As SqlException
Throw e

End Try

End Function

14 3869 ch10 5/20/02 1:17 PM Page 267

14 3869 ch10 5/20/02 1:17 PM Page 268

DAY 11

WEEK 2

Using Data Readers
As you learned yesterday, data readers are created using the ExecuteReader
method of the command object. The data reader object that is returned imple-
ments the IDataReader and, typically, the IDataRecord interfaces to allow
access to the data in a forward-only, read-only cursor-style object. As a result,
data readers are ideal for scenarios in which you don’t need to hold on to or
cache the data and simply need to read through it quickly. In this way, data
readers also reduce the overhead required because more than one row is never
held in memory at any one time.

In today’s short lesson, you’ll look at the various ways you can work with data
readers and how you can use them in your applications. Specifically, you’ll
focus on

• The appropriate uses for data readers and how they differ from the
DataSet

• How to traverse a data reader and extract its values

• How to use a data reader polymorphically in client code

• How to handle multiple result sets returned from a data store

15 3869 ch11 5/20/02 1:22 PM Page 269

Data Reader Characteristics
As mentioned yesterday, data readers represent one of the two programming models
exposed in ADO.NET that work with data (the other being the DataSet, which works
with disconnected results). As a developer, you need to choose which programming
model you’re going to use for a particular scenario. To help you understand the
differences and when a data reader might be appropriate, consider the following charac-
teristics:

• Connectedness. Because the data reader exposes a connected and streamed model,
unlike the DataSet, its uses are relegated to situations in which your application
can maintain the connection to the data store while the data is being traversed. If
you know, for example, that the data must be used offline, using a DataSet makes
more sense because it can be persisted to a disk and doesn’t require a continuous
connection to the data store. That having been said, ideally, you should open a data
reader and traverse it immediately to minimize the amount of time the connection
is in use.

• Remoting. Unlike a DataSet, a data reader is derived from
System.MarshalByRefObject rather than MarshalByValueComponent. This means
that when using .NET Remoting, a data reader can’t be passed between application
domains by value but must be passed by reference. As a result, a data reader isn’t
serialized and passed between application domains. Instead, calls to the data reader
are passed between domains. If a data reader is used in a remote application data
reader and will result in cross-application domain communication each time a
method or property of the data reader is accessed. Obviously, this is a situation you
want to avoid in physically distributed applications. This architecture makes sense
for data readers because the data reader holds on to a connection to a data store.
Therefore, if you pass a data reader by value, you would also need to pass the con-
nection object it is using, which would be problematic to say the leastdomain, the
domain in which it was created will always host the. Figure 11.1 highlights this
architecture by showing how a client application domain would access a data read-
er created in a separate application domain.

Although data readers can be accessed by remote application domains, as shown in
Figure 11.1, because of the number of calls this would generate between those
domains, it’s recommended that you use data readers only from within the domain
in which they were created. In other words, code that creates a data reader should
live in the same application domains (and therefore the same operating system
process) as the code that consumes it.

270 Day 11

15 3869 ch11 5/20/02 1:22 PM Page 270

Using Data Readers 271

11

• Data Sources. Data readers get their data from a connection object and so,
typically, return data from only a single data store. In other words, you can’t access
data from both a SQL Server database and an Oracle database from the same data
reader object. This can be done, however, with a DataSet, whose DataTable

objects can contain data from anywhere because the DataSet neither tracks nor
cares about the source of its data. For this reason, with respect to data sources, the
DataSet is said to be heterogeneous, whereas the data reader is homogenous.

• Updateability. The nature of a data reader is that it provides forward-only, read-
only, streamed access data. This means that the data isn’t updateable. If you want-
ed to update data retrieved with a data reader, you would need to store it yourself
in variables, for example, and later update the data store, perhaps using a command
object and the ExecuteNonQuery method. A DataSet provides updateability by
tracking the changes made to rows within its tables.

• Strong-Typing. As you learned on Day 6, “Building Strongly Typed DataSet
Classes,” a DataSet object can be strongly typed using the code generator utility
accessible through VS .NET or the XSD.exe command-line utility. A strongly
typed DataSet allows access to the data in an easier fashion because it derives
from DataSet and exposes specific properties that map to the tables, rows, and
columns of the DataSet. A data reader has no such equivalent, so you always
access columns in a DataSet using a collection syntax with the name of the col-
umn or its ordinal.

FIGURE 11.1
Data reader architec-
ture. In this diagram,
the data reader (dr) is
created on the server.
When a method such
as Read is called, the
method is executed on
the server and the
results are passed to
the client.

Client Process

dr.Read
dr.GetValues()

AppDomain

Server Process

Data Store

dr = ExecuteReader()

AppDomain

.NET Remoting
(TCP or HTTP channel

and SOAP or binary formatter)

Populate data
reader

Read and GetValues are
executed in the server process
and their return values copied

to the client

But Are They Strongly Typed?

Unfortunately, Microsoft chose the term strongly typed to refer to a derived DataSet that
exposes specific properties. As you’ll see, the data reader also allows access to data in a strongly
typed fashion in the normal sense of the term, meaning that the actual data is returned as the
type it maps to in the database rather than as a generic type such as System.Object. Perhaps a
better term for a strongly typed DataSet would be derived DataSet or mapped DataSet.

15 3869 ch11 5/20/02 1:22 PM Page 271

• Data Manipulation. Because a data reader returns data in a streamed fashion,
there is no opportunity to sort or filter the data after the ExecuteReader method
has been called. As a result, you need to make sure that the statement that executes
on the data store uses the appropriate ORDER BY and WHERE clauses (in the case of a
relational database) if the order the rows are returned is important. However, using
a DataView, the tables of a DataSet can be filtered and sorted in different ways at
different times without having to execute another statement against the data store.

• Performance. Because a data reader accesses only a single row at a time, it’s very
efficient in terms of the memory consumed on the client. This results in the best
performance possible for accessing data. However, it should be noted that internal-
ly a data adapter will use a data reader to populate a DataSet when its Fill
method is called, so the cost of using a DataSet from the server’s perspective isn’t
any greater than using a data reader. The difference lies in the fact that when a
DataSet is used, the DataSet must first be populated before the data is accessed,
so you don’t get direct access to the data as with a data reader. A second considera-
tion is that if a multi-user application such as an ASP.NET Web site uses DataSets,
the users will be consuming more resources than they might if data readers were
employed. This incremental cost, when totaled over hundreds or thousands of
users, can put an extra burden on the Web server. However, because of the discon-
nected nature of DataSet objects, they can be cached unlike data readers, thereby
reducing the number of times the data store needs to be accessed.

Table 11.1 summarizes the differences between the DataSet and data readers.

TABLE 11.1 Data readers versus DataSet. This table summarizes the differences you
should consider when deciding which programming model to use.

DataSet Data Reader

Can be used without a connection Requires a continuous connection to the data
store

Serializable across application domains Used by reference across application domains

Stores heterogeneous data Provides access to data from a single source

Is updateable and uses a data adapter for updates Read-only; must roll your own method to
update

272 Day 11

However, this text uses the Microsoft term to avoid any confusion when you read the online
documentation.

15 3869 ch11 5/20/02 1:22 PM Page 272

Using Data Readers 273

11

Can be strongly typed No property access to columns returned

Can be sorted and filtered Rows can’t be retrieved in an arbitrary order
or filtered

Performs well but consumes resources on No resource consumption on the middle tier
the middle tier

Traversing a Data Reader
As mentioned yesterday in discussing the command object, the ExecuteReader method
is used to create a data reader object that can then be traversed. Before calling the
method, the command must be associated with a connection object and the connection
opened using its Open method.

After the data reader has been opened, it can be traversed using its Read method. The
Read method positions the data reader at the next available row and so must be called
prior to reading data from the first row. In the process, the Read method returns True if
more rows are available and False after all the rows have been read. When the data read-
er is exhausted, the Close method of the data reader and the connection should be called
to ensure that the connection is destroyed or released to the pool. The typical pattern for
using a data reader is shown in Listing 11.1, assuming that con is a valid connection
object:

LISTING 11.1 Opening a data reader. This listing opens and traverses a data reader.

Dim dr As SqlDataReader

Try
con.Open()
dr = com.ExecuteReader()
Do While dr.Read()
‘ Process the row

Loop
Catch e As Exception

‘ Handle the error
Finally

dr.Close()
con.Close()

End Try

TABLE 11.1 continued

DataSet Data Reader

15 3869 ch11 5/20/02 1:22 PM Page 273

Of course, you can alternatively pass the CloseConnection command behavior to the
ExecuteReader method to automatically close the connection when the data reader is
closed. As you learned on Day 1, “ADO.NET in Perspective,” the fact that developers
don’t have to check an EOF or BOF property (as in an ADO Recordset) to determine
when the result set is exhausted reduces programming errors. This is because the Read
method must be placed at the top of the loop and therefore can’t be forgotten as the
MoveNext method sometimes was.

274 Day 11

If you attempt to use the pattern shown in Listing 11.1 in C#, you’ll notice
that you get the compiler error Use of unassigned local variable dr
referring to the Finally block. To avoid this, you need to initialize dr to null
in the declaration.

Tip

While the data reader is open, the associated connection object will be busy, so it can’t
be used to execute other statements. Attempting to execute a second command on the
connection results in an exception.

It should be stressed that this is even the case with the SqlClient provider
because this behavior is different from what you might have experienced in
the past working with SQL Server. Previously, it was possible for ADO to gen-
erate multiple connections automatically when the original connection was
busy handling results for a fire-hose cursor.

Note

While in the loop, you can use any of the methods exposed in the IDataRecord interface
or those custom implemented by the data reader class to access the data.

Retrieving Single Values
To retrieve single values from each column returned, you can use any of the 15 methods
shown in Table 8.6 that return strongly typed data and accept the ordinal value of the col-
umn. For example, to retrieve the values from the usp_GetTitles stored procedure, you
would use the code in Listing 11.2.

LISTING 11.2 Retrieving values. This listing shows the use of the various methods of the
data reader to retrieve strongly typed values.

Dim isbn, title, desc, author, publisher As String
Dim price, discount, bulkDiscount As Decimal
Dim pubDate As Date

15 3869 ch11 5/20/02 1:22 PM Page 274

Using Data Readers 275

11

Dim bulkAmount As Short
Dim catId As Guid

dr = com.ExecuteReader()

Do While dr.Read()
isbn = dr.GetString(0) ‘nchar(10)
title = dr.GetString(1) ‘nvarchar(100)
If Not dr.IsDBNull(2) Then desc = dr.GetString(2) ‘nvarchar(2048)
author = dr.GetString(3) ‘nvarchar(250)
pubDate = dr.GetDateTime(4) ‘smalldatetime
price = dr.GetDecimal(5) ‘money
If Not dr.IsDBNull(6) Then discount = dr.GetDecimal(6) ‘money
If Not dr.IsDBNull(7) Then bulkDiscount = dr.GetDecimal(7) ‘money
If Not dr.IsDBNull(8) Then bulkAmount = dr.GetInt16(8) ‘smallint
catId = dr.GetGuid(10) ‘uniqueidentifier
If Not dr.IsDBNull(11) Then publisher = dr.GetString(11) ‘nchar(5)

Loop

When a specific method is called, such as GetDecimal, the data returned must be
of the correct type or an exception will result because no conversion is attempt-

ed. This implies that null values returned from the data store will cause exceptions. You
can check for this using the IsDBNull method and passing in the ordinal of the column to
check. In this case, only those columns that can accept null values in SQL Server need to
be checked for nulls.

Notice that the SQL Server data types are shown in the comment at the end of each line.
As mentioned on Day 8, “Understanding .NET Data Providers,” the data types for the
data store will map to types in the DbType enumeration, which in turn map to types in the
Common Type System (CTS). Behind-the-scenes conversions will be done to convert
from the SQL Server types to the appropriate DbType value.

LISTING 11.2 continued

ANALYSIS

You can find definitions of each of the DbType enumeration values in the
online documentation.

Note

Data providers can also include their own set of types to provide the mappings, as is
done for both the SqlClient and the OleDb providers through the SqlDbType and
OleDbType enumerations. In addition, the SqlDataReader class exposes a set of methods
that return data from a data reader using the types from the System.Data.SqlTypes
namespace. As a result, you could rewrite Listing 11.2 as shown in Listing 11.3.

15 3869 ch11 5/20/02 1:22 PM Page 275

LISTING 11.3 Using provider types. This listing shows the use of SqlClient-specific types.

Dim isbn, title, desc, author, publisher As SqlTypes.SqlString
Dim price, discount, bulkDiscount As SqlTypes.SqlMoney
Dim pubDate As SqlTypes.SqlDateTime
Dim bulkAmount As SqlTypes.SqlInt16
Dim catId As SqlTypes.SqlGuid

dr = com.ExecuteReader

Do While dr.Read()
isbn = dr.GetSqlString(0)
title = dr.GetSqlString(1)
If Not dr.IsDBNull(2) Then desc = dr.GetSqlString(2)
author = dr.GetSqlString(3)
pubDate = dr.GetSqlDateTime(4)
price = dr.GetSqlMoney(5)
If Not dr.IsDBNull(6) Then discount = dr.GetSqlMoney(6)
If Not dr.IsDBNull(7) Then bulkDiscount = dr.GetSqlMoney(7)
If Not dr.IsDBNull(8) Then bulkAmount = dr.GetSqlInt16(8)
catId = dr.GetSqlGuid(10)
If Not dr.IsDBNull(11) Then publisher = dr.GetSqlString(11)

Loop

Using these provider-specific types is both faster and prevents loss of precision. This is
because the conversion that is done when calling the generic methods such as
GetDecimal isn’t performed, and the data returned from SQL Server can be mapped
directly to the types in the SqlTypes namespace. In addition, the SqlClient types handle
null values as you would expect for SQL Server, which makes coding with them simpler.
As you might have guessed, the OleDb provider provides no other types because it’s a
generic provider.

To retrieve the data without strong-typing, you can use the GetValue method, which
places the value in an Object that later can be cast to the proper type. Because the field
values are also placed in a collection, they can be alternatively accessed using the Item
collection either through the Item property (in VB only because Item is the indexer) or
the shortcut syntax. In other words, the following three lines of code are identical in their
results:

o = dr.GetValue(1)

o = dr.Item(1)

o = dr(1)

The advantage, however, of using either of the second two techniques is that the Item
property is overloaded to accept either the ordinal or the name of the column.

276 Day 11

15 3869 ch11 5/20/02 1:22 PM Page 276

Using Data Readers 277

11

As a result, if you’re using the strongly typed methods rather than use the ordinal values,
you can instead call the GetOrdinal method, which accepts the name of the column and
returns the ordinal like so:

Dim ordIsbn, ordTitle As Integer

ordIsbn = dr.GetOrdinal(ìISBNî)
ordTitle = dr.GetOrdinal(ìTitleî)
isbn = dr.GetString(ordIsbn)
title = dr.GetString(ordTitle)

Obviously, the first two statements should be executed before the loop so as not to incur
the overhead of looking up the ordinal value with each iteration. In addition, GetOrdinal
first performs a case-sensitive search, so using the proper case for the column names will
also increase performance.

Although it wasn’t shown in the previous code snippets, you can also retrieve binary data
from a data reader in several ways. If the amount of data is small, you can simply read
the contents directly into an array of bytes as follows:

Dim buff() As Byte

‘ Open the data reader and call Read

buff = CType(dr.Item(4), Byte())

In this case, the cover column from the Titles table in the ComputeBooks data-
base is retrieved as ordinal 4 and its data is placed directly into the Byte array.

As in this example, this technique is good for data that you know will be of a small size,
such as the cover image of a book. Of course, for providers that support it, you can also
use the specific types; in this case, SqlBinary in conjunction with the GetSqlBinary
method.

When the data grows larger, however, you might want to read the data in smaller chunks
and buffer it in a MemoryStream object before working with it. This can be accomplished
using the GetBytes or GetChars methods of the IDataRecord interface. These methods
enable you to populate a Byte array using an offset read from the data reader. As implied
by the names, GetBytes reads the data as individual bytes, whereas GetChars reads the
data as characters. To illustrate the concept, consider the ReadBinaryData method in
Listing 11.4.

ANALYSIS

15 3869 ch11 5/20/02 1:22 PM Page 277

LISTING 11.4 Reading binary data. This method is used to read data from a column in a
data reader that stores binary data.

Private Function ReadBinaryData(ByRef dr As IDataRecord, _
ByVal ordinal As Integer) As MemoryStream

Dim len, offset As Long
Dim buff(4095) As Byte
‘ Memory stream to hold the result
Dim memoryBuffer As New MemoryStream()

Do
‘ Get the next 4096 bytes
len = dr.GetBytes(4, offset, buff, 0, 4096)
‘ Write the data to the memory stream
memoryBuffer.Write(buff, 0, CInt(len))
‘ Increment the offset
offset = offset + len

Loop Until len < 4096

‘ Reset the position to the beginning
memoryBuffer.Position = 0
Return memoryBuffer

End Function

As you can see in Listing 11.4, the method is passed in a reference to an object,
such as SqlDataReader or OleDbDataReader, that implements the IDataRecord

interface along with the ordinal of the column that contains the binary data. Using the
interface rather than the actual type is an example of polymorphism, which allows your
code to be more flexible in working with any object that implements the IDataRecord
interface. After instantiating the MemoryStream to hold the result, the GetBytes method is
called in a loop to read each 4KB chunk of data and write it to the MemoryStream using
the Write method. The offset is then incremented to make sure that data is read starting
with the appropriate location the next time through the loop. After all the data is read, the
Position property of the MemoryStream is used to place the pointer back to the begin-
ning of the stream before returning the stream to the client.

The calling code would then look as follows:

Dim memoryBuffer As New MemoryStream()
‘ Execute the data reader

Do While dr.Read()
‘ Read other columns
memoryBuffer = ReadBinaryData(CType(dr, IDataRecord), 4)
‘ Process the memoryBuffer perhaps writing it to a file

Loop

278 Day 11

ANALYSIS

15 3869 ch11 5/20/02 1:22 PM Page 278

Using Data Readers 279

11

As mentioned yesterday, the SequentialAccess command behavior can also be used to
ensure that the data from the data reader is only accessed sequentially. In other words,
you can read from the columns only in their ordinal sequence (although columns can be
skipped). In addition, you must read the data within a column in order as well. Violating
either of these rules causes an InvalidOperationException to be generated that con-
tains an error message detailing the violation. Using SequentialAccess allows the data
reader to retrieve large binary columns on demand, as streams, rather than retrieving the
entire column at once.

Retrieving Multiple Values
The second way to retrieve data from a data reader is to use the methods that return all
the column values as an array. The IDataRecord interface supports only one such
method, GetValues, which populates an array of type System.Object passed to it with
the values of the columns. The method then returns the number of elements in the array.
Because the returned values are in an array of type System.Object, the elements of the
array can later be cast to the appropriate types in order to work with them in the applica-
tion. For example, the code in Listing 11.5 could be used to retrieve all the customers
from the ComputeBooks database who have valid addresses for creating a text file for
use in an application.

LISTING 11.5 Reading multiple values. This listing reads all of the items in each row of
the data reader using the GetValues method.

Dim values(6) As Object
Dim fs As New FileStream(“customers.txt”, FileMode.OpenOrCreate)
Dim outputFile As New StreamWriter(fs)

con.Open()
dr = ins.ExecuteReader(CommandBehavior.CloseConnection)

Do While dr.Read()
dr.GetValues(values)
WriteCustomer(values, outputFile)

Loop

dr.Close()
fs.Close()

You’ll notice in Listing 11.5 that the customers.txt file is opened or created and a
StreamWriter from the System.IO namespace is used to write data to the file.

After the connection and data reader are opened, the GetValues method retrieves the val-
ues on the current row and passes them along with the StreamWriter to the
WriteCustomer method shown in Listing 11.6.

ANALYSIS

15 3869 ch11 5/20/02 1:22 PM Page 279

In actuality, the array passed to the GetValues method can either have fewer or more ele-
ments than the number of fields returned from the data reader. If fewer elements are in
the array, the GetValues method will simply populate as many as it can. Likewise, if the
array is larger, the extra elements won’t be populated. Although this behavior is ultimate-
ly flexible, it can lead to problems if you don’t make sure that you’re getting all the val-
ues you need. In addition, passing an array that contains fewer elements than the number
of fields returned from the data reader wastes server resources. You should always ask
only for the data you need.

If you want to size the array correctly, you can first inspect the value of the FieldCount
property of the data reader and then initialize the array accordingly, like so:

Dim values(dr.FieldCount - 1) As Object

Of course, this statement must follow the call to ExecuteReader. Alternatively, VB
developers could use the ReDim statement after first declaring the array without the rank,
as in

Dim values() As Object
ReDim values(dr.FieldCount - 1)

C# developers, on the other hand, would simply do the following:

Object[] values;
values = new Object[dr.FieldCount];

280 Day 11

In VB, the array declaration denotes the upper bound of the array, whereas
in C#, the declaration contains the number of elements in the array. Because
both are zero-based, in VB you need to subtract 1 from the FieldCount
because the first element is 0.

Tip

LISTING 11.6 Writing the array. This method accepts the values from the GetValues
method and uses it to write data as a StreamWriter.

Private Sub WriteCustomer(ByVal custValues() As Object, _
ByRef tw As StreamWriter)

Dim fName, lName, city, stateProv, postalCode As String
Dim name, location As String

‘ Extract the data
fName = Trim(custValues(1).ToString)
lName = Trim(custValues(2).ToString)
city = Trim(custValues(3).ToString)
stateProv = Trim(custValues(5).ToString)

15 3869 ch11 5/20/02 1:22 PM Page 280

Using Data Readers 281

11

postalCode = Trim(custValues(6).ToString)

‘ Concatenate
name = lName & “, “ & fName
location = city & “, “ & stateProv & “ “ & postalCode

‘ Write Address
tw.WriteLine()
tw.WriteLine(name)
tw.WriteLine(custValues(4).ToString)
tw.WriteLine(location)

End Sub

In Listing 11.6, it happens that each of the elements of the custValues array is
ultimately of type String, so the ToString method can be called to create

strings for each of the data elements. One of the interesting side effects of this technique
is that you don’t need to check the IsDBNull method we discussed earlier. This is
because the ToString method simply returns an empty string (“”) rather than Nothing
(null in C#). If the CType function were used to cast the data to a String, an exception
would have been thrown because a String can’t contain a null value. An empty string is
also returned from the ToString method of the Convert class. Of course, if you use this
technique, you need to be sure that you can live with empty strings in your data.

After the data has been retrieved, it’s manipulated to create a crude address label and
then written to the file using the WriteLine method of the StreamWriter object.

In addition to the GetValues method that all data readers will expose, data readers can
also expose their own GetValues method to return the data in the types appropriate for
the data store. SqlClient does this by exposing a GetSqlValues method that populates an
array of type System.Object with data in the native SQL Server data types from the
SqlTypes namespace.

LISTING 11.6 continued

ANALYSIS

As you learned on Day 8, data readers don’t support functionality like the
GetRows method found in ADO 2.x because there is no reason for it. If you
want to read all the data and cache it, you should simply use the DataSet
instead.

Note

15 3869 ch11 5/20/02 1:22 PM Page 281

Advanced Features
In addition to simply retrieving data using a data reader, you can also use it to view
schema information, pass result sets between tiers in a multi-tier application, and read
multiple result sets generated by the command object.

Retrieving the Schema
In addition to the actual data from the result set, a data reader can also be used to retrieve
the schema for the data using the GetSchemaTable method. This method is exposed by
the IDataReader interface and is implemented by both the SqlClient and OleDb data
readers. You can call this method anytime after the ExecuteReader method has been
invoked, even after its data has been read using the Read method. You might use this
method if you want to dynamically create SQL DDL statements or XSD documents
based on the data from the data reader.

282 Day 11

Although you could use GetSchemaTable to do things such as create an XSD
document, it would be far simpler to use the technique we discussed on Day
7, “XML and the DataSet.” In that technique, you can load the schema into
a DataSet using the FillSchema method of a data adapter and then extract
the schema using the WriteXmlSchema or GetXmlSchema methods.

Tip

The GetSchemaTable method returns a DataTable populated with provider-specific col-
umn information. For example, the SqlClient provider creates a table with 22 columns
that provide everything from the name of the column to the CTS data type it maps to.
The OleDb provider returns a table with 18 columns that contain data from the
GetColumnsRowset method of the OLE DB IColumnsRowset interface.

You can find the columns for both providers and their definitions in the
online documentation under the GetSchemaTable method for each provider.

Note

Which of the columns are populated depends on the behaviors passed to the
ExecuteDataReader method. Typically, the minimum amount of information is returned,
including the column names, their data types, and sizes. However, you can usually
retrieve additional information by using the KeyInfo value of the CommandBehavior enu-
meration. This enables you to determine which columns are unique and the names of the
underlying tables in the data store. When you couple this behavior with SchemaOnly
only, you can retrieve only the metadata for the data reader, like so:

15 3869 ch11 5/20/02 1:22 PM Page 282

Using Data Readers 283

11

dr = ins.ExecuteReader(CommandBehavior.KeyInfo Or _
CommandBehavior.SchemaOnly or CommandBehavior.CloseConnection)
Dim dt As New DataTable()
dt = dr.GetSchemaTable()
dr.Close()

Using a Data Reader Polymorphically
As we briefly touched on yesterday, the CloseConnection behavior passed to the
ExecuteReader method enables you to return a data reader from a method and still
ensure that its connection is closed or returned to the pool promptly when the data reader
is closed. This idea, coupled with the fact that all data readers implement the
IDataReader interface, enables you to take advantage of polymorphism to write code
that works with any provider. For example, the WriteXml method shown in Listing 11.7
writes the data from the passed-in data reader to an XML file using the XmlTextWriter
class from the System.Xml namespace.

LISTING 11.7 Using polymorphism. This method can be used to write the data in any
data reader to a simple XML file because all data readers inherit from the IDataReader
interface.

Private Sub WriteXml(ByVal dr As IDataReader, _
ByVal fileName As String, ByVal root As String)

‘ Check the arguments
If dr Is Nothing OrElse dr.IsClosed Then Return

Dim xtr As New XmlTextWriter(fileName, System.Text.Encoding.Default)
Dim i As Integer
Dim fields As Integer = dr.FieldCount

xtr.WriteStartDocument()
xtr.WriteComment(“Produced “ & Now)
xtr.WriteStartElement(root)

Do While dr.Read()
xtr.WriteStartElement(“row”)
For i = 0 To dr.FieldCount - 1

xtr.WriteElementString(dr.GetName(i), Trim(dr.Item(i).ToString))
Next
xtr.WriteEndElement()

Loop

xtr.WriteEndElement()

‘ Close the data reader and connection
dr.Close()

15 3869 ch11 5/20/02 1:22 PM Page 283

xtr.Close()

End Sub

You’ll notice that in Listing 11.7, all the properties and methods of the
IDataReader interface can be called, such as FieldCount, Read, GetName, and

Close. As a result, the calling code can pass in a SqlDataReader, OleDbDataReader, or
other class that implements the IDataReader interface.

Of course, this technique can’t be used when you need to call methods that are exposed
only by a specific data reader, such as the GetSqlValues method of the SqlDataReader
class.

Returning Multiple Result Sets
As you learned on Day 8, one of the interesting things you can do with a data reader is
read multiple result sets. Typically, multiple result sets are generated by creating com-
mands that include multiple SELECT statements in a batch. When the first result set is
exhausted, the NextResult method can be called and will return True and position the
data reader at the next result set if one exists. The next result set can then be traversed
using the Read method. Returning multiple result sets in this way enables you to create
stored procedures that encapsulate multiple SELECT statements and therefore centralize
the logic on both the client and the server.

As an example, consider the generic method shown in Listing 11.8 that reads multiple
result sets from a stored procedure and populates ArrayList objects with the results. The
array lists can then be bound to controls such as the ComboBox on a Windows Form.

LISTING 11.8 Retrieving multiple result sets. This method extracts all the result sets from
a data reader and places them in an ArrayList of ArrayList objects that contain the
structure LookupData.

Private Function ExtractLookups(ByVal dr As IDataReader) As Array

‘ Make sure the data reader is not closed
If dr Is Nothing OrElse dr.IsClosed Then Return Nothing

Dim results As New ArrayList()
Dim moreResults As Boolean = True

Try
‘ Keep looping while there are more results
Do While moreResults

284 Day 11

LISTING 11.7 continued

ANALYSIS

15 3869 ch11 5/20/02 1:22 PM Page 284

Using Data Readers 285

11

Dim res As New ArrayList()
results.Add(res)
Do While dr.Read
res.Add(New LookupData(dr.Item(0), dr.Item(1)))

Loop
‘ Check to see if there are more results
moreResults = dr.NextResult()

Loop

Return results.ToArray()
Catch e As Exception
Throw e

Finally
dr.Close()

End Try

End Function

Private Structure LookupData
Public key As Object
Public value As Object
Sub New(ByVal newKey As Object, ByVal newValue As Object)
key = newKey
value = newValue

End Sub
End Structure

As you can see in Listing 11.8, the ExtractLookups method accepts a data read-
er using the IDataReader interface and returns an Array object. In the Try block,

the method loops while there are more result sets to read. Each time through the loop,
the method creates a new ArrayList object called res and adds it to the results
ArrayList used to temporarily hold the results until the method returns. Each row from
the data reader is then read into a structure called LookupData that simply exposes key
and value fields. The structure is then placed into the inner ArrayList.

LISTING 11.8 continued

ANALYSIS

This method assumes that each result set contains at least two columns, the
first being the primary key value and the second a description that would be
displayed to the user.

Note

After all the data has been read, the NextResult method is called to determine whether
another result set is present. If so, the loop will be executed again and a new ArrayList

15 3869 ch11 5/20/02 1:22 PM Page 285

will be added the results ArrayList. After all the results have been extracted, the results
ArrayList is converted into an Array of type System.Object using the ToArray method.

286 Day 11

An alternative and simpler technique is simply to read both result sets into
the tables of a DataSet and then bind them to the controls.

Tip

A client could then call the ExtractLookups method like so:

Dim results As Array

results = ExtractLookups(bus.GetLookups())

results(0) = cbPublishers.DataSource
cbPublishers.ValueMember = “Key”
cbPublishers.DisplayMember = “Value”
results(1) = cbCategories.DataSource
cbCategories.ValueMember = “Key”
cbCategories.DisplayMember = “Value”

In this case, the bus variable represents a business object whose GetLookups
method executes a stored procedure. This stored procedure returns a

SqlDataReader containing data from the Publishers and Categories tables in the
ComputeBooks database. The data reader is passed to the ExtractLookups method,
which returns an array in the results variable. Because the array contains ArrayList
objects, they can be used to populate the DataSource property of the cbPublishers and
cbCategories ComboBox controls (System.Windows.Forms.ComboBox). The fields from
the LookupData structure can then be used to populate the ValueMember and
DisplayMember properties of the control so that the proper data will be displayed. This
works because controls such as ComboBox that derive from
System.Windows.Forms.ListControl can bind to any class that implements the IList
interface like an ArrayList.

For this code to work efficiently, the GetLookups method would need to use
the CloseConnection command behavior when opening the data reader.

Note

Although the controls in the System.Windows.Forms namespace can’t bind directly to a
data reader, the controls in the System.Web.UI.WebControls, such as the DataGrid,
DataList, DropDownList, and CheckBoxList, can because they can bind to any object
that supports the IEnumerable interface, which the SqlDataReader and

ANALYSIS

15 3869 ch11 5/20/02 1:23 PM Page 286

Using Data Readers 287

11

OleDbDataReader do. This makes for a highly efficient way to read static data and bind it
to controls on a Web Form.

In addition to returning multiple result sets serially, the OleDb provider can be used to
return hierarchical result sets using the Microsoft Data Shape (MSDataShape) OLE DB
provider. Although largely superceded by the DataSet, the basic idea is that a nested
result set (or chapter, as it’s called in OLE DB) is accessible through a column in the
data reader. The column can then be cast to an OleDbDataReader object and traversed. A
simple example adapted from the online documentation is shown in Listing 11.9.

LISTING 11.9 Using the MSDataShape provider. This code uses the data shape provider
to read through the Orders and OrderDetails tables in the ComputeBooks database.

Dim con As OleDbConnection = New OleDbConnection(_
“Provider=MSDataShape;Data Provider=SQLOLEDB;” & _
“Data Source=localhost;Integrated Security=SSPI;Initial Catalog=ComputeBooks”)

Dim com As OleDbCommand = New OleDbCommand(_
“SHAPE {SELECT OrderID, OrderDate FROM Orders} “ & _
“ APPEND ({SELECT OrderID, ISBN, Quantity FROM OrderDetails} AS Details “ & _
“ RELATE OrderId TO OrderId)”, con)

Dim orders, details As OleDbDataReader

con.Open()
orders = com.ExecuteReader()

Do While orders.Read()
‘ Read the order data
details = CType(orders.GetValue(2), OleDbDataReader)
Do While details.Read()
‘ Read the details rows

Loop
details.Close()

Loop

orders.Close()
con.Close()

In Listing 11.9, the OleDbConnection and OleDbCommand objects are instantiated
and populated with the appropriate ConnectionString and CommandText argu-

ments in their constructors. Although the syntax of the MSDataShape provider is beyond
the scope of this book, it should be noted that rather than using inline SELECT statements
to retrieve the Orders and OrderDetails tables, you can, with SQL Server, call stored
procedures in their place. After the connection and data reader are open, the Orders

ANALYSIS

15 3869 ch11 5/20/02 1:23 PM Page 287

result set can be traversed as normal. However, the third column (ordinal 2) will be
appended to the result set and consist of a chapter that contains the related OrderDetails
rows. This column is already of type OleDbDataReader, so you can simply cast it to the
appropriate type using the CType function. After the inner results are exhausted, the
details data reader is closed. Finally, the orders data reader is closed along with the
connection object.

288 Day 11

You shouldn’t use the CloseConnection command behavior when opening
the data reader. Doing so causes the connection to be closed when the
details data reader is closed within the outer loop.

Note

As you can imagine, while in their respective loops, the Depth property of the orders
data reader will return 0, whereas the Depth property of the details data reader will
return 1.

Although using the data shape provider might come in handy if you have existing code
that uses it, keep in mind that you get the same result by filling a DataSet with tables
that contain the Orders and OrderDetails rows and then creating a relationship between
the tables, as you learned during the first week.

Data Modification Statements
Although I’m reluctant to mention it, the command used to call the ExecuteReader
method on can also execute other statements that don’t return results. For example, the
CommandText property for a SqlCommand object might look as follows:

SELECT PubCode, Name FROM Publishers;UPDATE PubStats SET Access = Access + 1

Of course, alternatively, and more appropriately, a stored procedure would be used to
encapsulate both these statements. In this case, the database would not only retrieve the
Publishers but would update the PubStats table as well. Although mixing SELECTs and
other statements isn’t recommended, the UPDATE statement will execute on the data store
as soon as the ExecuteReader method is called and before the Read method is called,
even though it appears after the SELECT statement. After the data reader is closed, its
RecordsAffected property will be set to the number of rows inserted, updated, or delet-
ed by the UPDATE statement. In the event that more than one data modification statement
is included in the batch or stored procedure, the sum of all the inserted, updated, and
deleted rows will be placed in the RecordsAffected property.

15 3869 ch11 5/20/02 1:23 PM Page 288

Using Data Readers 289

11

One note of caution and a reason you should avoid mixing data retrieval and modifica-
tion statements is that your ability to determine whether the data modification statements
failed is dependent on the order of the statements in the stored procedure or batch. For
example, if the statements shown earlier were executed and the UPDATE statement caused
an error because the PubStats table didn’t exist, the data reader would appear to execute
normally and you could read its values with the Read method. However, the
RecordsAffected property would be set to –1. Also, depending on the provider, you
might not be able to even see the error message if it’s not returned in the InfoMessage
event of the connection (as it’s not when using the SqlClient provider). If the statements
were reversed, however, a SqlException would be thrown before the SELECT statement
was executed and so you could catch it with a Try Catch block. The situation is further
complicated if you have more than one data modification statement, in which case every-
thing up to the statement that failed would execute and everything after it would not.

Because of the inherent indeterminacy in mixing retrieval and modification statements,
you should stay away from such designs in your applications and segregate the state-
ments that retrieve data from those that modify data in separate stored procedures.

If the command simply returns rows, the RecordsAffected property will be
set to –1.

Note

In future versions of the SqlClient providers, look for InfoMessage events to
be fired for each data modification statement.

Note

Summary
Data readers provide an efficient means to access data from a data store using a streamed
programming model. The various methods provided by the data reader enable you to
get the data one column at a time or as an array. Some providers even implement
provider-specific type information to make the access more efficient. You can also use a
data reader polymorphically in order to promote code reuse and separation of the tiers in
a multi-tiered application. Data readers also expose some advanced functionality such as
retrieving schema information, mixing retrieval and data modification statements, and
working with OLE DB hierarchical result sets.

Now that you’re fully familiar with the streamed programming model, tomorrow we’ll
once again explore the cached model by showing the techniques used to work with data
adapters.

15 3869 ch11 5/20/02 1:23 PM Page 289

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. Why can’t you pass a data reader by value between application domains?

Data reader classes are derived from MarshalByRefObject, which can be refer-
enced from remote application domains but not serialized and copied between
them. As a result, you can pass a data reader by reference but not by value.
However, passing it by reference means that each time a method or property of the
data reader is accessed from the remote domain, a call to the hosting domain must
be made and the results returned. This results in unnecessary overhead.

2. When would you use GetValues instead of methods such as GetString, GetInt32,
and GetByte?

The GetValues method retrieves all the columns in the row and places them in an
array of type System.Object. This is more efficient than reading each column indi-
vidually, although to use the data with a strong type, you then need to access the
element of the array and cast it to the appropriate type.

3. How can I retrieve a large binary value with a data reader?

For large binary values, you would typically want to call the GetBytes method on
the column repeatedly, each time retrieving a specific amount of data and placing it
in a buffer (an array of bytes).

4. Why would you declare a parameter as IDataReader rather than as SqlDataReader
or OleDbDataReader?

Creating methods that accept parameters or variables declared as the IDataReader
interface rather than a derived type allows your code to work with any .NET Data
Provider. Two specific examples include writing code in an ASP.NET page that
casts the data reader returned from a data access class into IDataReader and then
binds the data reader to a DataGrid, and writing methods that manipulate any
object that implements the IDataReader interface.

Exercise
Write a method that uses a SqlDataReader to save the cover images of all titles for
which images exist in the database. (Note that the images are JPEG and are all the same
cover.)

290 Day 11

15 3869 ch11 5/20/02 1:23 PM Page 290

Using Data Readers 291

11

Answers for Day 11
Exercise Answer
One possible solution might be

Private Sub SavePhotos(ByVal connect As String)

Dim con As New SqlConnection(connect)
Dim com As New SqlCommand(_
“SELECT ISBN, cover FROM Titles WHERE cover IS NOT NULL”, con)

Dim dr As SqlDataReader
Dim isbn As String
Dim cover() As Byte

Try
con.Open()
dr = com.ExecuteReader(CommandBehavior.CloseConnection)

Do While dr.Read
isbn = Trim(dr.GetString(0))
cover = CType(dr.GetValue(1), Byte())

‘ Now write out the file
Dim fs As New FileStream(isbn & “.jpg”, FileMode.OpenOrCreate)
Dim br As New BinaryWriter(fs)
br.Write(cover)
br.Close()
fs.Close()

Loop

Catch e As Exception
‘ Handle the error
Console.WriteLine(e.Message)

Finally
dr.Close()

End Try

End Sub

15 3869 ch11 5/20/02 1:23 PM Page 291

15 3869 ch11 5/20/02 1:23 PM Page 292

DAY 12

WEEK 2

Using Data Adapters
On Day 1, “ADO.NET in Perspective,” you learned how ADO.NET was
designed with modern distributed applications in mind. One of the primary
architectures used in these types of applications entails the use of disconnected
data. In this book, we’ve spent a great deal of time discussing the DataSet class
and how it can be used to store and work with disconnected data. However, in
enterprise applications, the most common source for, and the destination of,
that data is a persistent store such as SQL Server or Oracle. The data adapter is
the component of the .NET Data Provider that moves data into and out of the
DataSet. Data adapters are classes implemented by the provider that typically
derive from DbDataAdapter and inherit the IDbDataAdapter interface.

Although you’ve run across data adapters in the previous days, today you’ll
explore data adapters in detail. Specifically, you’ll focus on the following con-
cepts:

• How the data adapter fills a DataSet and what rules it follows when
doing so

• How to control the amount of data read into a DataSet

16 3869 ch12 5/20/02 1:21 PM Page 293

• How data adapters synchronize the contents of a DataSet with a data store

• How to handle issues of concurrency and isolation with data adapters

Retrieving Data
The first method that most developers will invoke when using a data adapter is the Fill
method. The Fill method is typically overloaded to support a variety of arguments that
are used to populate data either in a DataTable or in one or more DataTable objects con-
tained in a DataSet. For example, the Fill method of OleDbDataAdapter contains six
public signatures that enable you to populate a DataTable, a DataSet, a DataTable with
a specific mapping name, a specific range of rows in table in a DataSet, and even a
DataTable or DataSet with data from an ADO Recordset object.

294 Day 12

In addition, OleDbDataAdapter supports four protected signatures for the
Fill method that are inherited from DbDataAdapter but can’t be accessed
because OleDbDataAdapter is a sealed class (NotInheritable in VB). This
implies that developers writing their own .NET Data Providers can inherit
their data adapter from DbDataAdapter and override these methods to pro-
vide custom functionality.

Note

The SqlDataAdapter provides the same set of signatures with the exception of not being
able to read from an ADO Recordset.

When the Fill method executes, it actually executes the command object referenced by
its SelectCommand property. Typically, the SelectCommand is populated using the con-
structor either by passing in a string that equates to the CommandText property of the
command object or the instantiated command object itself. If only the command text is
passed, the connection object must also be passed in order for the Fill method to know
which data store to execute the SelectCommand against. As a result, the typical pattern is
shown in Listing 12.1.

LISTING 12.1 Using a data adapter. This listing shows the typical pattern used to popu-
late a DataSet with a data adapter.

SqlConnection con = new SqlConnection(_connect);
SqlCommand com = new SqlCommand(“usp_GetTitles”,con);
com.CommandType = CommandType.StoredProcedure;

SqlDataAdapter da = new SqlDataAdapter(com);
DataSet ds = new DataSet();

16 3869 ch12 5/20/02 1:21 PM Page 294

Using Data Adapters 295

12

try
{
da.Fill(ds);

}
catch (SqlException e)

{
// Handle error

}

As you can see from Listing 12.1, the connection object is first instantiated and passed to
the constructor of the SqlCommand object, which is in turn passed to the constructor of
the SqlDataAdapter. Note that the DataSet must be instantiated before passing it to the
Fill method. Not doing so results in an exception.

LISTING 12.1 continued

As you learned on Day 9, “Using Connections and Transactions,” an excep-
tion might be raised in the constructor of the connection object if the con-
nection string is invalid. As a result, if you allow the connection string to be
built dynamically, you should wrap the instantiation of the SqlConnection
object in a try catch block.

Tip

One of the things you should notice in this code snippet is that the connection needn’t be
opened before calling the Fill method. If the connection associated with the
SelectCommand isn’t open already, the data adapter will open and close it as needed.
Behind the scenes, the data adapter opens a data reader using the command object and
uses it to populate both the schema and the rows of the DataTable or DataSet passed to
the method.

The general rules that the Fill method uses are as follows:

• Tables and columns are created only if they don’t already exist.

• Column types are created based on a mapping of the Common Types System
(CTS) types to the types for a particular provider. You can find the complete list in
the online documentation under the topic “Mapping .Net Data Provider Data Types
to .NET Framework Data Types.”

• By default, the Fill method maps the result sets returned from the command to
data tables named Table, Table1, and so on. It then attempts to map the column
names returned from the data store to the columns of a DataTable. This can be
specified using table and column mappings.

16 3869 ch12 5/20/02 1:21 PM Page 295

• If tables and columns already exist, the existing schema is used and the value of
the MissingSchemaAction property is used to determine the course to take.

• As you learned on Day 4, “DataSet Internals,” primary keys aren’t created unless
they exist in the data store and the MissingSchemaAction property is set to
AddWithKey.

• When populating the rows, if the Fill method finds a matching primary key, the
data from the data store will be used to overwrite the data in the DataTable.

• If no primary key is found, the rows returned from the data store are simply
appended to the DataTable.

In the remainder of this section, we’ll take a look at how the schema is generated when
filling a DataSet and how table mappings work. We’ll also discuss a couple of advanced
techniques for populating data using a data adapter.

Schema Generation
As shown in the bulleted rules earlier, ultimately, the Fill method will populate either
one or more DataTable objects that are currently empty or that already contain schemas.
We’ll discuss exactly how this determination happens in detail in the next section.
However, in either case, the generation of the schema information for an individual
DataTable is controlled through the MissingSchemaAction property of the data adapter.
This property can be set to any of the values in the MissingSchemaAction enumeration,
as shown in Table 12.1.

TABLE 12.1 Schema generation. The MissingSchemaAction enumeration controls the
behavior of the data adapter during the schema generation process.

Value Description

Add The default. Adds any columns necessary to complete the schema.

AddWithKey Adds any columns and primary key information necessary to complete the
schema.

Error Throws an InvalidOperationException if the incoming schema doesn’t map
exactly to the existing schema of the DataTable.

Ignore Ignores any extra columns from the data store that don’t map to columns in
the DataTable.

Obviously, the choice of the MissingSchemaAction value can have a major impact on the
resulting data. It can also affect where you look for exceptions. Both the first and second
values won’t throw exceptions and will add any columns from the data store to the

296 Day 12

16 3869 ch12 5/20/02 1:21 PM Page 296

Using Data Adapters 297

12

already existing columns in the DataTable. As you learned on Day 4, the AddWithKey
option might also populate the AllowDBNull, MaxLength, AutoIncrement,
AutoIncrementSeed, and AutoIncrementStep properties of the DataColumn objects as
well as the PrimaryKey property of the DataTable, depending on the provider.

When using any of these options, the DataTable can contain additional
columns not populated by the Fill method. You can then populate these
programmatically, through user input, or even through calculated values
using the Expression property.

Tip

The Error value is the strictest of the MissingSchemaAction values and can be used to
make sure that the incoming data maps exactly to the schema of the DataTable. This
might be the case when you’re using a strongly typed DataSet, as we discussed on Day
6, “Building Strongly Typed DataSet Classes.” Note that an exception will be thrown
even if the DataTable doesn’t contain any columns. The Ignore value won’t cause an
exception and is useful when you might be populating a DataTable from multiple com-
mands that return variant numbers of columns. It is also useful if you want to protect
yourself against changes made to a stored procedure. Generally, of course, using Ignore
isn’t recommended. This is because you don’t want to get into the habit of requesting
more columns from the data store than you’ll use, thereby increasing the workload of the
data store unnecessarily.

Table Mappings
When passed a DataSet, the Fill method must first determine whether an existing
DataTable exists into which to place the rows returned from the SelectCommand. It does
this by looking at both the names of the existing tables and any table and column map-
pings that the data adapter has. By default, if no tables exist in the DataSet or none are
named Table, a new table with the name Table is created. Its columns are created using
the names and data types returned from the data store. As an alternative, the name of a
table can be passed as the second argument to the Fill method and it’ll be used to map
the result set. If the command returns multiple result sets, additional tables are created
with the names Table1, Table2, and so on. If the DataSet already contains tables, they’ll
be used as long as there are either table mappings or their names are Table, Table1, and
so on.

16 3869 ch12 5/20/02 1:21 PM Page 297

When using the overloaded signature and when passed a DataTable, the Fill method
first looks for a table mapping. If one isn’t found, it simply fills the table regardless of its
name, as you might expect. Both the MissingSchemaAction and MissingMappingAction

properties influence this process.

The end result is that these defaults ensure that the data can be added to the DataSet or
DataTable without any table or column mappings and regardless of what tables or
columns already exist.

Although this process allows all the data to be mapped to the DataSet or DataTable,
there are times when you want to make sure that the data is mapped to particular tables
and columns. This might be the case if you’re populating a table in a strongly typed
DataSet that contains column names that aren’t the same as those in the data store. In
addition, this might be the case when the DataSet was created using an XSD schema
supplied by a trading partner so that its data can be written to XML and sent to the part-
ner. In these cases, you can create custom table and column mappings by adding items
the DataTableMappingCollection object exposed by the TableMappings property of the
data adapter. As an example, consider the following snippet:

da.TableMappings.Add(“Titles”,”myTitles”);
da.TableMappings[0].ColumnMappings.Add(“Description”,”Desc”);
da.TableMappings[0].ColumnMappings.Add(“Title”,”BookTitle”);
da.TableMappings[0].ColumnMappings.Add(“Price”,”RetailPrice”);

da.Fill(ds,”Titles”);

In this example, a new table mapping is added to the data adapter with the source
name of Titles and the data table name of myTitles. Within the table mapping,

the DataColumnMapping is populated by passing the column name in the data store along
with the column name in the DataTable. The overloaded Fill method is then called in
order to use the table mapping. If the DataSet ds doesn’t already contain a DataTable
named myTitles, a new table named myTitles will be created with all the columns
returned from the result set. However, the three columns added to the column mappings
will be named accordingly rather than as they were named in the data store. If the table
already exists, it will contain any existing columns, new columns from the data store that

298 Day 12

If the Fill method encounters duplicate column names, they’ll be named
columnname1, columnname2, and so on. Unnamed columns (such as those
resulting from an aggregate function) will be named Column1, Column2,
and so on. As a result, you’ll want to make sure to avoid these names (as
you should anyway) and always use explicit names for your columns.

Note

ANALYSIS

16 3869 ch12 5/20/02 1:21 PM Page 298

Using Data Adapters 299

12

aren’t in the column mappings collection, and the three columns in the collection. This is
the case because the default for the MissingMappingAction property is Passthrough.

Passing the name of a table mapping to the Fill method as shown in the
previous code snippet is at first confusing to many developers. This is likely
the case because you can either pass in the name of the table mapping (the
first argument to the Add method of the DataTableMappingCollection
object) or the name of the table to create if no table mappings have been
defined for the data adapter.

Note

As you can imagine, if you create a table mapping, like so

da.TableMappings.Add(“Table”,”myTitles”);

you don’t need to pass the source name (Table in this case) to the Fill method. This
default table mapping (as reflected by the DefaultSourceTableName field of the data
adapter) will be used and the name of the new table will be set to myTitles. You can also
create default mappings for Table1, Table2, and so on, in the event that the
SelectCommand of the data adapter returns multiple result sets.

As just mentioned, the MissingMappingAction property influences the runtime behavior
when table and column mappings are involved, and can be set to one of the values of the
MissingMappingAction enumeration, as shown in Table 12.2.

TABLE 12.2 Mapping tables and columns. The MissingMappingAction enumeration con-
trols the behavior of the data adapter when mappings are being applied.

Value Description

Error Throws an InvalidOperationException if either the table mapping or an indi-
vidual column mapping is missing when the Fill method attempts to populate
a DataTable.

Ignore Any table or column that doesn’t have a defined mapping is ignored.

Passthrough The default. The table and columns are added to the DataSet and if a mapping
exists, it’s used as well.

As you can see from Table 12.2, the Error value is the strictest value and ensures that
you must have mappings and that those mappings consider all the result sets and
columns returned from the SelectCommand. As with the MissingSchemaAction, the
Ignore value can be used to ignore any tables or columns that aren’t a part of the map-
ping. Passthrough is the default and allows new table and columns to be integrated with
those defined in the mapping.

16 3869 ch12 5/20/02 1:21 PM Page 299

Of course, the MissingSchemaAction property works in combination so that, for exam-
ple, by using the Error value, you can ensure that the columns defined in the column
mappings already exist in the DataTable. Likewise, if the MissingSchemaAction prop-
erty is set to Add, the columns needn’t already have been created in the DataTable.

To give you an example of the strictest case where you want to make sure the result set is
fully mapped to a DataTable with a custom set of columns, consider the code in Listing
12.2.

LISTING 12.2 Using mappings. This code snippet creates table and column mappings for
use by the Fill method of the data adapter.

SqlConnection con = new SqlConnection(_connect);
SqlCommand com = new SqlCommand(“usp_GetTitles”,con);
com.CommandType = CommandType.StoredProcedure;
com.Parameters.Add(new SqlParameter(“@author”,author));

SqlDataAdapter da = new SqlDataAdapter(com);
DataSet ds = new DataSet();
ds.ReadXmlSchema(schemaStream);

try
{
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;
da.MissingMappingAction = MissingMappingAction.Error;

da.TableMappings.Add(“Table”,”Titles”);
da.TableMappings[0].ColumnMappings.Add(“ISBN”,”ISBN”);
da.TableMappings[0].ColumnMappings.Add(“Author”,”Author”);
da.TableMappings[0].ColumnMappings.Add(“Description”,”Desc”);
da.TableMappings[0].ColumnMappings.Add(“Title”,”BookTitle”);
da.TableMappings[0].ColumnMappings.Add(“Price”,”RetailPrice”);
da.TableMappings[0].ColumnMappings.Add(“Discount”,”Discount”);
da.TableMappings[0].ColumnMappings.Add(“BulkAmount”,”BulkQualify”);
da.TableMappings[0].ColumnMappings.Add(“BulkDiscount”,”Bulk”);
da.TableMappings[0].ColumnMappings.Add(“Publisher”,”Publisher”);
da.TableMappings[0].ColumnMappings.Add(“PubDate”,”PublicationDate”);
da.TableMappings[0].ColumnMappings.Add(“CatID”,”CategoryId”);
da.TableMappings[0].ColumnMappings.Add(“Cover”,”CoverImage”);

da.Fill(ds);
}
catch (InvalidOperationException e)
{
// Handle mapping errors

}
catch (SqlException e)
{
// Handle error

}

300 Day 12

16 3869 ch12 5/20/02 1:21 PM Page 300

Using Data Adapters 301

12

In Listing 12.2, the same usp_GetTitles stored procedure is used, but in this
case it is passed a parameter populated with the variable author. The DataSet ds

that is used to hold the results has its schema loaded from a stream variable called
schemaStream. Both the MissingSchemaAction and MissingMappingAction properties
are set to Error to ensure that the schema from the result set matches exactly with that in
the DataSet and that the table and column mappings fully map to the result set. A default
mapping is then created that maps all the columns from the Titles table in the
ComputeBooks database to columns in the XSD schema loaded from the stream.

ANALYSIS

The source and destination column names in the column mappings don’t
need to have different names. In the case of ISBN, Author, and Discount, the
names are the same.

Note

The Fill method is then called, which uses the default mapping to load the result set
into the table named “Titles” in the DataSet. Note that when the schema was loaded, it
must then have created a table named “Titles” in order for an exception not to be thrown.
The two catch blocks handle errors resulting from the schema and mapping operations
and any SQL Server exceptions that are thrown, respectively.

Advanced Retrieval
The techniques shown thus far illustrate the most common ways that a DataSet can be
populated. There are, however, additional techniques that you can use to add information
to the DataSet and to retrieve data incrementally.

Adding Metadata for SQL Server
As you learned during Week 1, the DataColumn, DataTable, and DataSet objects all
expose a set of properties that you can manipulate to make sure that the data in the data
store is accurately represented in the DataSet. For example, the DataColumn class expos-
es the AllowDBNull, MaxLength, Unique, DefaultValue, Caption, and other properties
that affect how the data can be manipulated. Although some of these properties are popu-
lated automatically when you use the AddWithKey value of the MissingSchemaAction
enumeration, not all of them are. For example, the Caption and DefaultValue properties
aren’t populated. It turns out that SQL Server provides extended properties that enable
you to easily store and retrieve user-defined metadata directly in the database. You can
use extended properties to store information such as the caption and default value, and
then read that information dynamically into the DataSet.

16 3869 ch12 5/20/02 1:21 PM Page 301

In SQL Server 2000, extended properties can be placed on various database objects
including tables, views, stored procedures, rules, defaults, and functions. Using the
sp_addextendedproperty stored procedure, you can add any user-defined name-value
pair to the extended properties collection for an object. These values (stored as a
sql_variant of less than 7,500 bytes) can then be read using the fn_listextended-
property function. For example, to specify the captions and default values that applica-
tions can use, you could execute the following statements against a SQL Server 2000
database:

EXEC sp_addextendedproperty ‘caption’, ‘Bulk Discount’, ‘user’,
dbo, ‘table’, Titles, ‘column’, BulkDiscount

GO
EXEC sp_addextendedproperty ‘caption’, ‘Bulk Amount’, ‘user’,
dbo, ‘table’, Titles, ‘column’, BulkAmount

GO
EXEC sp_addextendedproperty ‘defaultvalue’,0, ‘user’,
dbo, ‘table’, Titles, ‘column’, BulkAmount

GO

302 Day 12

See the SQL Server Books Online for more information on the meaning of
the parameters passed to the sp_addextendedproperty stored procedure.

Note

In this example, two caption properties are added for the BulkDiscount and BulkAmount

columns of the Titles table. It should be noted that the selection of the property names
caption and defaultvalue is arbitrary—you can create your own property names as you
see fit. You can also add extended properties through a dialog box by right-clicking on
the object in the Query Analyzer.

Microsoft adds an extended property with the name MS_Description for a
column when the description is populated in the table design window in
SQL Server Enterprise Manager.

Note

After the properties are in place, you can create a stored procedure to retrieve all the col-
umn properties for a particular table, as shown in the following code snippet:

CREATE PROCEDURE usp_GetColumnProperties
@table nvarchar(40)
AS
SELECT *
FROM ::fn_listextendedproperty(null,’user’,’dbo’,

‘table’,@table,’column’,null)

16 3869 ch12 5/20/02 1:21 PM Page 302

Using Data Adapters 303

12

In the fn_listextendedproperty function, the values that can vary are passed as null, so
the procedure will return all the properties on the given table that are associated with
columns. Within your .NET code, it then becomes relatively simple to create a method
that can be used to populate the appropriate DataColumn properties, as shown in Listing
12.3.

LISTING 12.3 Retrieving extended properties. This method retrieves the caption and
default value extended properties and associates them with a DataColumn in a DataTable.

private virtual void GetColumnProperties(String tableName, DataTable dt)
{

SqlConnection con = new SqlConnection(_connect);
SqlDataReader dr;

// Setup the call to the stored procedure
SqlCommand com = new SqlCommand(“usp_GetColumnProperties”, con);
com.CommandType = CommandType.StoredProcedure;
com.Parameters.Add(new SqlParameter(“@table”,tableName));

con.Open();
dr = com.ExecuteReader(CommandBehavior.CloseConnection);
while (dr.Read())
{

switch (dr[“name”].ToString())
{

// Handle captions and default values
case “caption”:

dt.Columns[dr[“objname”].ToString()].Caption =
dr[“value”].ToString();

break;
case “defaultvalue”:

dt.Columns[dr[“objname”].ToString()].DefaultValue = dr[“value”];
break;

}
dr.Close();

}
}

In Listing 12.3, the GetColumnProperties method accepts the name of the SQL
Server table to query for and the name of the DataTable that contains the

columns that map to that table. It then calls the stored procedure shown in the previous
code snippet and loops through the results. Within the loop, it uses a switch statement to
look for the appropriate property names before using the value to set the Caption and
DefaultValue properties. Note that this method assumes that the names of the columns

ANALYSIS

16 3869 ch12 5/20/02 1:21 PM Page 303

in the DataTable are the same as those in the database table. If you used column map-
pings to fill the DataSet, you would obviously have to query the mappings to determine
which column in the DataTable to manipulate. This would make the code slightly more
complex.

A client could then call this method after a DataSet or DataTable has been populated,
like so:

da.Fill(ds);
GetColumnProperties(“Titles”,ds.Tables[0]);

This technique also assumes that the caller of the GetColumnProperties knows which
table in the database maps to which table in the DataSet. The obvious benefit of retriev-
ing metadata in this way is that it can be specified once at the database server and not re-
specified in each application that accesses the database. However, the cost is that you
incur an extra roundtrip to the server to retrieve the properties. As a result, you should
use this technique only when the additional metadata you retrieve will be used by the
application.

304 Day 12

As you learned on Day 4, each of these classes also exposes an
ExtendedProperties property that can hold a collection of custom proper-
ties. Given the name of the object in SQL Server, it would be trivial to write
a method that retrieves the extended properties for any SQL Server object
and adds them to the ExtendedProperties collection.

Tip

Retrieving Partial Result Sets
If you are a developer who has built applications that require data access, you’ll no doubt
have encountered a situation in which you want to incrementally retrieve results from a
database. This might be the case, for example, when the potential number of rows a user
would like to see is very large, but you would like to avoid having to initially retrieve
them all. In ADO.NET, you can use two primary techniques to address this scenario.

First, as discussed previously, the Fill method of data adapter classes is overloaded.
One of the overloaded signatures enables you to pass in the row to start with (that is, the
row in the result set returned by the SelectCommand to start with) and the maximum
number of rows to use to populate the DataTable. For example, to populate the
DataTable with the first 50 rows returned in the result set, you would use the following
syntax:

da.Fill(ds,0,50,”Titles”);

16 3869 ch12 5/20/02 1:21 PM Page 304

Using Data Adapters 305

12

Note that this signature requires a DataSet to be passed to the Fill method along with a
table mapping. Just as we discussed previously, in the event that a table mapping doesn’t
exist, you can pass in the name of the new DataTable. Of course, rather than hard-coding
the starting row and the number of rows to add to the table, it’s trivial to make a calcula-
tion in order to incrementally add rows to the DataSet using variables as the user
requests more data. By passing 0 into the max records parameter (the third argument), all
the rows after the starting row will be added to the table. As you might expect, the start-
ing and max records arguments apply to only the first result set in the event that the
SelectCommand returns multiple results. Finally, if the table already exists, the data will
be appended to it based on the rules discussed at the beginning of today’s lesson.

Although the documentation states that the names of tables in a DataSet
are case-sensitive, they are in fact not. In other words, adding a table named
titles to a DataSet and then using the Fill method to populate a table
named ìTitlesî in the same DataSet won’t result in the creation of two
tables.

Note

The downside of this method—and its fatal flaw in all but the simplest applications—is
that the query encapsulated in the SelectCommand will be executed in its entirety even
though ultimately only a subset of the rows returned will be used. This wastes resources
on the server and violates the cardinal rule that you ask the data store for only data that
you’re going to use. As a result, this technique isn’t recommended.

An alternative and more efficient technique you can use to incrementally populate a
DataSet is to pass arguments to the SelectCommand, which selects only the specific
rows. Typically, this requires that you pass to the command arguments that specify a
range of rows. For example, consider the GetOrdersByDate method shown in Listing
12.4 and that calls the stored procedure shown in Listing 12.5.

LISTING 12.4 Incrementally retrieving data. This method calls the usp_OrdersByDate
stored procedure to incrementally populate a DataSet based on the date range.

private virtual void GetOrdersByDate(DataSet ds,
DateTime startDate, DateTime endDate)

{
SqlConnection con = new SqlConnection(_connect);
SqlCommand com = new SqlCommand(“usp_OrdersByDate”,con);
SqlDataAdapter da = new SqlDataAdapter(com);
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

16 3869 ch12 5/20/02 1:21 PM Page 305

// Setup the parameters
com.CommandType = CommandType.StoredProcedure;
com.Parameters.Add(new SqlParameter(“@startdate”, SqlDbType.SmallDateTime));
com.Parameters[0].Value = startDate;
com.Parameters.Add(new SqlParameter(“@enddate”, SqlDbType.SmallDateTime));
com.Parameters[1].Value = endDate;

try
{

da.Fill(ds);
}
catch (SqlException e)
{

// Handle Exception
}

}

LISTING 12.5 Selecting data incrementally. This stored procedure is called by the method
in Listing 12.4 to retrieve a range of rows from the Orders and OrderDetails tables.

CREATE PROCEDURE usp_OrdersByDate
@startdate smalldatetime = null,
@enddate smalldatetime = null
AS

IF @startdate IS NULL
SET @startdate = convert(smalldatetime,’1/1/1900’)

IF @enddate IS NULL
SET @enddate = convert(smalldatetime,’1/1/2079’)

SELECT * FROM Orders
WHERE OrderDate BETWEEN @startdate AND @enddate
ORDER By OrderDate DESC

SELECT a.* FROM OrderDetails a JOIN Orders b on a.OrderID = b.OrderID
WHERE b.OrderDate BETWEEN @startdate AND @enddate
GO

In Listing 12.4, the method accepts a DataSet and parameters that specify both
the start and end dates to query on. The stored procedure usp_OrdersByDate in

Listing 12.5 is then called and passed the parameters. Because the DataSet is passed into
the method, the client can call this method repeatedly and vary the arguments each time
to retrieve a subset of the data with each invocation. For example, to retrieve all the

306 Day 12

LISTING 12.4 continued

ANALYSIS

16 3869 ch12 5/20/02 1:21 PM Page 306

Using Data Adapters 307

12

orders from January 1, 2000, to the present, the client could make the following two
calls:

DataSet ds = new DataSet();

GetOrdersByDate(ds,new DateTime(2002,1,1),DateTime.Now);
GetOrdersByDate(ds, new DateTime(2000,1,1), new DateTime(2001,12,31));

In the first call, the orders from January 1, 2002, to the present are retrieved. When the
DataSet is passed back to the method, the orders from January 1, 2000, to December 31,
2001, are then appended to the two DataTable objects in the DataSet. In this way, the
client can incrementally add rows by varying the arguments. Note that this technique also
allows the client to skip rows wherever they deem necessary. The AddWithKey value is
used for the MissingSchemaAction property to ensure that if the method is called more
than once with overlapping date ranges, the Fill method will match the rows based on
the existing primary key rather than adding multiple copies of the same row.

Updating a Data Store
After the data has been retrieved and modified by your application, you need to resyn-
chronize it with the data store. Keep in mind that because we’re dealing with the discon-
nected model here, the data adapter handles updates in a batch fashion. In other words,
when its overloaded Update method is called, it looks for all changed rows in the given
DataSet, DataTable, or array of DataRow objects, and attempts to run the
InsertCommand, UpdateCommand, or DeleteCommand associated with the data adapter as
appropriate. Of course, as you learned on Day 5, “Changing Data,” the data adapter
makes the determination about how a row was changed by looking at the value of its
RowState property. It hardly needs to be said that for a data adapter to synchronize the
data in a DataSet or DataTable with a data store, the AcceptChanges method shouldn’t
have been called because doing so resets the RowState property to Unchanged.

In the remainder of today’s lesson, you’ll learn how the Update method accomplishes
this and how you can customize its behavior for your particular scenarios.

The Update Process
As you just learned, the data adapter exposes the InsertCommand, UpdateCommand, and
DeleteCommand properties that reference command objects called by the Update method
as it traverses the changed rows. Behind the scenes, the parameters exposed by the com-
mand object are populated with values from the row being inspected. These values are
then passed to the command that is executed. It’s important to remember that this process
is row oriented, so if you change 15 rows in a DataTable and then pass it to the Update

16 3869 ch12 5/20/02 1:21 PM Page 307

method of a data adapter, 15 commands will be executed against the data store, one for
each row.

308 Day 12

This process implies that if you wanted to make the same change to multi-
ple rows, you shouldn’t retrieve them into a DataTable and then make the
change to each row and call the Update method. It’s far more efficient to
change multiple rows in a single statement with the appropriate WHERE
clause using the ExecuteNonQuery method.

Tip

The interesting aspect of this architecture is that it’s flexible by giving you complete con-
trol over how the modifications are actually applied. This is the case because the com-
mand object can simply reference a statement or stored procedure that actually does the
work. This enables you to write commands that can modify multiple tables in the data
store based on the data in a single DataTable. In addition, you can create multi-function
stored procedures that, for example, can be referenced by both the UpdateCommand and
InsertCommand. This can be done by allowing the stored procedure to determine whether
the row is already in the table so that you can write a single stored procedure to handle
the insert or update of a row in the Titles table, as shown in Listing 12.6.

LISTING 12.6 Multi-function stored procedures. This SQL Server stored procedure can be
used both to insert and update a row in the Titles table.

CREATE PROCEDURE usp_SaveTitle
@ISBN [nvarchar](10) = null,
@Description [nvarchar](2048) = null,
@Title [nvarchar](100) = null,
@Author [nvarchar](250) = null,
@Price [money] = null,
@PubDate [smalldatetime] = null,
@Publisher [nchar](5) = null,
@CatID [uniqueidentifier] = null

AS

IF EXISTS (SELECT * FROM Titles WHERE ISBN = @ISBN)
BEGIN
UPDATE Titles
SET Description = @Description,
Title = @Title,
Author = @Author,
Price = @Price,
PubDate = @PubDate,
Publisher = @Publisher,
CatID = @CatID

16 3869 ch12 5/20/02 1:21 PM Page 308

Using Data Adapters 309

12

WHERE ISBN = @ISBN

RETURN 1

END
ELSE
BEGIN
INSERT INTO Titles (ISBN, Description, Title,
Author, Price, PubDate, Publisher, CatID)
VALUES (
@ISBN,
@Description,
@Title,
@Author,
@Price,
@PubDate,
@Publisher,
@CatID
)

RETURN 0
End

GO

The procedure in Listing 12.6 uses the Transact-SQL EXISTS clause to determine
whether the row already exists based on the primary key column (ISBN). If so,

an UPDATE statement is performed; if not, an INSERT is performed. Note that the proce-
dure returns 1 if the row was updated and 0 if the row was inserted.

From within your .NET code, you can then reference the procedure once and associate it
with both command objects as shown in Listing 12.7.

LISTING 12.7 Modifying data. This code sets up the data adapter to insert, update, and
delete rows from the database based on the DataSet.

SqlCommand cmSave = new SqlCommand(“usp_SaveTitle”, con);
cmSave.CommandType = CommandType.StoredProcedure;

SqlCommand cmDelete = new SqlCommand(“usp_DeleteTitle”, con);
cmDelete.CommandType = CommandType.StoredProcedure;

SqlDataAdapter da = new SqlDataAdapter();
da.UpdateCommand = cmSave;
da.InsertCommand = cmSave;
da.DeleteCommand = cmDelete;

LISTING 12.6 continued

ANALYSIS

16 3869 ch12 5/20/02 1:21 PM Page 309

// Configure save parameters
cmSave.Parameters.Add(new SqlParameter(
“@isbn”, SqlDbType.NVarChar, 10, “isbn”));

cmSave.Parameters.Add(new SqlParameter(
“@description”, SqlDbType.NVarChar, 2048, “Description”));

cmSave.Parameters.Add(new SqlParameter(
“@title”, SqlDbType.NVarChar, 100, “Title”));

cmSave.Parameters.Add(new SqlParameter(
“@author”, SqlDbType.NVarChar, 250, “Author”));

cmSave.Parameters.Add(new SqlParameter(
“@price”, SqlDbType.Money, 4, “Price”));

cmSave.Parameters.Add(new SqlParameter(
“@pubDate”, SqlDbType.DateTime, 4, “PubDate”));

cmSave.Parameters.Add(new SqlParameter(
“@publisher”, SqlDbType.NChar, 5, “Publisher”));

cmSave.Parameters.Add(new SqlParameter(
“@catId”, SqlDbType.UniqueIdentifier, 8, “CatId”));

// Configure delete parameters
cmDelete.Parameters.Add(new SqlParameter(
“@isbn”, SqlDbType.NVarChar, 10, “isbn”));

// Synchronize the data
da.Update(dsTitles);

You’ll notice in Listing 12.7 that the cmSave SqlCommand object is instantiated
and configured and then used to populate both the UpdateCommand and

InsertCommand properties of the SqlDataAdapter. Because the structure of the stored
procedure used to delete a row is so different from that used to insert or update a row, a
separate command object is used. You’ll also notice that in this case, the empty construc-
tor of the SqlDataAdapter is used because the SelectCommand needn’t be populated.
This is because only the Update method is called in this listing. When the Update
method is called, one of the two stored procedures will be executed for each modified,
inserted, or deleted row.

310 Day 12

LISTING 12.7 continued

ANALYSIS

If the DataSet contains multiple tables, you should specify the source table
mapping that the update method should use. If none is specified, it will use
the default table mapping and subsequently update the first table in the
DataSet. Of course, as we discussed earlier, you can also simply pass the
name of the DataTable to process if no table mapping exists for it.

Note

16 3869 ch12 5/20/02 1:21 PM Page 310

Using Data Adapters 311

12

One of the other key points to notice in Listing 12.7 is the last argument passed to the
constructor of the SqlParameter objects. This parameter specifies the SourceColumn
property that identifies the column in the row from which to populate the parameter. This
is what allows the data adapter to associate the data in the row being updated with the
parameters of the command object. In addition, an overloaded version of the constructor
enables you to pass in the SourceVersion as well. This property maps to a value from
the DataRowVersion enumeration discussed on Day 5 and specifies which version
(Current, Default, Original, or Proposed) to use for the column. You would use the
Original version of the column, for example, to ensure that the WHERE clause in an
UPDATE statement modifies the same row that was returned from the data store.

You can also control when exceptions are thrown by this process. By default, the
ContinueUpdateOnError property of the data adapter is set to False, so the first com-
mand that results in an error will throw the SqlException or OleDbException, as appro-
priate. This means that not all the rows that were modified, inserted, or deleted might
have been processed by the Update method. Setting the property to True won’t throw an
exception, but will simply update the RowError and RowState properties of the DataRow
object. This allows all the changes to be attempted against the data store. As you’ll see in
the next section, this means that you must programmatically determine whether errors
have occurred.

Finally, you can control which rows are processed by the Update method, and in which
order, by using the GetChanges method. For example, to make sure that the inserts are
processed before the updates and deletes, you could use code like this:

da.Update(dsTitles.GetChanges(DataRowState.Added));
da.Update(dsTitles.GetChanges(DataRowState.Modified));
da.Update(dsTitles.GetChanges(DataRowState.Deleted));

Keep in mind that you can also pass combinations of DataRowState values to the Update
method to send different subsets of the rows.

Handling Events
During the process of updating a data store, the data adapter throws the RowUpdating and
RowUpdated events. The former fires immediately before the appropriate command is
executed for a row, whereas the latter fires immediately after the command has been exe-
cuted. The event handlers receive different event argument types derived from the
RowUpdatingEventArgs and RowUpdatedEventArgs classes from the
System.Data.Common namespace. For example, the event handler for the RowUpdating
event for an OleDbDataAdapter receives an OleDbRowUpdatingEventArgs object, where-
as the handler for the RowUpdated event receives an OleDbRowUpdatedEventArgs object.
Tables 12.3 and 12.4 show the primary properties exposed by each.

16 3869 ch12 5/20/02 1:21 PM Page 311

TABLE 12.3 Row updating event argument properties. These are the properties inherit-
ed by the event argument types passed into the event handler for the RowUpdating event.

Property Description

Command Gets or sets a reference to the command used to perform the update.

Errors Returns the exception generated when the command executes.

Row Returns the DataRow sent to the update statement.

StatementType Returns a value from the StatementType enumeration that identifies which
type of statement is being processed (Select, Insert, Update, Delete).

Status Gets or sets a value from the UpdateStatus enumeration that indicates how
the command will behave. Can be set to Continue, ErrorsOccurred,
SkipAllRemainingRows, or SkipCurrentRow.

TableMapping Returns the DataTableMapping used by the command.

TABLE 12.4 Row updated event argument properties. These are the properties inherited
by the event argument types passed into the event handler for the RowUpdated event.

Property Description

Command Returns a reference to the command used to perform the update.

Errors Returns the exception generated when the command executes.

RecordsAffected Returns the number of rows modified by the command.

Row Returns the DataRow sent to the update statement.

StatementType Returns a value from the StatementType enumeration that identifies which
type of statement is being processed (Select, Insert, Update, Delete).

Status Gets or sets a value from the UpdateStatus enumeration that indicates how
the command will behave. Can be set to Continue, ErrorsOccurred,
SkipAllRemainingRows, or SkipCurrentRow.

TableMapping Returns the DataTableMapping used by the command.

As you can see from Tables 12.3 and 12.4, you can view all the information that will be
used to update a row before it’s processed and, in the RowUpdating event handler, even
change the command to be used on the fly. In addition, using the Status property is
especially interesting because you can affect the behavior of the rest of the Update
method by skipping the current row or all remaining rows. In the RowUpdated event, you
can also view the exception generated by the command even if the
ContinueUpdateOnError property is set to True.

Although not used frequently, the RowUpdated event handler, for example, can be used to
log all the changes made to the data for tracking purposes or to manually cascade

312 Day 12

16 3869 ch12 5/20/02 1:21 PM Page 312

Using Data Adapters 313

12

changes in other DataSet objects. Like other events, the technique used to capture them
is to create a method to act as the event handler and then add the handler to the invoca-
tion list for the event, as shown in the following code snippet:

// Handle the RowUpdated event
private void TitleChanged(object sender, OleDbRowUpdatedEventArgs e)
{

Trace.WriteLine(“Primary key “ + e.Row.Item(0).ToString()
+ “ was “ & e.StatementType.ToString() + “ on “
+ DateTime.Now.ToLongTimeString());

}

da.RowUpdated += new OleDbRowUpdatedEventHandler(this.TitleChanged);

Using a Disconnected Update Model
Now that you’ve learned the basic way in which updates are processed by the data
adapter, it’s time to apply this knowledge to a programming pattern that you can use in
applications that work with disconnected data.

The basic idea in this disconnected model, of course, is that your application will retrieve
rows from the data store and cache them in the DataSet. The DataSet will then be modi-
fied by the presentation code over time and will eventually be re-synchronized using a
data adapter. As you’ll learn in more detail next week, in multi-tier applications, the syn-
chronization process would eventually occur in a method of the data access tier that
accepts the modified DataSet. This method is responsible for creating the appropriate
data adapter, passing the DataSet to the Update method, and returning rows that caused
errors. As a result, the basic pattern that a method in the data access tier could implement
is shown in Listing 12.8.

LISTING 12.8 Implementing the disconnected update. This method shows the skeleton
of a method that would be used to synchronize a DataSet with the data store.

public virtual DataSet SaveMyData(DataSet ds)
{

//Make sure the DataSet has some changed data
if (ds == null || ds.HasChanges() == false)
{

// Can simply return null
return null;

}

// Create the connection object
// Create the data adapter (da)
// Create the data adapter commands and configure their parameters
// making sure to map their SourceColumns and SourceVersions
// Associate the commands with the data adapter

16 3869 ch12 5/20/02 1:21 PM Page 313

// Set the ContineUpdateOnError property to true

try
{

// Call the Update method passing in results of the GetChanges method
da.Update(ds);

// Check for errors and return rows that were in error
if (ds.HasErrors)
{

DataSet dsErrors;
dsErrors = ds.GetChanges(DataRowState.Modified ||
DataRowState.Deleted);

return dsErrors;
}
return null;

}
catch (Exception e)
{

// An exception occurred, probably in the connection
// Wrap and throw a specific exception

}
}

What you’ll first notice in Listing 12.8 is that the SaveMyData method checks to
make sure that the DataSet is instantiated and has changes that can be

processed. If there are changes, the method proceeds to create the connection, command,
and data adapter objects that will be needed, much as is shown in Listing 12.7. Note that
in this model, the method sets the ContinueUpdateOnError property to True to make
sure that all the changed rows actually get a chance to be synchronized with the data
store. Within the try block, the DataSet is then passed to the Update method.

314 Day 12

LISTING 12.8 continued

ANALYSIS

It’s important at this point to pass in the entire DataSet rather than simply
the results of the GetChanges method. This is the case because the Update
method will modify the properties of the DataTable and DataRow objects in
the DataSet, and we need to be able to read those changes when the
method returns. If you call the GetChanges method directly in the Update
method, copies will be created and the caller won’t be able to retrieve the
changes.

Note

16 3869 ch12 5/20/02 1:21 PM Page 314

Using Data Adapters 315

12

Because the ContinueUpdateOnError property is set to True, no exception will be
thrown when the Update method is called unless the implicit opening of the connection
object fails. As a result, the catch block need only wrap the exception that was generated
and throw it back to the caller. Once the Update method returns, the data adapter will
have successfully synchronized the rows that it could, setting their RowState properties
to Unchanged. Each row that failed will have its RowState set either set to Modified (for
modified rows that failed) or Deleted (for rows that couldn’t be deleted from the data
store). Both of these types of rows are then returned from the method in the dsErrors
DataSet using the GetChanges method.

The algorithm shown here is generic and assumes that you’ll be updating
the lone DataTable in the DataSet. Of course, you could augment this
method to accept the name of the table you want to update and even cre-
ate multiple data adapters to update each of the tables in turn. As we’ll dis-
cuss shortly, this method also assumes that each row is treated individually
and not within the context of a transaction.

Note

The caller can use the SaveMyData method like so:

DataSet myErrors;

myErrors = SaveMyData(ds.GetChanges());
foreach (DataRow r in dsErrors.Tables[0].GetErrors())
{

// Inspect the r.RowError and r.RowState properties
}

Notice that the caller passes into the SaveMyData only the changed rows in order to save
resources, and then catches any errors in the myErrors DataSet. The tables in the
myErrors DataSet can then be traversed and each row inspected using the RowState and
RowError properties, which will be set to the original RowState and contain the error
message from the data store, respectively.

The client could also, of course, bind the myErrors DataSet to a grid in order to visually
present the rows that caused errors to the user. The user could then make additional
changes or decide not to reprocess the row. Those rows that are changed a second time
could then be sent back to the SaveMyData method, and the others could be merged with
the original DataSet using the Merge method.

16 3869 ch12 5/20/02 1:21 PM Page 315

Isolation and Concurrency
In the previous section, you learned how the data adapter processes updates and how
you might write data access methods to handle changes in a DataSet. However, the
discussion fails to address the issues of isolation and concurrency for those updates.

Isolating Changes
For example, as noted in the previous section, the algorithm shown in Listing 12.8
assumes that each row will succeed or fail individually. As you learned on Day 9, “Using
Connections and Transactions,” the data adapter can isolate and treat all the changed
rows it encounters as a logical unit of work using transactions. If you want to make sure
that either all the changes succeed or all of them fail, you would change the algorithm in
Listing 12.8 as shown in Listing 12.9.

LISTING 12.9 Implementing the disconnected update. This method shows the skeleton
of a method that would be used to synchronize a DataSet with the data store.

public virtual void SaveMyData(DataSet ds)
{

//Make sure the DataSet has some changed data
if (ds == null || ds.HasChanges() == false)
{

// Can simply return
return;

}

// Create the connection object (con)
// Create the data adapter (da)
// Create the data adapter commands and configure their parameters
// Associate the commands with the data adapter
// Set the ContineUpdateOnError property to false

try
{

con.Open();
SqlTransaction trans = con.BeginTransaction();
// Set the Transaction property of the command objects

try
{

// Call the Update method, passing in the DataSet
da.Update(ds);
// Commit the changes
trans.Commit();
return;

}
catch (Exception e)

316 Day 12

16 3869 ch12 5/20/02 1:21 PM Page 316

Using Data Adapters 317

12

{
// Rollback the transaction
trans.Rollback();
// Wrap and throw the exception

}
}
catch (Exception e)
{

// Could not open the connection or start the transaction
// Wrap and throw the Exception

}
finally
{

con.Close();
}

}

In Listing 12.9, the SaveMyData method is marked as void rather than returning
a DataSet that contains the rows that had errors. This is because when the first

error is encountered, the method will throw an exception and roll back the transaction.
Notice that the connection must be opened explicitly and the BeginTransaction method
must be called to initiate the local transaction. You must then set the Transaction prop-
erty of each of the command objects associated with the data adapter accordingly. Within
the nested try block, the Update method is called and if it succeeds without throwing an
exception, the transaction is committed. If an exception occurs, the transaction can be
rolled back and the exception wrapped and thrown back to the caller.

LISTING 12.9 continued

ANALYSIS

When you throw the exception after rolling back the transaction, you
should embed the primary key value or row number that caused the error in
the message. This will allow the client to more easily process the error.

Tip

The outer try block contains a finally block that closes the connection either in the
event the connection or transaction had problems or the Update method throws an excep-
tion. Note that this algorithm relies on the fact that the ContinueUpdateOnError property
is set to False. Doing so throws an exception when the first error is encountered and
places the error returned from the data store in the Message property of the exception
object.

16 3869 ch12 5/20/02 1:21 PM Page 317

Handling Concurrency Issues
The previous example dealt with isolating the changes but didn’t address the issue of
concurrency or how changes from multiple users are handled. In a nutshell, concurrency
isn’t handled directly by the data adapter, so it must be handled either through local
transactions or the commands you use with the data adapter to apply changes to the data
store.

In general, concurrency falls into two camps: optimistic concurrency and pes-
simistic concurrency. The difference between the two is that optimistic concur-

rency strives to allow as many users to simultaneously work with the data as possible,
whereas pessimistic concurrency tries to ensure that when a user updates a row, the row
is in exactly the same state as when it was first read. The tradeoff is that optimistic con-
currency creates fewer conflicts at the cost of potentially losing changes made by other
clients because it employs a last-in-wins strategy. Pessimistic concurrency, on the other
hand, ensures that each client’s changes won’t be summarily overwritten at the cost of
causing more conflicts to occur.

Typically, the disconnected model implies that you use a form of optimistic concurrency
because it isn’t realistic (and would cause a lot of conflicts) to assume that a row remains
totally unchanged while the data is cached on a client somewhere. To use optimistic con-
currency, the WHERE clause of the statement that executes as a result of the
UpdateCommand should contain only the primary key columns. This is the case in Listings
12.6 and 12.7 where the UPDATE statement in the usp_SaveTitle stored procedure con-
siders only the ISBN in the WHERE clause and where only the values from the current row
version are passed to the stored procedure.

318 Day 12

The implicit assumption made in Listing 12.6 as well as Listing 12.10 (dis-
cussed shortly) is that the ISBN is immutable. In other words, once the title is
added to the table, the ISBN can’t be changed. This can be enforced on SQL
Server using a trigger and within the DataSet by setting the ReadOnly prop-
erty of the DataColumn to True.

Note

That having been said, you can use two techniques to implement pessimistic concurrency
with a data adapter. The first is to rely on a local transaction with an isolation level that
restricts other users from changing the data while it’s locked. In other words, you would
start a transaction with an isolation level such as RepeatableRead before invoking the
Fill method. You would then make your changes and use the same connection and
transaction with the data adapter when calling the Update method. This technique puts

NEW TERM

16 3869 ch12 5/20/02 1:21 PM Page 318

Using Data Adapters 319

12

the burden of locking the rows on the data store. Although this ensures that the rows
remain locked and can’t be changed by other clients, it violates the cardinal design rule
of transaction usage: Never allow user input in the middle of a transaction. In other
words, always make transactions as short as possible so as not to lock out other clients. It
also, of course, isn’t very useful in applications in which you don’t hold continuous con-
nections to the data store, such as ASP.NET applications that use ADO.NET. Because of
these reasons, this technique is recommended for only a few specialized scenarios.

The second form of pessimistic concurrency relies on the configuration of the WHERE
clause in the UpdateCommand of the data adapter. By including all the columns in the
WHERE clause and passing the values that were originally retrieved from the data store to
the command, the command can ensure that the row is in exactly the same state as when
it was retrieved. For example, if you wanted to create a stored procedure in SQL Server
that uses pessimistic concurrency to update a row in the Titles table, the procedure
might look like the one in Listing 12.10.

LISTING 12.10 Pessimistic concurrency. This stored procedure could be used to update a
row in the Titles table and ensure that the updated row is the same as when it was
retrieved.

CREATE PROCEDURE usp_UpdTitle
@ISBN [nvarchar](10),
@Description [nvarchar](2048) = null,
@Title [nvarchar](100) = null,
@Author [nvarchar](250) = null,
@Price [money] = null,
@PubDate [smalldatetime] = null,
@Publisher [nchar](5) = null,
@CatID [uniqueidentifier] = null,
@original_Description [nvarchar](2048) = null,
@original_Title [nvarchar](100) = null,
@original_Author [nvarchar](250) = null,
@original_Price [money] = null,
@original_PubDate [smalldatetime] = null,
@original_Publisher [nchar](5) = null,
@original_CatID [uniqueidentifier] = null

AS

IF EXISTS (SELECT * FROM Titles WHERE ISBN = @ISBN)
BEGIN

UPDATE Titles
SET Description = @Description,
Title = @Title,
Author = @Author,
Price = @Price,

16 3869 ch12 5/20/02 1:21 PM Page 319

PubDate = @PubDate,
Publisher = @Publisher,
CatID = @CatID

WHERE ISBN = @ISBN
AND Title = @original_Title
AND Author = @original_Author
AND Price = @original_Price
AND PubDate = @original_PubDate
AND Publisher = @original_Publisher
AND CatID = @original_CatID

IF @@rowcount = 0
RAISERROR(‘The row has been changed’,14,1)

END
ELSE
RAISERROR(‘That ISBN no longer exists’,14,1)

GO

You’ll remember from Day 2, “Getting Started,” that the Data Adapter
Configuration Wizard contains options that enable you to specify the concur-

rency level. By choosing pessimistic, the wizard will create a procedure very much like
that shown in Listing 12.10. In this case, the procedure simply checks to make sure that
the ISBN exists and, if so, updates it with the parameters passed to the procedure. The
WHERE clause contains all the original values passed in to the procedure. If the row can’t
be found (that is, it has been deleted) the RAISERROR statement is issued, which will
result in a row error in the data adapter. Likewise, if the row can’t be updated because
one of the columns doesn’t match, an error is raised.

The ADO.NET code that configures the data adapter would then have to change to
include both the current values that are used in the SET statement and the original values
used in the WHERE clause, as shown in Listing 12.11.

LISTING 12.11 Configuring pessimistic concurrency. This code snippet shows how you
would add parameters to the command used to update the Titles table using pessimistic
concurrency.

SqlCommand cmSave = new SqlCommand(“usp_UpdTitle”, con);
cmSave.CommandType = CommandType.StoredProcedure;

cmSave.Parameters.Add(new SqlParameter(
“@isbn”, SqlDbType.NVarChar, 10, “isbn”));

cmSave.Parameters.Add(new SqlParameter(
“@description”, SqlDbType.NVarChar, 2048, “Description”));

320 Day 12

LISTING 12.10 continued

ANALYSIS

16 3869 ch12 5/20/02 1:21 PM Page 320

Using Data Adapters 321

12

cmSave.Parameters.Add(new SqlParameter(
“@title”, SqlDbType.NVarChar, 100, “Title”));

cmSave.Parameters.Add(new SqlParameter(
“@author”, SqlDbType.NVarChar, 250, “Author”));

cmSave.Parameters.Add(new SqlParameter(
“@price”, SqlDbType.Money, 4, “Price”));

cmSave.Parameters.Add(new SqlParameter(
“@pubDate”, SqlDbType.DateTime, 4, “PubDate”));

cmSave.Parameters.Add(new SqlParameter(
“@publisher”, SqlDbType.NChar, 5, “Publisher”));

cmSave.Parameters.Add(new SqlParameter(
“@catId”, SqlDbType.UniqueIdentifier, 8, “CatId”));

cmSave.Parameters.Add(new SqlParameter(
“@original_description”, SqlDbType.NVarChar, 2048, “Description”));

cmSave.Parameters[“@original_description”].SourceVersion =
DataRowVersion.Original;

cmSave.Parameters.Add(new SqlParameter(
“@original_title”, SqlDbType.NVarChar, 100, “Title”));

cmSave.Parameters[“@original_title”].SourceVersion =
DataRowVersion.Original;

cmSave.Parameters.Add(new SqlParameter(
“@original_author”, SqlDbType.NVarChar, 250, “Author”));

cmSave.Parameters[“@original_author”].SourceVersion =
DataRowVersion.Original;

cmSave.Parameters.Add(new SqlParameter(
“@original_price”, SqlDbType.Money, 4, “Price”));

cmSave.Parameters[“@original_price”].SourceVersion =
DataRowVersion.Original;

cmSave.Parameters.Add(new SqlParameter(
“@original_pubDate”, SqlDbType.DateTime, 4, “PubDate”));

cmSave.Parameters[“@original_pubDate”].SourceVersion =
DataRowVersion.Original;

cmSave.Parameters.Add(new SqlParameter(
“@original_publisher”, SqlDbType.NChar, 5, “Publisher”));

cmSave.Parameters[“@original_publisher”].SourceVersion =
DataRowVersion.Original;

cmSave.Parameters.Add(new SqlParameter(
“@original_catId”, SqlDbType.UniqueIdentifier, 8, “CatId”));

cmSave.Parameters[“@original_catId”].SourceVersion =
DataRowVersion.Original;

As you can see from Listing 12.11, each parameter must be added to the collec-
tion. Because the SourceVersion property defaults to Current, the property

needn’t be set for the parameters that represent the new values to be updated. However,
all the original values need to have their SourceVersion property set to Original.

LISTING 12.11 continued

ANALYSIS

16 3869 ch12 5/20/02 1:21 PM Page 321

The obvious downside to using this form of pessimistic concurrency is that both the
statement that performs the update against the data store and the ADO.NET code used to
configure the data adapter become longer and more complex. Some data stores, however,
provide a quicker means of determining whether the row has changed since it was
retrieved. In SQL Server, for example, you can add a column with the timestamp data
type to a table. This column is automatically updated to a unique binary value each time
a row is inserted or updated in the table. The result is that you can select this column
when the DataSet is populated and then pass it back to the UpdateCommand of the data
adapter. The stored procedure or inline SQL can then compare the value you originally
retrieved with the value in the database. If they don’t match, the row has been changed.
Using a timestamp or other equivalent saves you from having to pass two parameters for
each column and configuring the UpdateCommand with all those parameters.

322 Day 12

Although one of the signatures for the overloaded constructor of the
SqlParameter object enables you to specify the SourceVersion (so you could
avoid coding two statements for each parameter), it also requires several
other arguments that are easier to allow to be defaulted.

Note

Although the data type is called timestamp, it has no correla-
tion with a time or date and isn’t human readable. A better

way to think of timestamp columns is with the term row version. In fact, SQL
Server 2000 includes a rowversion synonym for the timestamp data type,
which is preferred because it will eventually replace timestamp in future ver-
sions of SQL Server. You should also specify the same column name for the
timestamp (rowversion) column in all your tables for consistency; for exam-
ple, calling it rowVersion. As you would expect, you can have only one
timestamp column per table.

Note NEW TERM

Using the rowversion column, the UPDATE statement in the usp_UpdTitle stored proce-
dure would be rewritten as follows:

UPDATE Titles
SET Description = @Description,
Title = @Title,
Author = @Author,
Price = @Price,
PubDate = @PubDate,
Publisher = @Publisher,
CatID = @CatID

WHERE ISBN = @ISBN AND rowVersion = @rowVersion

16 3869 ch12 5/20/02 1:21 PM Page 322

Using Data Adapters 323

12

When you configure the data adapter, you would then only need to add the current para-
meters and the rowVersion parameter like so:

cmSave.Parameters.Add(new SqlParameter(“@rowVersion”,
SqlDbType.Timestamp, 8, “rowVersion”));

Refreshing Rows
The final issue that needs to be addressed in this context is re-retrieving data from the
data store when an update succeeds or fails. As we discussed previously, the
UpdatedRowSource property of a command object controls how result sets or output
parameters are processed from the UpdateCommand as rows in a DataTable are updated
by a data adapter. This property can be set to one of the values from the
UpdateRowSource enumeration, as shown in Table 12.5.

TABLE 12.5 Values of the UpdateRowSource enumeration. These values determine how a
row is refreshed in the event that the command returns data.

Value Description

Both Both output parameters and the first returned row are mapped to the row
being processed.

FirstReturnedRecord The first row in the result set is mapped to the row being processed.

None Result sets and output parameters are ignored.

OutputParameters Output parameters are mapped to the row being processed.

The default is Both, so if the command returns a result set, it will be mapped to the
DataRow that was updated. This can be useful in pessimistic concurrency situations where
if the row has changed, you’d want to refresh the row in the DataTable so that the client
is aware of the changes. To add this capability to the procedure shown in Listing 12.8,
you would simply set the UpdatedRowSource property of the command object to either
Both or FirstReturnedRecord and then modify the IF statement that checks to see
whether the row was successfully updated, like so:

IF @@rowcount = 0
BEGIN

SELECT * FROM Titles WHERE ISBN = @ISBN
RAISERROR(‘The row has been changed’,14,1)

END

This capability can also be useful in conjunction with the InsertCommand in the event the
data store assigns default or auto-incrementing values to one or more columns in the
table. This is the case, for example, with SQL Server IDENTITY columns. In this way, the
server-generated data will be placed into the row.

16 3869 ch12 5/20/02 1:21 PM Page 323

Command Builders
Some providers (SqlClient and OleDb included) also implement command builder class-
es that can be used to automatically generate insert, update, and delete commands that
work against a single table in the data store. This is typically accomplished by the com-
mand builder object examining the SelectCommand and then asking the data store for
additional information.

To use a command builder, you can simply instantiate it and pass it the data adapter that
will be used, as follows:

OleDbDataAdapter da = new OleDbDataAdapter(sqlStatement, con);
OleDbCommandBuilder builder = new OleDbCommandBuilder(da);

At this point, nothing occurs. However, the command builder sets up an event handler, so
when the Update method of the data adapter is called, it will contact the data store and
build the commands that will be referenced by the InsertCommand, UpdateCommand, and
DeleteCommand properties of the data adapter. After the initial Update, these commands
are associated with the data adapter and won’t have to be re-created.

The commands can also be inspected using the GetInsertCommand, GetDeleteCommand,
and GetUpdateCommand methods of the command builder. You might do this, for exam-
ple, to modify the default properties set for the command. If the SelectCommand changes
after the commands are built, you need to call the RefreshSchema method to rebuild the
commands based on the new SelectCommand.

As you might expect, there are three main drawbacks to using this approach:

1. The commands that are generated use inline SQL and therefore don’t take advan-
tage of the performance of database constructs such as stored procedures.

2. For the command builder to build the statements, it must retrieve additional schema
information from the data store. This entails an additional roundtrip to the data
store, which should be avoided at all costs (another cardinal rule: Minimize round
trips to the data store), especially in the multi-user Web applications for which
ADO.NET was designed.

3. Command builders work only when the SelectCommand encapsulates a relatively
simple statement that it can parse to determine which table to create the commands
for. Command builders wouldn’t be effective, for example, if the SelectCommand
executed a stored procedure that included a JOIN statement.

For all these reasons, you should avoid command builders in most situations.

324 Day 12

16 3869 ch12 5/20/02 1:21 PM Page 324

Using Data Adapters 325

12

Summary
Data adapters act as the liaison between the data store and the DataSet. As such, they are
responsible for filling DataTable objects with data and then synchronizing the changes
made in your application with the data store. Today you learned how the data adapter
accomplishes this by creating or matching a schema and through table and column map-
pings. In addition, you looked at the various optimistic and pessimistic concurrency tech-
niques you can use to synchronize the data.

As we approach the end of this week, we’ll look at specific functionality of providers
including tomorrow’s look at the SqlClient provider.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. When would you set the MissingSchemaAction property to Error?

Setting the MissingSchemaAction property to Error will cause the Fill method to
throw an exception if the incoming schema (the one from the data store) doesn’t
exactly match that in the existing DataTable. You can use this to ensure that the
DataTable you’re reading into is correct for the data store.

2. What is the purpose of table and column mappings?

Table and column mappings are used by the data adapter to map the incoming
table and column names with DataTable and DataColumn names to be populated.
They can be used both to match an existing schema and to specify what the new
schema will look like depending on the value of the MissingSchemaAction prop-
erty.

3. What property controls if the data adapter throws an exception during the Update
method?

When the ContinueUpdateOnError property is set to False, the data adapter will
throw an exception when the first error is encountered. Any rows after that row
won’t be processed.

4. What is the advantage to using optimistic concurrency?

By using optimistic concurrency and looking only at the primary key value, clients
will ultimately encounter fewer conflicts when attempting to update rows. This is
the case because optimistic concurrency entails a last-in-wins strategy in which the
last client to submit its changes will overwrite other changes previously made, even
if the first client wasn’t aware they had been made.

16 3869 ch12 5/20/02 1:21 PM Page 325

Exercise
Using the pattern shown in Listing 12.8, write a method that could be used to synchro-
nize data in the Reviews table using optimistic concurrency.

Answers for Day 12
Exercise Answer
One possible solution might be the following:

public virtual DataSet SaveReview(DataSet ds)
{

//Make sure the DataSet has some changed data
if (ds == null || ds.HasChanges() == false)
{

// Can simply return null
return null;

}

// Create the connection object
SqlConnection con = new SqlConnection(_connect);
// Create the data adapter (da)
SqlDataAdapter da = new SqlDataAdapter(“usp_GetReviews”,con);
// Create the data adapter commands and configure their parameters
SqlCommand cmUpd = new SqlCommand(“usp_UpdReview”,con);
SqlCommand cmIns = new SqlCommand(“usp_InsReview”,con);
SqlCommand cmDel = new SqlCommand(“usp_DelReview”,con);
// Associate the commands with the data adapter
da.InsertCommand = cmIns;
da.UpdateCommand = cmUpd;
da.DeleteCommand = cmDel;
//Select
da.SelectCommand.Parameters.Add(new SqlParameter(
“@reviewId”,SqlDbType.UniqueIdentifier,16,”ReviewID”));
//Update
da.UpdateCommand.Parameters.Add(new SqlParameter(
“@reviewId”,SqlDbType.UniqueIdentifier,16,”ReviewID”));

da.UpdateCommand.Parameters.Add(new SqlParameter(
“@isbn”,SqlDbType.NChar,10,”isbn”));

da.UpdateCommand.Parameters.Add(new SqlParameter(
“@reviewText”,SqlDbType.NChar,0,”ReviewText”));

da.UpdateCommand.Parameters.Add(new SqlParameter(
“@stars”,SqlDbType.TinyInt,2,”Stars”));

//Insert
da.InsertCommand.Parameters.Add(new SqlParameter(
“@reviewId”,SqlDbType.UniqueIdentifier,16,”ReviewID”));

da.InsertCommand.Parameters.Add(new SqlParameter(
“@isbn”,SqlDbType.NChar,10,”isbn”));

326 Day 12

16 3869 ch12 5/20/02 1:21 PM Page 326

Using Data Adapters 327

12

da.InsertCommand.Parameters.Add(new SqlParameter(
“@reviewText”,SqlDbType.NChar,0,”ReviewText”));

da.InsertCommand.Parameters.Add(new SqlParameter(
“@stars”,SqlDbType.TinyInt,2,”Stars”));

//Delete
da.DeleteCommand.Parameters.Add(new SqlParameter(
“@reviewId”,SqlDbType.UniqueIdentifier,16,”ReviewID”));

// Set the ContineUpdateOnError property to true
da.ContinueUpdateOnError = true;

try
{

// Call the Update method passing in results of the GetChanges method
da.Update(ds);

// Check for errors and return rows that were in error
if (ds.HasErrors)
{

DataSet dsErrors;
dsErrors = ds.GetChanges(DataRowState.Modified &
DataRowState.Deleted);

return dsErrors;
}
return null;

}
catch (Exception e)
{

// An exception occurred, probably in the connection
// Wrap and throw a specific exception
throw (new Exception(“Could not update Review”,e));

}
}

16 3869 ch12 5/20/02 1:21 PM Page 327

16 3869 ch12 5/20/02 1:21 PM Page 328

DAY 13

WEEK 2

Working with SQL Server
Because the ComputeBooks database is a SQL Server 2000 database, most of
the code you’ve seen in this book has accessed SQL Server through the
SqlClient provider. As a result, you’ve seen some of the ways in which you can
take advantage of the features of SQL Server 2000 in your .NET applications.
Today’s lesson is designed to go a step further than what you’ve seen and
address issues that are particular to SQL Server when building enterprise appli-
cations. To that end, the lesson is split into two parts. The first part deals with
database design issues, whereas the second part deals with additional considera-
tions for accessing data. Consequently, if you’re not designing for SQL Server
or already have a good grasp on the fundamental issues involved in designing
databases for SQL Server, you’ll probably already have a good grasp on much
of the material in this lesson.

Specifically, today’s lesson will focus on the following concepts:

• How the SqlClient provider communicates with SQL Server

• How to use SQL Server features to create a good database design

• Some alternatives to using the SqlClient provider for accessing SQL
Server

17 3869 ch13 5/20/02 1:27 PM Page 329

SqlClient Internals
The SqlClient .NET Data Provider is what I’ve termed a specific or targeted provider
because it’s able to communicate with only a single data store; in this case, only SQL
Server version 7.0, 2000, and later versions such as the release code-named Yukon. As
you learned on Day 8, “Understanding .NET Data Providers,” the reason you would use
specific providers is that they offer two main advantages over the general providers such
as OleDb and the ODBC provider.

First, specific providers can expose classes, methods, properties, fields, and events that
aren’t found in the base provider architecture. These additional constructs enable devel-
opers to work with the database server more closely because they expose features that
are difficult or impossible to access using a generic provider. One example of this is the
ExecuteXmlReader method we discussed on Day 10, “Using Commands.”

330 Day 13

Both the ODBC and OLE DB architectures rely on a fundamen-
tal software development design pattern known as the

adapter pattern. Simply put, the adapter pattern allows clients to work with
multiple disparate pieces of software by abstracting their functionality into
a well-known interface that the clients understand. In this pattern, the dif-
ferences were abstracted to a lower level (the ODBC driver or OLE DB
provider), resulting in wider access to data. The cost, of course, is perfor-
mance as well as access to features that are very specialized.

Note

Second, a specific provider eliminates a layer of abstraction sitting between the client
code and the data store. When this extra layer is eliminated, performance naturally
increases. Although much of this week has been devoted to showing the programmatic
differences between SqlClient and OleDb, the differences in the underlying communica-
tion haven’t been addressed. This section will explore the second of these benefits of a
specific provider.

Using Tabular Data Stream
Under the covers, every client that communicates with SQL Server does so using the
Tabular Data Stream (TDS) wire protocol through a SQL Server client Net-Library.
Figure 13.1 depicts this architecture.

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 330

Working with SQL Server 331

13

The definition of the components shown in Figure 13.1 is as follows:

• TDS. TDS is the application-level protocol specific to SQL Server. It is a low-level
protocol that specifies both commands and data in a specific arrangement. A TDS
packet encapsulates the protocol and is configurable on the client. By default, the
packet size is set to 4KB and should typically be left alone.

• Net-Library. This piece of software (unmanaged DLL) on the client machine
receives TDS packets and encapsulates them into packets suitable for the network
protocol being used. As a result, there are seven different Net-Library DLLs that
install with MDAC 2.7, including Named Pipes, TCP/IP, Multiprotocol, NWLink
IPX/SPX, AppleTalk, Banyan Vines, and VIA. They can be configured using the
SQL Server Client Network Utility. On the server, the TDS packets are received by
an analogous Net-Library (which ones the server listens on can also be config-
ured).

• Relational Database Engine. This is the piece of software that does all the work
you think of related to a database. The TDS packets are received from the server
Net-Library and parsed, executed (including access to the data files), and the
results are formulated as TDS packets. The return trip follows the same path in
reverse with the server Net-Library encapsulating the TDS packets for transport to
the client, where they are unpacked and processed.

FIGURE 13.1
SQL Server client
architecture. This dia-
gram depicts the com-
munication path from
a client to a SQL
Server.

Network Protocol

Windows
Server

Client

Data
Files

SqlClientOLE DB

TDS Commands and Data

TDS Packets (version specific)

Networking Packets

ODBC

Client Net-Library

Server Net-Library

Rational Engine

ADO.NETADO

17 3869 ch13 5/20/02 1:27 PM Page 331

In the past, on the client side, the ODBC driver and SQLOLEDB OLE DB provider were
responsible for creating TDS packets. The SqlClient provider, however, now assumes that
role by creating TDS packets directly in managed code and passing them off to the
appropriate Net-Library. As you can see from Figure 13.1, different clients use different
versions of TDS. This is the reason the SqlClient provider can’t support all versions of
the SQL Server; namely, it can create packets only for TDS 7.0 or higher, which older
versions of SQL Server couldn’t understand.

332 Day 13

As you no doubt will notice, the communication between SqlClient and SQL
Server can be heavily influenced by the connection attributes we discussed
on Day 9, “Using Connections and Transactions”—particularly the Network
Library and Packet Size attributes.

Note

Because SqlClient creates TDS packets directly, performance is increased. In fact,
Microsoft’s internal tests have indicated that using the SqlClient provider in .NET appli-
cations is even faster than writing a managed Visual C++ application that accesses the
SQLOLEDB OLE DB provider directly using COM. In addition, Microsoft’s tests indi-
cate that when you scale up and move from a single-processor server to a quad-processor
server, performance increases by a factor of three. Rest assured, performance using
SqlClient isn’t an issue when developing .NET applications.

Database Design
Even if you develop a complete understanding of ADO.NET, the applications you write
might still suffer performance, security, and data integrity lapses if the database on which
the data resides isn’t designed optimally. In many organizations, the initial database
design falls on the development team (the architect and developers) and only later is
reviewed by a database administrator (DBA). In other organizations, developers are
expected to do all the database design, sometimes without the proper background. In
either case, if the database design isn’t done well, by the time it is realized, it’s usually
too late or very costly to make the fundamental changes that are necessary.

To that end, this section explores several key areas that you need to consider when
designing a database in SQL Server.

17 3869 ch13 5/20/02 1:27 PM Page 332

Working with SQL Server 333

13

Schema Design
Typically, the first step a designer takes when designing a relational database is
to create a logical model of the data to be represented before actually creating

the physical database. Modeling at the logical or conceptual level enables designers to
leave implementation details to later stages and to concentrate on what data needs to be
represented and how it’s related to other data. Traditionally, many designers have chosen
to use a database modeling methodology referred to as entity-relationship (ER) mod-
eling to graphically produce logical and physical designs represented through an entity
relationship diagram (ERD). Even though all the ins and outs of database modeling are
beyond the scope of this book, a few key points to help you understand the methodology
are in order.

An ERD consists of entities and attributes arranged in the diagram. An entity is
simply a thing or object that has significance in the problem domain such as a

Title or Customer. An attribute is information about the entity that describes, identifies,
classifies, or quantifies the entity. The attribute or set of attributes that uniquely identifies
an entity is referred to as the identifier.

Multiple entities are then connected through relationships. The relationships
indicate how the entities relate to each other and specifically provide the cardi-

nality. The cardinality indicates the numerical relationship between entities as in each
Title is related to zero or more Reviews or each Order is related to one or more Order
Details. These relationships are signified by a specific set of symbols. Although there are
several different sets of symbols and notations that can be used—including Bachman,
Chen ERD, Martin ERD, and Express-G—one of the most common simply uses the
IDEF1X symbol set for the entities with the Information Engineering notation’s crow’s
feet notation for the relationships. Figure 13.2 presents the ERD for the ComputeBooks
database using this notation.

In Figure 13.2 you’ll notice, for example, that the relationship between the Publishers
and Titles entities indicates that a publisher can be related to zero or more titles (indicat-
ed by the circle and the crow’s feet), whereas a title is related to one and only one pub-
lisher (indicated by the double barred line).

Where appropriate, I’ll point out which features or constructs are available
only in SQL Server 2000 because the SqlClient provider can access both SQL
Server 2000 and SQL Server 7.0.

Note

NEW TERM

NEW TERM

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 333

Although understanding ER modeling and the notations used isn’t difficult,
Microsoft has recently invested much effort in developing a conceptual modeling

approach referred to as Object Role Modeling (ORM). Simply put, ORM seeks to make
the relational design process simpler by using a natural language approach through intu-
itive diagrams in which you can place sample data, and by distilling the model into a
series of elementary facts. ORM makes relational database design more approachable for
developers and others not formally trained in database design. As a result, Microsoft is
making ORM available in Microsoft Visio for Enterprise Architects and the VS .NET
Enterprise Architect release.

334 Day 13

FIGURE 13.2
ComputeBooks ERD.
This is the entity rela-
tionship diagram for
the ComputeBooks
database.

PubCode

Publishers

PublishersName
ContactFName
ContactLName
EmailAddress
WebSite

OrderID

Orders

CustomerID (FK)
OrderDate
StoreID (FK)
Shipping

StoreID

Stores

Address
City
StateProv
PostalCode

OrderID (FK)

OrderDetails

ISBN (FK)
Quantity
UnitPrice

ISBN

Titles

Title
Description
Author
PubDate
Price
Discount
BulkDiscount
BulkAmount
Cover
CatID (FK)
PubCode (FK)

CustomerID

Customers

FName
LName
Address
Cith
StateProv
PostalCode
EmailAddress

CatID

Categories

Description

ReviewID

Reviews

ISBN (FK)
ReviewText
Stars

A variety of software packages, such as Erwin and Visio 2000
(from which Figure 13.2 was created), provide the tools neces-

sary to create logical data models and even reverse-engineer the physical
database from a variety of sources into a logical diagram. This makes view-
ing the structure of an already existing database easy for documentation or
rework. Most of these tools then enable you to change the model and
update the database (referred to as round-tripping).

Note NEW TERM

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 334

Working with SQL Server 335

13

Regardless of which techniques you use to create the logical model, eventually,
the physical database objects (collectively referred to as the schema) must be

created. The schema consists chiefly of tables, views, columns, and constraints. A few of
the most important aspects of the schema design you should look for follow.

Normalizing the Schema
One of the most powerful concepts in relational database theory is normaliza-
tion. Normalization can be thought of as the process of removing ambiguous and

repetitive information from the schema by creating related tables. The sign of a normal-
ized database is that it contains well-focused tables with a reasonable number of columns
that are related through foreign keys, rather than one or several tables that contain a large
number of columns. By designing a normalized database in SQL Server, you’ll maximize
the performance of sorting, index creation, and data modifications as well as minimize
the storage required.

As you’re probably aware, various forms of normalization have been codified in
relational theory. These forms specify an increasing and more restrictive level of

normalization from First to Fifth Normal Form (and including Boyce-Codd Normal
Form). Typically, designers don’t attempt to implement anything higher than Third
Normal Form (3NF), the rules for which follow.

A schema is in 3NF if

• Each table (entity) must contain a primary key (identifier) that uniquely identifies a
row in the table. In some instances, picking the primary key is simple because one
column or a combination of the columns will naturally lend itself to uniqueness,
such as PubCode in the Publishers entity or ISBN in the Titles entity in Figure
13.2. In other cases, you’ll need the help of the database to assign a system-
generated key to ensure uniqueness. All the other entities in Figure 13.2 use
system-assigned keys defined with the uniqueidentifier (GUID) data type in
SQL Server. As you might expect, the primary key isn’t allowed to contain null
values. In SQL Server, you’ll use a primary key constraint in the CREATE TABLE
statement to define the primary key.

For more information on ORM, see the article “Object Role Modeling: An
Overview” by Microsoft’s Terry Halprin on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/dnvs700/html/vsea_ormoverview.asp.

Note

NEW TERM

NEW TERM

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 335

• Each column in each table is atomic, meaning that it stores one piece of informa-
tion. In the ComputeBooks model in Figure 13.2, for example, the customer name
is split into two columns because it consists of two pieces of information. A good
rule of thumb is to avoid storing data in a column that will have to be parsed when
it is retrieved.

• Each nonkey column in each table is functionally dependent on the primary key. In
other words, all the columns must directly describe the primary key. This is some-
times difficult to see but, for example, if the Reviews table in Figure 13.2 also con-
tained the title of the book, it would violate this rule because the title really
describes the ISBN and not the review. Another way to think of this rule is that your
tables shouldn’t contain repeated data that could be placed in its own table. A
symptom of not following this rule is that a change to a single piece of data
requires changes to scores of rows because the data is repeated a number of times.
It follows, then, that all columns that aren’t dependent on the primary key should
be placed in their own tables. This rule is fairly strict and would require, for exam-
ple, that in Figure 13.2 a separate table be created to hold the City and StateProv

columns for each store because these columns are actually dependent on
PostalCode and not on StoreID. However, reading or designing a model with this
rule in mind can help you reduce redundant data.

336 Day 13

As you learned on Day 4, “DataSet Internals,” SQL Server also supports
IDENTITY columns as a means of creating system-assigned keys. Each table
can have one column marked as the IDENTITY column and it will be populat-
ed automatically in auto-incrementing fashion based on the seed and incre-
ment it’s created with. The downside of the IDENTITY values is that they’re
database dependent and so aren’t recommended for distributed database
scenarios. However, it’s relatively simple to create a stored procedure that
inserts a row into a table and returns the new IDENTITY value using the
@@IDENTITY global variable. You can then create a SqlParameter object to
catch the return value with its SourceColumn property set appropriately in
order to populate the new key back into the DataTable.

Tip

Although these rules make a great deal of sense conceptually, in practice, design-
ers choose a level of normalization to fit the needs of the situation. For example,

in the ComputeBooks model in Figure 13.2, the Author column of the Titles table is
used to store multiple author names in a comma-delimited list. This violates the second
rule because the column isn’t atomic. A more normalized design would mean that an
Authors entity should be created and each author stored there with a primary key that is

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 336

Working with SQL Server 337

13

referenced by the Titles entity. In fact, this design would call for a many to many rela-
tionship because authors can write many books and books can be written by many
authors. This would result in the creation of an additional table to hold the relationship.
This design would be more complicated and result in more joins between tables in my
queries. I decided not to normalize this column because of the added complexity and
because there is no other information I’m storing about authors. In other words, the
increased complexity of normalization wasn’t justified based on how the data is used.

However, keep in mind that this design isn’t as flexible, so if data about
authors needed to be collected in the future, the changes needed would
greatly impact the schema. By normalizing early, you typically avoid major
changes to the schema down the road.

Note

In general, designers don’t fully normalize a schema because doing so would hurt perfor-
mance. In SQL Server, you should strive for designs in which you aren’t regularly join-
ing more than four tables. For example, if one of your most frequent queries must join
six tables to retrieve the required information, you should think about denormalizing the
schema so that fewer joins are required. In some cases, this might mean keeping your
original tables intact but duplicating data in a table that’s easier to query. Behind the
scenes, you can then write triggers that keep the data in sync. Of course, this approach
optimizes query performance at the cost of performance during an insert, update, or
delete.

That having been said, not normalizing at all results in very wide tables (tables with
many columns) that are difficult to maintain because of repeating data and that perform
very poorly when queried.

Choosing Names and Data Types
A second aspect of schema design involves choosing appropriate table and column
names as well as data types. As you can see in Figure 13.2, the names in your schema
should use a simple naming convention that is human readable, if possible. In this case,
each table name is the plural version of the data it stores and each column name is a
human-readable identifier of less than 20 characters. In my designs, I prefer to avoid
using underscores in favor of capitalizing each word in a compound name and to avoid
embedding any data type information in the column name. Some designers will also
insist that each column have a unique name in the schema. Even though I follow this dic-
tate for primary keys (rather than simply calling each one ID), if the column names actu-
ally have the same meaning (such as Description), there is no problem with using the
same name because they can be fully qualified in SQL statements using the table name.

17 3869 ch13 5/20/02 1:27 PM Page 337

A more important issue, however, is the data types you choose. In SQL Server, there are
more than 25 data types that you can use in your tables. In many cases, SQL Server sup-
ports several versions of the same basic data type; for example, datetime and small-

datetime. The rule of thumb is that you should pay attention to the ranges of data that
the data type supports and then pick the smallest data type that spans the entire range of
data you expect. This makes sense because you want to minimize the amount of storage
for each table, which, more than simply conserving disk space, speeds up queries, index
creation, and modifications on the table because less data needs to be considered.

In particular, you can use Table 13.1 as your guide.

TABLE 13.1 SQL Server data types. This table pairs the most common data type decisions
designers have to make when creating tables in SQL Server.

Comparison Choice

datetime and smalldatetime datetime (8 bytes) can store data from 1753 to 9999 with
an accuracy of one three-hundredth of a second, whereas
smalldatetime (4 bytes) ranges from 1900 to 2079 with
an accuracy to the minute. datetime is appropriate for his-
torical dates and those recording the specific time of a
transaction. smalldatetime is useful for recording current
dates.

tinyint and bit tinyint ranges from 0 to 255, whereas bit is only 0 or 1.
bit is useful for Boolean representations, whereas
tinyint is more appropriate for values fixed in a natural
range, such as number of children.

float and real Both float and real are used to store floating point
numeric data, but float can specify the precision and thus
the storage size up to 53. real is defined as float(24)
and uses 4 bytes, whereas float uses 8 bytes with a man-
tissa above 24.

money and smallmoney Both money and smallmoney have the same accuracy, but
smallmoney only ranges from +/- approximately 214,750
and uses 4 bytes instead of 8. You should take into
account the currency when deciding which to use.

decimal and numeric decimal and numeric are equivalent and can be used to
represent numbers with a fixed but configurable precision
and scale. The data can take from 5 to 17 bytes, depending
on the precision specified.

338 Day 13

17 3869 ch13 5/20/02 1:27 PM Page 338

Working with SQL Server 339

13

char, varchar and nchar, nvarchar char and nchar store fixed-length strings, whereas var-
char and nvarchar store variable-length strings. char and
varchar use non-Unicode characters, whereas nchar and
nvarchar use Unicode. All can store up to 8,000 bytes, so
nchar strings, for example, can only be of length 4,000.
Use char and nchar when the data will be consistently the
same length because they perform better. Use varchar and
nvarchar for longer strings that vary greatly in order to
conserve space. Use nchar and nvarchar when you need
to store text from multiple languages in the same database.

varchar, nvarchar and text, ntext text and ntext can support sizes of more than 2 billion
bytes, whereas varchar and nvarchar are restricted to
8,000 bytes. text and ntext aren’t stored with the row, so
queries are slower. Use text and ntext when storing
entire documents in the database.

binary and varbinary binary can store fixed-length binary data from 1 to 8,000
bytes, whereas varbinary can store a variable amount of
data up to 8,000 bytes. Use binary when the amount of
data is fixed and the same for each row.

varbinary and image varbinary can only store up to 8,000 bytes of data,
whereas image is like text and can store more than 2 bil-
lion bytes in a data structure that is separate from the row.
You can use image to store not just graphics, but any bina-
ry data that is large and variable, such as Word or Excel
documents.

timestamp and uniqueidentifier timestamp stores an automatically generated database-
wide unique 8-byte binary value when a row changes or is
inserted. You shouldn’t use it as a primary key because it
changes. You can use this value to determine whether the
row has changed. uniqueidentifier stores a 16-byte
globally unique identifier (GUID) typically generated with
NEWID function. You can use it as a system-assigned
primary key.

Of course, as you have already learned, each of the SQL Server data types is represented
in the System.Data.SqlTypes namespace and in the System.Data.SqlClient.
SqlDbType enumeration. These can be used to read data directly from SQL Server using
a SqlDataReader and to specify the data type for SqlParameter objects, respectively.

TABLE 13.1 continued

Comparison Choice

17 3869 ch13 5/20/02 1:27 PM Page 339

For SQL Server in particular, you should also try to minimize the number of columns
that are nullable in the table. Tables with many nullable columns don’t perform as well
when queried. They are also more difficult to work with for developers who then need to
check for the presence of null values using the IsDBNull method of the data reader, for
example. One strategy you can use to avoid a lot of nullable columns is to factor them
into their own table that has a one-to-one relationship with the table from which they
came. In that way, this optional data can be queried only when it’s needed.

User-Defined Data Types

One additional construct that you should consider when designing a database in
SQL Server is the user-defined data type (UDT). Simply put, a UDT is a data-

base-wide identifier that you create and that maps to one of the intrinsic SQL Server data
types. You can use UDTs to standardize the way that certain pieces of information are
stored and then reuse the UDTs across tables.

For example, if you want to make sure that e-mail addresses are always represented as
nvarchar(200) in your database, you can create a UDT called EmailAddress using the
system stored procedure sp_addtype like so:

EXEC sp_addtype EmailAddress, ‘nvarchar(200)’, ‘NULL’

Now that the EmailAddress UDT exists, you can use it in a CREATE TABLE statement in
place of nvarchar(200). If all your tables, such as Publishers and Customers, use the
UDT consistently, you’ll be assured that e-mail addresses are always stored in the same
way.

You can also use UDTs to abstract the definitions one step further. For example, e-mail
addresses and Web site addresses store the same kinds of information, so you could cre-
ate a more general URI (uniform resource identifier) UDT that both the EmailAddress
and WebSite columns will use.

UDTs also have the advantage of allowing rules (which we’ll discuss later) to be bound
to them so that the same rule can apply to multiple tables.

340 Day 13

NEW TERM

The downside to UDTs is that you must define them before you start creat-
ing tables, and they apply only to the database you create them in.
However, if you create UDTs in the model system database, they’ll be copied
to any new databases you create on the server.

Tip

17 3869 ch13 5/20/02 1:27 PM Page 340

Working with SQL Server 341

13

Using Constraints and Triggers
After you’ve created a schema with the proper level of normalization and chosen the data
types for your columns carefully, you can begin to apply additional constructs to enhance
data integrity to the schema. These include foreign keys, defaults, checks, and triggers.

For this entire discussion, constraints can be applied directly in the CREATE
TABLE statement or with the ADD CONSTRAINT clause of the ALTER TABLE
statement. For more information on the specific syntax, see the SQL Server
books online documentation.

Note

Foreign Key Constraints

Foreign key constraints (also referred to as declarative referential integrity, or
DRI) enforce the relationships between tables by ensuring that each row in the

child table matches to a row in the parent table and that by default, you can’t delete a
row from the parent table that has child rows related to it. These simple rules go a long
way toward ensuring the data integrity of the data that is captured. In SQL Server, for-
eign key constraints work the same way as the constraints you can add to a DataSet, as
you learned on Day 4. In other words, the foreign key constraint between Titles and
Publishers ensures that each title (the child) is related to a publisher (the parent) and
that a publisher can’t be deleted if there are titles associated with it.

Just as with foreign key constraints in a DataSet, you can create cascade rules in SQL
Server 2000 (although not in SQL Sever 7.0, in which you have to use triggers to get the
same effect) using the ON DELETE and ON UPDATE clauses. For example, when the con-
straint is defined, you can specify that if the parent row is deleted, the child rows are
deleted as well, and if the primary key of the parent table is updated, the foreign key col-
umn in the child table is updated as well. This ability comes in handy for relationships in
which the child table is fully dependent on the parent. In ER modeling, this is often seen
when the foreign key attribute is either a part of or the entire primary key, as is the case
with the OrderDetails entity in Figure 13.2 (the rounded corners of the OrderDetails
entity also denote this fact). In this case, an OrderDetails row means nothing without an
Order row, so you should cascade the delete of the Order row to the OrderDetails row.

NEW TERM

Foreign key constraints, along with all sorts of other changes, can be made
graphically using a database diagram in the SQL Server Enterprise Manager.

Tip

17 3869 ch13 5/20/02 1:27 PM Page 341

A good schema design dictates that you create foreign key constraints for all your rela-
tionships. In most designs, almost every table will be related to at least one other through
a foreign key constraint.

Default Constraints

Default constraints can be attached to a column in a table and automatically populate that
column with a value when a row is inserted into the table. This is analogous to the
DefaultValue property of the DataColumn, although it’s more powerful because it isn’t
restricted to literal values. Default constraints come in very handy for populating non-
nullable columns that have standard values and then perhaps change at a later time. For
example, the BulkAmount column of the Titles table could have a default constraint
placed on it of 50 because the bulk rate typically kicks in at 30. Used in this way, default
constraints free the client from having to know the amount, which is better placed closer
to the data. Coupled with using optional parameters in stored procedures, the client can
create a new row without specifying all the columns.

342 Day 13

Remember that you learned on Day 10 that when using SqlClient, you don’t
have to define all the SqlParameter objects for a SqlCommand object that ref-
erences a stored procedure if the procedure defaults their values to NULL in
the declaration.

Note

Default constraints can be specified using literal values such as numbers or strings (as in
the case just specified) or using Transact-SQL functions or values that return a single
value. A typical example is to place two non-nullable columns on each table, called
CreateDate and CreateUser, whose default constraints are set to the functions
GETDATE() and USER, respectively. In this way, the date and time the row was created
and the user who created it are captured automatically when each row is added. These
columns are very useful for troubleshooting and analysis.

Another good use for defaults—and one that is used heavily in the ComputeBooks data-
base—is to use a default constraint to assign a new uniqueidentifier to inserted rows.
The primary keys of all the tables except Publishers and Titles are defined as
uniqueidentifier with a default constraint of NEWID(). This ensures that if the client
doesn’t generate a GUID, one will be created on the server.

Default constraints can be added to a table using the CREATE TABLE or ALTER TABLE
statements as well as graphically in the table editor or database diagram with the SQL
Server Enterprise Manager.

17 3869 ch13 5/20/02 1:27 PM Page 342

Working with SQL Server 343

13

Check Constraints

Both check constraints and rules are used to restrict the range of values (the domain) in a
column or set of columns during both an insert and an update. Basically, check con-
straints were introduced in SQL Server 7.0 and offer better performance, whereas rules
(like default objects) are a backward-compatibility feature and offer a little added flexi-
bility.

Typically, check constraints are used to check for boundary conditions on columns to
make sure that data integrity is maintained. For example, the Price, BulkDiscount,
BulkAmount, and Discount columns in the Titles table could also have individual (or
column-level) check constraints placed on them so that negative values are rejected. Even
though these types of checks are done on the client, it’s always desirable to place them
on the server as well. This is because multiple applications might be using the data, and
the server is the final gatekeeper of the data and is therefore ultimately responsible for
data integrity issues.

However, check constraints (and rules) can also apply to more than one column
(referred to as table-level constraints) in order to make sure that the data in the

columns is synchronized. This is similar to using the RowUpdating and RowUpdated

events of the data adapter to ensure that column values are compatible. This might be
necessary, for example, to make sure that the BulkDiscount falls within a certain per-
centage of the Price when a title is updated or inserted. As with defaults, check con-
straints maintain data integrity and should be used in addition to checking down on the
client.

SQL Server also supports default objects for backward compatibility because
default constraints weren’t supported before SQL Server 7.0. Default objects
are created with the CREATE DEFAULT statement, and then can be bound to
columns or user-defined data types using the sp_bindefault system stored
procedure. Default objects aren’t recommended because they don’t perform
as well as default constraints.

Note

NEW TERM

Although they don’t perform as well as check constraints, rules have the
advantage of being able to be created once and then applied to multiple
tables or user-defined data types. They’re created with the CREATE RULE
statement and bound to a table or UDT using the system stored procedure
sp_bindrule. Check constraints must be created separately on each column
or table.

Note

17 3869 ch13 5/20/02 1:27 PM Page 343

Triggers

Although not a constraint by definition, a trigger is the most flexible way to maintain
data integrity because it’s basically an event-driven stored procedure that has access to
the data that is being inserted, updated, or deleted before the change is committed. In
other words, triggers fire during a transaction (either implicit or explicit), whereas con-
straints are checked before the transaction begins. This allows triggers to make dynamic
decisions but decreases performance. In fact, poorly designed triggers can bring a SQL
Server database to its knees. For that reason, you should use constraints whenever possi-
ble and resort to triggers for added or special functionality.

344 Day 13

SQL Server 2000 introduced the concept of INSTEAD OF triggers, which can
be used to explicitly perform the modification. This gives you complete con-
trol over how the modification is made and to which tables it applies.

Note

As an example of a trigger, suppose you want to maintain in a table a column called
UpdateUser that tracks the last user to modify the row. Although you can place a default
constraint on the column to populate the column when the row is created, the constraint
won’t update the column when the row is modified. To allow the server to handle this
automatically, you could create a trigger on the update event as shown in Listing 13.1.

LISTING 13.1 Using triggers. This simple trigger updates the UpdateUser column with
the current user when a row in the Titles table is updated.

CREATE TRIGGER upd_Titles
ON dbo.Titles
FOR UPDATE AS

UPDATE Titles
SET UpdateUser = USER
FROM inserted b JOIN Titles ON b.ISBN = Titles.ISBN

GO

In Listing 13.1, you can see that the trigger is defined with a name, the table it
operates on, and the events (UPDATE in this case, but they can fire for more than

one) it will fire for. When it fires, it issues a correlated UPDATE statement against the
internal inserted table and changes the UpdateUser value for those rows updated by the
UPDATE statement. The inserted table is a logical table of the same structure as the table

ANALYSIS

17 3869 ch13 5/20/02 1:27 PM Page 344

Working with SQL Server 345

13

on which the trigger is firing which holds the values that are about to be used to update
the row. There is also a deleted logical table that holds the old values.

One of the trickiest aspects of using triggers is that they fire only once even
if the statement that caused them results in multiple rows being inserted,
updated, or deleted. In other words, the logical inserted and deleted tables
can contain more than one row. Any statements you write in the trigger
need to take this into account and not assume that only one row is being
processed. In Listing 13.1 this is done by using a JOIN within the UPDATE
statement.

Note

Although there are several rules for triggers that you should consult in the online docu-
mentation before using them, the rule of thumb is to perform the minimum amount of
work necessary and then get out. This is the case because the trigger fires in the middle
of the transaction, so any work you do in the trigger will delay the statement completion
and thus the transaction completion. You should keep in mind that, by default, triggers
can also be recursive and nested so that if a trigger on table A updates table B, the trig-
gers on table B will fire, and so on up to 32 levels. Nested triggers can be turned off at
the database level as well. Recursive triggers can also be turned off and, as the name
implies, allow triggers to perform update statements either directly or indirectly (through
other triggers) on the table that started the process. Triggers should also not return result
sets because the client program won’t be expecting it.

Another typical use for triggers is to maintain denormalized data. For example, if I regu-
larly performed queries that counted the total number of books sold and revenue for each
title, I might denormalize the Titles table by adding these columns and then use a trig-
ger to update them.

Because triggers fire in the middle of a transaction, they can also cause the
implicit or explicit transaction to be rolled back by issuing a ROLLBACK
TRANSACTION statement. When this occurs, the trigger should also issue a
RAISERROR statement to ensure that the client is notified that the transaction
was rolled back.

Note

Finally, one of the other advantages of triggers is that they can reference objects outside
the database in which they are defined. Using DRI, you can reference only tables inside
the current database; with triggers, you can ensure that data in a separate database on the

17 3869 ch13 5/20/02 1:27 PM Page 345

same or a remote server is synchronized. However, keep in mind that referencing objects
outside the current database slows performance—particularly if you’re going to reference
remote objects.

346 Day 13

Remote server can be referenced using linked server through SQL Server
Enterprise Manager or the sp_addlinkedserver system stored procedure.

Note

Because triggers are so flexible, they can also be used to implement business rules as an
alternative to placing the rules in a .NET class. The decision of whether to use triggers in
this way is chiefly based on whether the business rule is directly related to the data, and
whether it’s application specific (in addition, of course, to the portability needs of the
application). For example, assume the ComputeBooks has a business rule that states that
when a customer’s orders total a certain amount, they are entitled to an enhanced status.
A trigger could be used to check for this when a new order is inserted in the
OrderDetails table and then another table updated with the CustomerID. Although this
isn’t the only way to accomplish the business rule (for example you could use a stored
procedure called from the procedure that inserts the order), it’s an example of one that’s
directly related to the data and applies for the entire organization.

Of course, the alternative is to place business rules in a .NET class in the business ser-
vices tier of a multi-tiered application. Typically, these business classes rely on the
façade design pattern to control an entire process, such as the placing of an order.
However, allowing SQL Server to implement relatively simple data-related business rules
allows the business classes to concentrate on more complex rules (actually processes)
that are application specific and that perhaps span more than just SQL Server.

Stored Procedure Layer Design
After the schema itself has been created, and all the appropriate constraints and triggers
have also been created, you can concentrate on the database objects that the code you
write in ADO.NET will access directly. In SQL Server, this means creating a stored pro-
cedure layer that ADO.NET code will access. The stored procedures are used primarily
for data access, but can also implement business rules and processes as well.

There are several reasons why you would want all your clients to use stored procedures
rather than inline SQL:

17 3869 ch13 5/20/02 1:27 PM Page 346

Working with SQL Server 347

13

• Abstraction. By allowing access only through stored procedures, you abstract the
schema from the clients that are accessing it. As a result, you can change the
underlying schema (perhaps to denormalize) without affecting the clients as long
as the interface for the stored procedure (its name and parameters) remains the
same. In this way, you can think of your stored procedures as application program-
ming interface (API) to the data. As a side benefit, they also force you to think
about clients that will be accessing the data.

• Simplification. By creating an API that developers can use to access the database,
you also simplify the process of working with the database. This is the case
because the stored procedures can do the complex work of joining the appropriate
tables and can simply return result sets with the appropriate columns based on the
parameters passed into the procedure. At the same time, stored procedures that per-
form the updates can provide a consistent API that developers can use to maintain
the data.

• Performance. In SQL Server, the procedures are certain to take advantage of
cached execution plans whereas inline (or batch) SQL statements must attempt to
be matched to an existing execution plan each time they’re called. Not only is the
actual execution faster, but network traffic is also reduced because large amounts of
SQL aren’t encoded in TDS packets and sent to the server. Finally, using stored
procedures as the “official” way of executing SELECT statements makes it simpler
to apply the appropriate indexes to speed up queries. This is because the statements
that are ultimately executed are restricted.

• Security. Accounts in SQL Server can be given permissions to execute views but
denied permissions to access the underlying tables directly. This ensures that devel-
opers must use the stored procedures rather than writing inline SQL. This only
works, however, if the stored procedure or view is owned by the same account that
owns the table.

What About Views and Functions?

Views (basically SELECT statements with names that can act like tables) also have
some of the same benefits of stored procedures, mainly simplification and securi-

ty. However, views don’t enable you to pass parameters to them and don’t provide a significant
increase in performance. Views are useful, however, as building blocks in stored procedures
that make it easier to code the stored procedure.

Functions were introduced in SQL Server 2000 and come in several flavors, includ-
ing inline and table functions. Inline functions are equivalent to views that accept

parameters (parameterized views), whereas table functions are more flexible and can return

NEW TERM

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 347

When creating the stored procedure layer, you should take the approach of designing the
procedures for the specific application you have in mind. In other words, the stored pro-
cedures should be application specific. By following this approach, you’ll create stored
procedures that streamline the coding process in .NET and make the database very
approachable. At the same time, you’ll likely see that the way in which one application
needs to work with the data is very similar to others. As a result, there will be significant
reuse of the procedures.

348 Day 13

any type of data. However, functions must be called in the context of a SELECT statement and
so aren’t fully encapsulated as are stored procedures. Like views, functions should be consid-
ered as building blocks for stored procedures.

As with any abstraction, procedures introduce additional maintenance, so
versioning of the procedures in a source code control system such as
Microsoft Visual SourceSafe is recommended.

Tip

When you create the procedures, you should do so with a naming convention in mind.
The convention that you’ll see most often will prefix the procedure with usp_ for user
stored procedure followed by the name of the procedure without underscore and each
word capitalized.

As an example of this approach, consider the usp_GetTitles stored procedure in
Listing 13.2.

LISTING 13.2 Application-specific stored procedure. This procedure retrieves titles based
on optional parameters.

CREATE PROCEDURE usp_GetTitles
@ISBN [nvarchar](10) = NULL,
@Title [nvarchar](100) = NULL,
@Author [nvarchar](250) = NULL,
@PubDate [smalldatetime] = NULL,
@CatID [uniqueidentifier] = NULL,
@Publisher [nchar](5) = NULL

AS

DECLARE @where nvarchar(250)
declare @title_w nvarchar(100)
DECLARE @author_w nvarchar(100)

17 3869 ch13 5/20/02 1:27 PM Page 348

Working with SQL Server 349

13

DECLARE @pubdate_w nvarchar(100)
DECLARE @CatID_w nvarchar(100)
DECLARE @Publisher_w nvarchar(100)
DECLARE @sql nvarchar(500)

SET @title_w = ‘’
SET @author_w = ‘’
SET @pubdate_w = ‘’
SET @CatID_w = ‘’
SET @Publisher_w = ‘’

SET @where = ‘WHERE’
IF @isbn IS NOT NULL SET @where = @where + ‘ isbn = ‘’’ +
@isbn + ‘’’’ + ‘ and ‘

IF @title IS NOT NULL SET @title_w = ‘ title like ‘’%’ +
@title + ‘%’’’ + ‘ and ‘

IF @author IS NOT NULL SET @author_w = ‘ author like ‘’%’ +
@author + ‘%’’’ + ‘ and ‘

IF @pubdate IS NOT NULL SET @pubdate_w = ‘ pubdate > ‘’’ +
convert(nchar(10), @pubdate, 101) + ‘’’ and ‘

IF @catid IS NOT NULL SET @catid_w = ‘ CatID = ‘ +
convert(nchar(40), @catid) + ‘’’’ + ‘ and ‘

IF @publisher IS NOT NULL SET @publisher_w = ‘ Publisher = ‘’’ +
@publisher + ‘’’’ + ‘ and ‘

SET @sql = ‘SELECT * FROM Titles ‘ + @where + @title_w + @author_w +
@pubdate_w + @catid_w + @publisher_w

SET @sql = substring(@sql,1, LEN(@sql)-4)
EXEC sp_executesql @sql
GO

The usp_GetTitles stored procedure in Listing 13.2 is a more complex proce-
dure that’s used to retrieve rows from the Titles table based on the parameters

passed into it. You’ll notice that all the parameters have default values of NULL. As a
result, the SqlParameter objects needn’t be created if they aren’t used because the
SqlCommand object uses named rather than positional arguments. The rest of the proce-
dure then builds clauses that can be added to the WHERE clause to retrieve the appropriate
rows. The entire SELECT statement is then finally executed using the sp_executesql sys-
tem stored procedure.

This procedure abstracts, simplifies access to, and secures access to the Titles table.
The key benefit, however, is that on the client side, the ADO.NET code is simplified
because it can simply call a single procedure and create the parameters as needed, as
shown in Listing 13.3.

LISTING 13.2 continued

ANALYSIS

17 3869 ch13 5/20/02 1:27 PM Page 349

LISTING 13.3 Calling the usp_GetTitles stored procedure. This code calls the procedure
and adds the parameters as appropriate.

Private Function _getTitles(ByVal author As String, ByVal title As String, _
ByVal isbn As String, ByVal lowPubDate As Date, _
ByVal catID As Guid) As DataSet

Dim da As New SqlDataAdapter(“usp_GetTitles”, MyBase.SqlCon)
Dim titleDs As New DataSet()

da.SelectCommand.CommandType = CommandType.StoredProcedure
Try
If Not isbn Is Nothing AndAlso isbn.Length > 0 Then
da.SelectCommand.Parameters.Add(New SqlParameter(_

“@isbn”, SqlDbType.NVarChar, 10))
da.SelectCommand.Parameters(0).Value = isbn

Else
If Not title Is Nothing AndAlso title.Length > 0 Then
da.SelectCommand.Parameters.Add(New SqlParameter(_
“@title”, SqlDbType.NVarChar, 100))

da.SelectCommand.Parameters(0).Value = title
End If
If Not author Is Nothing AndAlso author.Length > 0 Then
da.SelectCommand.Parameters.Add(New SqlParameter(_
“@author”, SqlDbType.NVarChar, 250))

da.SelectCommand.Parameters(0).Value = author
End If
If lowPubDate.Equals(Nothing) Then
da.SelectCommand.Parameters.Add(New SqlParameter(_
“@pubDate”, SqlDbType.DateTime))

da.SelectCommand.Parameters(0).Value = lowPubDate
End If
If Not catID.Equals(Guid.Empty) Then
da.SelectCommand.Parameters.Add(New SqlParameter(_
“@catId”, SqlDbType.UniqueIdentifier))

da.SelectCommand.Parameters(0).Value = catID
End If

End If

da.Fill(titleDs)
Return titleDs

Catch e As SqlException
da = Nothing
titleDs = Nothing
Call _throwComputeBookException(“GetTitles Failed, passed in “ & isbn, e)

End Try
End Function

350 Day 13

17 3869 ch13 5/20/02 1:27 PM Page 350

Working with SQL Server 351

13

As you can see in Listing 13.3, the method is used to call the stored procedure
based on the arguments passed into it. The method checks each one and, if it has

an invalid value, the SqlParameter isn’t created. In this way, this one method in .NET
can query based on several parameters. As you’ll see on Day 17, “ADO.NET in the Data
Services Tier,” this method can then be called by overloaded public methods that clients
can use to retrieve titles.

Index Design
Even if you apply all the design techniques and concepts discussed today, your applica-
tions will still perform badly if the server can’t get the data fast enough. As the amount
of data grows, the issue of indexes on the tables becomes the most important aspect of an
application that is to perform well. At the most basic level, whenever SQL Server exe-
cutes a query, the query optimizer analyzes the query and assigns costs to the various
methods it can use to satisfy the query. By building indexes, you allow SQL Server to
consider a new way of accessing the data so that it won’t fall back to a table scan, which
reads the table row by row until the query is satisfied.

Although indexes are a complicated subject and should be applied on enterprise databas-
es by someone with experience, the following are some guidelines to consider:

• What you should index. You should consider indexing columns used
in WHERE clauses and those that are specified in JOIN clauses. These are

the columns that define which rows are accessed in the table and can be used most
effectively by the optimizer. In addition, if all the columns requested in a SELECT
statement are in an index (referred to as a covered query), the data can be read
directly from the index, which will increase performance.

• What you shouldn’t index. You shouldn’t index columns that aren’t used in WHERE
clauses or JOIN clauses. The more indexes there are on a table, the slower INSERT,
UPDATE, and DELETE statements will execute. In addition, creating indexes on small
tables, such as simple lookup tables, might actually decrease performance. This is
because a table scan will be faster and SQL Server will waste time considering and
possibly using the index.

• What kinds of indexes there are. Basically, you can create clustered
and nonclustered indexes. Clustered indexes actually rearrange the

data on the disk in the order of the index. As a result, you can have only one clus-
tered index per table. Clustered indexes are useful when the columns indexed will
be queried in a range (as with a BETWEEN clause) or frequently sorted by with a
SORT clause. Nonclustered indexes create the index in a separate data structure
and therefore multiple nonclustered indexes can be created per table. Within these,

ANALYSIS

NEW TERM

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 351

the indexes can be unique. A unique index is like a primary key (in fact, creating a
primary key creates an index automatically) in that duplicate values within the
index aren’t allowed. Indexes can also be composite and contain multiple columns.
The order of the columns is important, so you should place more frequently
queried column at the front of the index.

• Whether your indexes are correct. SQL Server provides the Index Tuning
Wizard, accessible from SQL Server Enterprise Manager. This utility can analyze
traffic captured by the SQL Profiler and suggest indexes based on the queries it is
seeing. You can use this during testing to make sure that you’ve created the appro-
priate indexes for your application.

The bottom line is that there is no formula you can apply to decide which indexes you
create. The determination comes from the combination of your application, the workload,
the amount of data, and the tradeoff you’re willing to make between query and modifica-
tion performance.

Security
To ease the administration of permissions for the objects in the database, you need to
apply a sound security design. In SQL Server, the simplest way to accomplish this is to
make sure that all your objects are owned by the database owner (dbo) account. This is
the built-in SQL Server account that the owner of the database automatically uses when
accessing the database. This simplifies your applications in two ways.

First, if all the objects are owned by dbo, you needn’t reference the owner in SQL state-
ments. For example, the statement

SELECT * FROM Titles

will actually default to

SELECT * FROM dbo.Titles

This is the case because the owner wasn’t specified and the account that’s currently being
used to execute the statement ostensibly doesn’t have a table of its own named Titles.

Second, having all objects owned by the same account means that the ownership chain
will be unbroken; for example, when a stored procedure or view accesses a table. This is
important so that permissions can be revoked from the underlying table while allowing
particular accounts to access the stored procedure or view. Developers needing to create
objects can do so as an alias, as mentioned on Day 2, “Getting Started.”

In addition to having dbo own the objects, you also need to assign permissions to the
objects for particular accounts. In a typical Web application, the application will use a

352 Day 13

17 3869 ch13 5/20/02 1:27 PM Page 352

Working with SQL Server 353

13

single account (either a Windows account or a standard account) that all users will share
so that connection pooling will occur. This account, then, can be assigned to particular
database roles such as db_denydatareader or assigned permissions directly using the
GRANT and REVOKE statements. For example, to revoke permissions to the Titles table
and grant permissions to the usp_GetTitles stored procedure, you would invoke the fol-
lowing statements:

REVOKE ALL ON Titles to publicsite
GRANT EXECUTE ON usp_GetTitles to publicsite

where publicsite is a standard account that the ComputeBooks public ASP.NET Web
site uses to log in to SQL Server.

Alternative Data Access Techniques
The final (and much shorter) section of today’s lesson focuses on some alternative meth-
ods you can use to access data from SQL Server. These technique supplement accessing
data using the cached and streamed models available in ADO.NET.

Although the information presented in this section isn’t about ADO.NET per
se, I think it’s important to at least be aware of alternatives when you’re
designing and implementing your applications. As is often said, “When all
you have is a hammer, everything looks like a nail.”

Note

Server-Side Cursors
Developers familiar with SQL Server will know that in ADO it was possible to execute
queries in which the data remained on the server and rows were pulled down as needed.
Although this technique results in more roundtrips to the server, which are typically to be
avoided, there might be times when you need to see data as it’s changed by other users,
or perform positioned updates as you scroll through the result set locking the rows as
they’re traversed.

SQL Server Goes .NET

Microsoft made a design decision with ADO.NET not to support server cursors directly in order
to focus on the disconnected and streamed models available through the DataSet and data
reader. However, Microsoft is working on a server-side model that will first be released on the
Web and incorporated into SqlClient and then, later in 2003, incorporated into the next release
of SQL Server code named Yukon. This server model will likely expose a System.Data.SqlServer

17 3869 ch13 5/20/02 1:27 PM Page 353

One of the means SQL Server uses to do just these sorts of operations is server
cursors. To create a server cursor, you use a specific Transact-SQL statement, as

shown in Listing 13.4. This example shows how you might traverse all the rows in the
Titles table and perform positioned updates if the row meets certain criteria.

LISTING 13.4 A server cursor. This cursor scrolls through the Titles table and performs a
positioned update on a row if it is in the Sams Teach Yourself series.

DECLARE @ISBN nchar(10)
DECLARE @Title nvarchar(100)

DECLARE Titles_Cursor CURSOR DYNAMIC SCROLL_LOCKS FOR
SELECT ISBN, Title
FROM Titles
FOR UPDATE

OPEN Titles_Cursor

FETCH NEXT FROM Titles_Cursor INTO @ISBN, @Title
IF @Title LIKE ‘Teach Yourself%’
UPDATE Titles SET Publisher = ‘Sams’
WHERE CURRENT OF Titles_Cursor

WHILE @@FETCH_STATUS = 0
BEGIN

FETCH NEXT FROM Titles_Cursor INTO @ISBN, @Title
IF @Title LIKE ‘Teach Yourself%’
UPDATE Titles SET Publisher = ‘Sams’
WHERE CURRENT OF Titles_Cursor

END

CLOSE Titles_Cursor
DEALLOCATE Titles_Cursor

354 Day 13

namespace, a SqlResultSet class, and an ExecuteResultSet method on the SqlCommand object,
among others, that will enable you to access server cursors.

Although having access to server cursors from the client will be nice, the real productivity will
be gained by embedding the CLR into SQL Server. When this happens, you’ll be able to write
stored procedures using VB and C# code rather than Transact-SQL. Along with a more produc-
tive language, you’ll get the benefits of IntelliSense and integrated debugging. You’ll also see
performance improvements for complex procedures because the managed code will be com-
piled and not interpreted.

We’ll discuss these new and exciting features more fully on Day 21, “Futures and Wrap Up.”

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 354

Working with SQL Server 355

13

Although you can attempt to wrap each of these statements in a SqlCommand object and
execute them using the ExecuteNonQuery method, a better approach is to wrap the cursor
in a stored procedure and then simply call it with a SqlCommand.

SQLXML
On Day 10, you learned how the SqlClient provider exposes the ExecuteXmlReader
method to execute and return the XML generated by a query that uses the FOR XML
clause on a SELECT statement. The ability to work with SQL Server 2000 data as XML,
however, isn’t limited to just FOR XML. The group of technologies that integrates XML
and SQL Server is, not surprisingly, referred to as SQLXML. Microsoft has created three
releases of this technology and has made them available on the Web through MSDN. In a
nutshell, the major functionalities include

• XML Views. XML Views (also referred to as mapping schemas) are
simply XSD documents that map an XML schema to a relational

schema using attributes. By defining a schema and annotating it (much as you
would when creating a strongly typed DataSet), the SQLXML query processor can
write SQL statements to access data. The Views can then be queried using XPath
or XQuery syntax. This allows complete abstraction from the database schema
because it’s mapped to the XSD. An example of a simple XML View is shown in
Listing 13.5.

LISTING 13.5 An XML View. This document maps the Customers and Orders table to an
XSD schema.

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”Customer” msdata:relation=”Customers”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”Order” msdata:relation=”Orders”>
<xsd:annotation><xsd:appinfo>

<msdata:relationship
parent=”Customers” parent-key=”CustomerID”

child=”Orders” child-key=”CustomerID” />
</xsd:appinfo></xsd:annotation>
<xsd:complexType>

<xsd:attribute name=”OrderDate” type=”xsd:dateTime”/>
</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”CustomerID” />
<xsd:attribute name=”StateProv” type=”xsd:string” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 355

Note that in Listing 13.5, the schema looks remarkably like the DataSet schema
shown on Day 7, “XML and the DataSet.” This is the case because both are

XSD documents and use annotations from the msdata namespace. In this case, the
schema defines the relationship between the Customers and Orders tables and exposes
the CustomerID, StateProv, and OrderDate columns. The SQLXML query processor
can then use this information to formulate a SELECT statement to join these tables. Note
that if the names of the XML elements defined in the schema are the same as the column
names in SQL Server, no further annotations are required.

• HTTP Access via a URL. Using IIS, you can set up a virtual directory through
which you can query data in SQL Server. You can specify your query directly with-
in the query string, through an XML View, or using an XML Template. An XML
Template is simply an XML document that encapsulates the SQL statement, XPath
or XQuery syntax. A sample XML Template is shown in Listing 13.6.

LISTING 13.6 An XML template. This document defines a parameterized XPath query
that accesses the XML View in Listing 13.5.

<root xmlns:sql=”urn:schemas-microsoft-com:xml-sql”
sql:xsl=”path to XSLT file” >

<sql:header>
<sql:param name=”state”>KS</sql:param>

</sql:header>

<sql:xpath-query mapping-schema=”customers.xsd”>
/Customers[@StateProv=$state]

</sql:xpath-query>
</root>

You’ll notice in Listing 13.6 that the document contains the definition of a para-
meter that can be passed to it, or in this case, hardcoded in the header element.

The Template then contains an XPath query that references the XML View and that
selects all the customers whose StateProv matches the parameter. When this template is
processed, the appropriate WHERE clause will be appended to the SELECT statement that is
produced.

• XML UpdateGrams. An UpdateGram is an XML document that
records the before and after state of rows correlated with an XML

View. The SQLXML query processor then writes INSERT, UPDATE, and DELETE

statements when the document is processed. UpdateGrams can be used to send
XML directly to the server rather than it having to go through stored procedures.

356 Day 13

ANALYSIS

ANALYSIS

NEW TERM

17 3869 ch13 5/20/02 1:27 PM Page 356

Working with SQL Server 357

13

• XML Bulkload. This feature enables you to bulk load XML data directly into
SQL Server using an XML View. This is useful when, for example, you’re receiv-
ing data from a trading partner that’s already in an XML document. Using the
XML View, you can create annotations to map the data into your SQL Server data-
base. As you might expect, the performance of XML Bulkload is about 75 percent
that of the traditional technique.

• .NET Access through managed classes. In addition to accessing SQLXML fea-
tures via HTTP, a set of managed classes are available. This allows you to work
with XML Views and templates directly in your .NET code. A simple example of
using these classes is shown in Listing 13.7.

LISTING 13.7 SQLXML managed classes. This short example executes an XPath query
against the XML View in Listing 13.5.

Dim cmd As New SqlXmlCommand(ConnStr)

cmd.CommandType = SqlXmlCommandType.XPath
cmd.CommandText = “/Customer[@StateProv=’KS’]”
cmd.SchemaPath = “customers.xml”
cmd.RootTag = “ROOT”

Dim r As XmlReader

r = cmd.ExecuteXmlReader();
‘
Loop through the data

‘ OR Fill a DataSet

Dim ds As New DataSet()
Dim ad As New SqlXmlAdapter(cmd)
ad.Fill(ds)
‘ Do some work here
ad.Update(ds)

In Listing 13.7, several of the classes that SQLXML exposes are used, including
SqlXmlCommand and SqlXmlAdapter. These classes are analogous to the

SqlCommand and SqlDataAdapter classes in the SqlClient provider but are used to exe-
cute commands that are processed by the SQLXML query processor. In this case, the
listing shows how you might execute an XPath query against the XML View in Listing
13.5 and then return the data either through an XmlReader or in a DataSet.

ANALYSIS

17 3869 ch13 5/20/02 1:27 PM Page 357

• SOAP for SQL Server. In the latest Web release (3.0), SOAP support was added
to enable you to expose stored procedures or XML Templates as methods in an
XML Web Service using SOAP. There’s a graphical tool that you can use to pick
which procedures and templates to expose.

Summary
Understanding the components of ADO.NET is only part of the picture when designing
and implementing applications for SQL Server. It’s also important to use good design
techniques when building your schema and deciding how your ADO.NET application
will communicate with SQL Server.

Today you learned how SqlClient communicates with SQL Server, how to apply some
basic relational modeling techniques to your schema, and how SQL Server objects such
as constraints can be used to increase data integrity. In addition, you should keep in mind
the short discussion about alternatives because they might be more applicable than
SqlClient for certain scenarios.

Tomorrow we’ll finish the week by looking briefly at the ODBC .NET Data Provider as
well as how and why you might build your own provider.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What is the significance of SqlClient formulating TDS packets?

The SqlClient provider creates TDS packets and hands them off to the Net-Library
responsible for building network packets and sending them to the server. The sig-
nificance of this is that SqlClient is directly using the application protocol that
SQL Server listens for and so is much faster than first going through an OLE DB
provider or ODBC driver. In fact, SqlClient is the fastest way to access SQL
Server.

2. What are some of the benefits of normalization?

A normalized database eliminates redundant data and therefore reduces the storage
required. It also makes the data more maintainable because a single change needn’t
result in changing rows throughout the table. Normalized schemas also tend to be
more flexible with regard to changes.

358 Day 13

17 3869 ch13 5/20/02 1:27 PM Page 358

Working with SQL Server 359

13

3. Why would you use a stored procedure layer in your application design?

By requiring that all data access be performed through stored procedures, you can
abstract the schema from the clients that use it, simplify the API for client develop-
ers, increase performance by taking advantage of compilation and reduced network
traffic, and increase security by revoking permissions from the underlying tables
and views.

4. Why might you use SQLXML instead of SqlClient to access SQL Server?

Because SQLXML deals with how SQL Server data is exposed through XML,
SQLXML might be a good candidate anytime you need to represent your SQL
Server data in a particular schema. For example, if you’re working with a trading
partner and need to create XML documents from your SQL Server database that
conform to an XSD schema they’ve given you, you can create an XML View with
the proper annotations and use it to create the XML document for the partner.
Further, you can then allow the partner to query for the documents directly by
exposing an XML Template that uses the view through SOAP.

Exercise
Because you didn’t work with any ADO.NET code today, there is no exercise.

17 3869 ch13 5/20/02 1:27 PM Page 359

17 3869 ch13 5/20/02 1:27 PM Page 360

DAY 14

WEEK 2

Working with Other
Providers

This week you’ve learned the ins and outs of .NET Data Providers and how you
can use them to connect to a data store, execute commands, retrieve rows using
a data reader, and use data adapters to synchronize data. Today, we’ll round out
the subject of providers with a short discussion of the ODBC .NET Data
Provider and a look at how and why you might implement your own provider.

To that end, in today’s lesson you’ll learn

• How the ODBC .NET Data Provider is architected and its key differences
from the other providers we’ve discussed

• Why you might want to create your own .NET Data Provider

• What techniques you can use to create a .NET Data Provider

• How a lightweight provider can be implemented

18 3869 ch14 5/20/02 1:26 PM Page 361

Accessing ODBC Data Sources
Just as with the OleDb provider that ships with VS .NET, the Odbc provider is an exam-
ple of a generic provider that can used to access a variety of data sources. As we dis-
cussed on Day 1, “ADO.NET in Perspective,” ODBC was a major advance in data access
technologies because it standardized the way that clients access data by abstracting the
data store specifics into an ODBC driver. Clients could then program against the ODBC
API and rely on the ODBC Driver Manager to load the appropriate drivers on behalf of
the application, pass queries to the driver, and manage aspects of the communication
such as pooling connections. As a result, when using the Odbc provider, your application
architecture appears as shown in Figure 14.1.

362 Day 14

FIGURE 14.1
ODBC architecture.
This diagram depicts
the architecture of a
.NET application using
the Odbc provider.

Data Store

Data Store

DB Engine

ODBC Driver

ODBC Driver Manager

Odbc Provider

ADO.NET

Send SQL

ODBC Calls and SQL

Process SQL and
manipulate data

Come and Get It

Although not included in the release of VS .NET, the ODBC .NET Data Provider is available for
download from Microsoft on the MSDN site (msdn.microsoft.com). You can find it by going to
the MSDN site and typing “ODBC .NET Data Provider” in the Search For box. When you navi-
gate to the page, you can download the installation package by clicking on the Download link.
To install, simply execute the odbc_net.msi file that you download and follow the instructions.
Note that you must have MDAC 2.7 or higher installed on your machine, which is the same ver-
sion that installs with VS .NET.

After it is installed, the Odbc provider assembly (Microsoft.Data.Odbc.dll) will be installed in
the Global Assembly Cache (GAC), so you can reference it in your projects through the Add
Reference dialog.

18 3869 ch14 5/20/02 1:26 PM Page 362

Working with Other Providers 363

14

As you can infer from Figure 14.1, the cost of using the abstraction that ODBC provides
is that you must traverse layers of software, which typically slows performance.
However, because so many ODBC drivers exist, using the Odbc provider extends the
reach of your .NET applications. In addition, you’ll notice that there are several kinds of
ODBC drivers. Some drivers process both the ODBC calls and the SQL directly, whereas
others process the ODBC calls and pass on the SQL to the data store. The former is typi-
cal of file-based data stores that have no active database engine, such as Excel and
dBASE, whereas the latter is used with enterprise data stores such as Oracle and SQL
Server.

You should also keep in mind that Microsoft notes in its documentation that the provider sup-
ports only the Microsoft SQL Server ODBC Driver, the Microsoft ODBC Driver for Oracle, and the
Microsoft Access ODBC Driver. As a result, your mileage might vary when using other drivers. To
keep up to date on how other drivers are or are not working, consult the
microsoft.public.dotnet.framework.odbcnet newsgroup. For example, this newsgroup con-
tains some good information on using the MySQL ODBC driver and the ODBC driver from
Oracle.

Keep in mind that you can’t use the OLE DB Provider for ODBC Drivers
(MSDASQL) with the OLE DB .NET Data Provider. Using the Odbc provider is
your only option for accessing data available only through ODBC.

Note

After you add a reference to the Odbc provider assembly in your project, you can use its
types by importing (or using in C#) the Microsoft.Data.Odbc namespace. The classes
shown in Figure 14.2 are analogous to those in the other providers, as you might expect.

In addition to the classes shown in Figure 14.2, the namespace contains an OdbcType
enumeration analogous to the SqlDbType and OleDbType enumerations. This enumeration
is used to specify the type when creating OdbcParameter objects.

To view the mappings of the enumeration to the Common Type System
(CTS) types, see the ODBC .NET Data Provider documentation and navigate
to the OdbcType enumeration topic.

Note

In the remainder of this section, you’ll learn how connection strings and commands are
specified and how connection pooling occurs, and you’ll look at a simple example of
using the Odbc provider to create Excel spreadsheets.

18 3869 ch14 5/20/02 1:26 PM Page 363

Opening Connections
Perhaps the most difficult part of using the Odbc provider is determining how to formu-
late a connection string. Just as with ODBC in other environments, you can use either a
user or system DSN, a File DSN, or a DSN-less connection. The DSN and File DSN
connections can be configured in the ODBC Data Source Administrator found in the
Administrative Tools group. An example of each of these three options is shown in the
following code snippet:

// User or System DSN
OdbcConnection con = new OdbcConnection(“DSN=ComputeBooks”);
//File DSN
OdbcConnection con = new OdbcConnection(“FileDSN=ComputeBooks.dsn”);
// DSN-less
OdbcConnection con = new OdbcConnection(
“Driver={SQL
Server};Server=ssosa;trusted_connection=yes;Database=ComputeBooks”);

As you can see, when using the DSN-less connection, the attributes of the connection
string outside of the Driver are those specified by the driver itself. In this case, the
Server, trusted_connection, and Database attributes are particular to SQL Server. Just
as with the other ADO.NET connection objects, some of the attributes correspond to
read-only properties of the OdbcConnection object, such as Database, DataSource, and

364 Day 14

FIGURE 14.2
Odbc provider archi-
tecture. Just as with
the other providers, the
Odbc provider includes
the standard provider
classes.

Data Source OdbcParameter

OdbcDataReaderOdbcDataAdapter

OdbcConnection OdbcCommand

OdbcCommandBuilder

OdbcErrorOdbcException

OdbcTransaction

OdbcClientPermission

DataSet

ODBC .NET Data Provider

18 3869 ch14 5/20/02 1:26 PM Page 364

Working with Other Providers 365

14

Driver. It should also be noted that the OdbcConnection object doesn’t support the
Persist Security Info attribute. However, it acts as if it were set to false, so if you
do embed the password in the connection string, it won’t be accessible after the connec-
tion has been opened.

If the ConnectionString property of the OdbcConnection object doesn’t
include the Driver, FileDSN, or DSN attributes, an OleDbException won’t be
thrown until the Open method is called. This is unlike OleDbConnection,
where the connection string is parsed at the time it is populated (through
the constructor or independently).

Note

Although you can use any of the three options to formulate a connection string, the
DSN-less connection is preferred because it doesn’t incur the overhead of an extra file or
registry access. However, because connection strings support only 1024 characters, you
must use a DSN or File DSN if you need to set a lot of attributes that would extend the
connection string beyond 1024 characters.

Connection Pooling
If you’re going to use the Odbc provider for enterprise applications, you need to take
connection pooling into consideration because it reduces the load on the data store by
allowing clients to reuse connections. The ODBC implementation is analogous to the
connection pooling used by the SqlClient provider and the session pooling used by the
OleDb provider.

ODBC connection pooling is enabled by the ODBC Driver Manager in version 3.5 (the
version installed with MDAC 2.7), and is turned on by default for all ODBC drivers. In a
nutshell, ODBC will create up to n pools, where n is the number of processors in the
server, for each process (application) on the server that connects using ODBC. Creating
multiple pools helps alleviate lock conflicts when multiple threads are running within the
application. The pools for each process contain all the connections that have been initiat-
ed from the process. When the process initiates a new connection, the ODBC Driver
Manager locks and traverses the pools, looking for connections that were created with
the same attributes. If a connection is found, it is assigned from the pool and the pool is
unlocked. As a result, and as with the other providers, the connection string you use must
be identical in order for the connection to be retrieved from the pool.

When you’re finished with the OleDbConnection object, you can call its Close method
to release it back to the pool. In addition, after all the connections initiated by the appli-
cation have been closed, you can call the shared ReleaseObjectPool method to release

18 3869 ch14 5/20/02 1:26 PM Page 365

the ODBC environment handle. Calling ReleaseObjectPool when connections are active
has no effect. As a result, you’d call ReleaseObjectPool only if the application has
closed its connections and will no longer use any ODBC connections.

ODBC connection pooling works only with 32-bit drivers that are thread safe and (under
ODBC 3.5) have the string value CPTimeout in the Registry under
HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI\driver. The CPTimeout is
used to configure how long a connection remains in the pool before it’s destroyed. The
default value is 60 seconds, but can be changed so that connections remain in the pool
for different periods (under ODBC 3.0, connection pooling couldn’t be disabled or con-
figured).

If you begin to encounter errors (which could indicate that the driver isn’t thread safe),
you can disable connection pooling on a per-driver basis in ODBC 3.5 by removing the
CPTimeout value in the Registry key. Other than setting CPTimeout, you have no way to
configure how many connections remain in the pool or to preallocate connections before
they’re initiated by a process (something you could do with the Min and Max Pool Size

attributes of SqlClient).

The ODBC Driver Manager also uses a retry wait time of 120 seconds that can be
changed in the ODBC Data Source Administrator utility. Basically, this setting is used to
tell ODBC to wait for 120 seconds before attempting to reconnect if it determines that a
data source is unavailable.

Creating Commands
After your connection has been established, you need to create OdbcCommand objects to
encapsulate the statement or procedure you want to execute. Although working with the
OdbcCommand and OdbcParameter objects is very similar to the command and parameter
objects described on Day 10, “Using Commands,” there a couple of differences you’ll
need to be aware of.

First, the OdbcCommand objectsupports only positional (rather than named) arguments
when using both inline SQL and a procedure. In addition, it uses a question mark as the
placeholder for a parameter. In other words, if you’re using inline SQL (CommandType set
to Text), you should specify your SQL statement like so:

SELECT * FROM Titles WHERE ISBN = ? AND Title = ?

Then, when you create your OdbcCommand object, you would add the parameters to the
command positionally as follows:

OdbcCommand com = new OdbcCommand(
“SELECT * FROM Titles WHERE ISBN = ? AND Title = ?”, con);

366 Day 14

18 3869 ch14 5/20/02 1:26 PM Page 366

Working with Other Providers 367

14

com.Parameters.Add(new OdbcParameter(“isbn”, OdbcType.Text));
com.Parameters.Add(new OdbcParameter(“title”, OdbcType.Text));

Note that it doesn’t matter what names you give the parameters; only their position in the
parameters collection matters. When the command is executed, the parameters will be
plugged into the SELECT statement going left to right, so the parameter at position 0 will
be used to specify the ISBN and the one at position 1 will be used to specify the Title.

When calling a procedure (CommandType set to StoredProcedure), you must use posi-
tional arguments in addition to the ODBC calling syntax using the call keyword as fol-
lows:

{[?=]call procedure-name[([parameter][,[parameter]]...)]}

Simply populating the CommandText property with the name of the procedure is not suffi-
cient. Notice that to capture the return value from a procedure, you would then need to
specify it as the first parameter in the collection. To illustrate this syntax, the following
code snippet calls the usp_GetTitles stored procedure:

OdbcCommand ocom = new OdbcCommand(“{call usp_GetTitles(?, ?)}”,ocon);
ocom.CommandType = CommandType.StoredProcedure;
ocom.Parameters.Add(new OdbcParameter(“@isbn”,OdbcType.NText));
ocom.Parameters.Add(new OdbcParameter(“@title”,OdbcType.NText));

Note that although the usp_GetTitles stored procedure actually accepts six parameters,
you needn’t specify them if you’re not going to use them because they are defaulted to
NULL in SQL Server. If you want to specify that a default value is to be used, most
ODBC drivers support using the null keyword in place of the question mark.

Using the Odbc Provider
Of course, one of the primary benefits of using the Odbc provider is that it gives you
access to a variety of data stores that would otherwise be difficult to read to and write
from. To illustrate this point, Listing 14.1 shows a method called
CreateActivityReport. This method is used to create an Excel workbook that contains
the total units sold and the revenue generated for each book from a given publisher with-
in a given date range.

LISTING 14.1 Creating an Excel workbook. This method creates a workbook and popu-
lates it with data from SQL Server.

virtual void CreateActivityReport(string fileName, string publisher,
DateTime startDate, DateTime endDate)

{
// Kill the file if it exists
if (File.Exists(fileName))

18 3869 ch14 5/20/02 1:26 PM Page 367

{
File.Delete(fileName);

}

// Access SQL Server to get the data
SqlConnection con = new SqlConnection(_connect);
SqlCommand com = new SqlCommand(“usp_ActivityReport”,con);

// Configure the SqlCommand
com.CommandType = CommandType.StoredProcedure;
com.Parameters.Add(new SqlParameter(“@publisher”,publisher));
com.Parameters.Add(new SqlParameter(“@startDate”,startDate));
com.Parameters.Add(new SqlParameter(“@endDate”,endDate));

// Create the Excel ConnectionString
StringBuilder excelConnect = new StringBuilder();
excelConnect.Append(“Driver={Microsoft Excel Driver (*.xls)};”);
excelConnect.Append(“FirstRowHasNames=1;ReadOnly=False;”);
excelConnect.Append(“Create_DB=” + fileName + “;DBQ=” + fileName);

OdbcConnection oCon = new OdbcConnection(excelConnect.ToString());

try
{

// Create the worksheet
oCon.Open();
OdbcCommand createWS = new OdbcCommand(
“CREATE TABLE ActivityReport (ISBN TEXT,Title TEXT, Author TEXT, “ +
“TotalUnits NUMBER, Revenue CURRENCY)”,oCon);

createWS.ExecuteNonQuery();

// Build the INSERT statement
StringBuilder ins = new StringBuilder();
ins.Append(“INSERT INTO ActivityReport (“);
ins.Append(“ISBN, Title, Author, TotalUnits, Revenue) “);
ins.Append(“VALUES (?, ?, ?, ?, ?)”);

// Build the Insert command
OdbcCommand insCom= new OdbcCommand(ins.ToString(),oCon);
insCom.Parameters.Add(new OdbcParameter(“isbn”,OdbcType.Text));
insCom.Parameters.Add(new OdbcParameter(“title”,OdbcType.Text));
insCom.Parameters.Add(new OdbcParameter(“author”,OdbcType.Text));
insCom.Parameters.Add(new OdbcParameter(“units”,OdbcType.Int));
insCom.Parameters.Add(new OdbcParameter(“revenue”,OdbcType.Double));

// Get the data from SQL Server
con.Open();

368 Day 14

LISTING 14.1 continued

18 3869 ch14 5/20/02 1:26 PM Page 368

Working with Other Providers 369

14

SqlDataReader dr = com.ExecuteReader();
while (dr.Read())
{
insCom.Parameters[“isbn”].Value = dr[“ISBN”].ToString();
insCom.Parameters[“title”].Value = dr[“Title”].ToString();
insCom.Parameters[“author”].Value = dr[“Author”].ToString();
insCom.Parameters[“units”].Value = Convert.ToInt32(dr[“TotalUnits”]);
insCom.Parameters[“revenue”].Value = dr[“Revenue”];
insCom.ExecuteNonQuery();

}
dr.Close();

}
catch (SqlException e)
{

// SQL Server error occurred
}
catch (OdbcException e)
{

// ODBC error occurred
}
catch (Exception e)
{

// Other error occurred
}
finally
{

con.Close();
// Close the spreadsheet
oCon.Close();

}
}

You’ll notice in Listing 14.1 that the data for the report comes from the
usp_ActivityReport stored procedure in the ComputeBooks database encapsu-

lated in the SqlCommand com. This procedure accepts the publisher and start and end dates
as parameters passed into the method.

After the SQL Server objects are instantiated and configured, the method uses a
StringBuilder to build the ConnectionString property of the OdbcConnection object.
In this case, the Microsoft Excel ODBC Driver is specified. This driver is shipped with
the Microsoft ODBC Desktop Database Drivers (which also include drivers for Access,
dBASE, Paradox, and Text) and is a Jet-based driver.

LISTING 14.1 continued

ANALYSIS

18 3869 ch14 5/20/02 1:26 PM Page 369

In the connection string, the Driver attribute specifies the ODBC driver, and the driver-
specific attributes FirstRowHasNames, ReadOnly, and Create_DB are used to specify that
the first row of the worksheet will contain the column names, that the worksheet is not
read-only, and that the file specified in the DBQ attribute is to be created when the connec-
tion is opened, respectively.

Within the try block, the OdbcConnection is opened, which creates the Excel workbook.
The worksheet is then created by executing the createWS OdbcCommand object, whose
CommandText property is set to a CREATE TABLE statement. A second OdbcCommand object
is then created to encapsulate the INSERT statement that will be used to insert the individ-
ual rows. Next, the SQL Server data is retrieved using the ExecuteReader method and is
traversed. Within the while loop, the insCom command’s parameters are populated with
the data from data reader, and the command is executed to insert the new row into the
Excel worksheet. Each row is inserted by executing the insCom OdbcCommand.

You’ll notice that the various catch blocks can be used to differentiate between errors
generated by the Odbc provider and those generated by the SqlClient provider. The
finally block closes both the connection to SQL Server and the workbook by closing
the OdbcConnection object.

A client could then call the method like so:

CreateActivityReport(“sams.xls”,”Sams”,
new DateTime(2000,1,1), new DateTime(2002,12,31));

Building a .NET Data Provider
The .NET Data Providers you have learned about in this book were all built using the
classes and interfaces in the System.Data and System.Data.Common namespaces, as dis-
cussed on Day 8, “Understanding .NET Data Providers.” The existence of the classes and
interfaces provides a pattern or template that developers can use when implementing
providers. Not surprisingly, you can also build your own .NET Data Provider. This

370 Day 14

There are other ways to access Excel from .NET. Options include using COM-
based automation through the interoperation services in .NET to program
against the Excel object model, and using the Jet OLE DB provider, which is
also capable of opening Excel workbooks. Using automation, for example,
gives you more control over the output because you can programmatically
change fonts, colors, and cell sizes. The technique shown here is meant to
show only how you could use the Odbc provider to move data from one
data source to another.

Note

18 3869 ch14 5/20/02 1:26 PM Page 370

Working with Other Providers 371

14

section will discuss why you might want to embark on this task, some alternatives, and
the different forms the provider might take. The section ends with a discussion and a
code sample of a simple provider that the ComputeBooks organization might implement
to more easily expose and work with XML documents in a file system.

Deciding to Implement a Provider
Before deciding to implement a provider, you should be clear about why you would
want to. There are several scenarios to consider in making this decision, including the
following:

• Proprietary Data Store. If your organization has developed its own proprietary
data store, you might consider implementing a provider to interact with that data
store. This is analogous to a database vendor building its own provider and is
therefore a specific or targeted provider. For example, assume that your organiza-
tion builds packaged medical software, and that the data storage format and query
language for your suite of applications is one that your organization developed in-
house. Many organizations have done just this, and have in the past exposed their
proprietary data store as functions in a set of DLLs or in COM-based wrappers. By
implementing a provider, you can expose the functionality of your data store to
managed code in a way that is consistent with what .NET developers will be famil-
iar with. In this way, developers internal to your organization can easily use the
data store when building Windows Forms, Web Forms, and XML Web Services
applications. In addition, a provider would enable your customers to query and
possibly even update the data store in conjunction with other data they are working
with. For example, customers could use your provider to fill a table in a DataSet
and then populate a second table with data from their SQL Server database for dis-
play in their Intranet portal.

• Data Aggregation. You might also implement a provider to centralize access to
organizational data. By abstracting the location and formats for data within your
organization and exposing them simply through a provider, you can make the
process of creating managed applications simpler for your developers. In this way,
developers within your organization can work with the data through a single
provider rather than having to figure out how to access the various data stores your
applications require. This type of provider is more analogous to the generic
providers such as OleDb and Odbc, although it is implemented at the organization-
al rather than the data store level.

In both cases, the end result is that you allow managed access to data through standard
interfaces, thereby making the programming model easier for developers. In addition, the
use of standard interfaces such as IDataReader and IDbCommand enables your developers

18 3869 ch14 5/20/02 1:26 PM Page 371

to take advantage of polymorphism by programming to the interfaces rather than the con-
crete classes that implement them. In this way, your developers can also write code in the
presentation or business services tiers of their applications which works with any
provider—true reusability.

372 Day 14

In fact, creating a provider that uses the ADO.NET interfaces allows it to be
plugged into generic factory classes that abstract all the provider specifics
from developers. We’ll look at an example of just such a class on Day 18,
“Building a Data Factory.”

Note

At the same time, however, the fact that you’re developing your own classes gives you
the opportunity to expose functionality specific to your organization or data store
through your provider. For example, if you created a specific provider for a proprietary
data store, you could expose additional (overloaded) signatures for the Fill method of
your data adapter class that uses the industry standard format that you want the data
returned in.

Exploring Alternatives to Implementing a Provider
That having been said, there are also several scenarios in which you might want to con-
sider alternatives to developing a provider.

First, if you’re considering implementing a provider for a proprietary data store, you
need to consider which clients need access to the data store. Implementing a provider
will allow only managed (.NET) clients to access the data store; therefore, it can’t be
used from other environments such as Win32 applications implemented with MFC or
ASP Web sites implemented with VBScript and COM components. If your requirements
dictate that you support other types of clients, you should consider implementing an
OLE DB provider (or, less likely, an ODBC driver) instead. Implementing an OLE DB
provider makes the data store accessible to managed clients through the OleDb provider
as well as other data access interfaces such as ADO.

For more information to get you started in implementing an OLE DB
provider, see the article “OLE DB Minimum Levels of Consumer and Provider
Functionality” and the OmniProv 1.0 sample OLE DB provider, both of which
can be found on the MSDN Web site. Probably the easiest way is to use the
OLE DB provider ActiveX Template Library (ATL) templates in Visual C++.

Note

18 3869 ch14 5/20/02 1:26 PM Page 372

Working with Other Providers 373

14

Second, you need to consider whether you need the core concepts exposed by the
provider. In other words, does your scenario require the use of connections, transactions,
data readers, and data adapters, or do you simply need to expose data to clients? If you
simply need to expose data and don’t want or need to provide the ADO.NET program-
ming model, you might consider creating classes that expose the data as XML using the
System.Xml namespace classes.

Choosing an Approach to Implementing a Provider
When implementing a provider, there are basically two approaches you can take depend-
ing on the needs of your organization:

• Full Provider. This type of provider would implement all the provider objects (all
the interfaces in System.Data and System.Data.Common) we discussed on Day 8,
and provide complete transaction, data reader, and connection support. A full
provider could be easily plugged into a data factory (like the one we’ll discuss on
Day 18) because the factory will be ensured that it supports the full range of
provider functionality.

• Lightweight Provider. This type of provider would probably implement a subset
of the provider objects we discussed on Day 8. For example, a lightweight provider
would implement a data adapter for filling and synchronizing a DataSet, but not
necessarily parameters, data readers, transactions, or perhaps even connections.
This type of provider would be useful for disconnected scenarios, for example,
where you wanted to be able to use your provider to return data from an XML Web
Service. The ComputeBooks provider discussed in the next section is just such a
provider.

For both types of providers, the available interfaces and their uses are shown in Table
14.1. Obviously, a full provider would implement all the interfaces, whereas a light-
weight provider would implement only some of them. Note that, in addition, a full
provider might implement command builder, exception, error, and permissions classes as
well.

TABLE 14.1 Provider interfaces. Providers implement some of (lightweight) or all (full)
these interfaces.

Interface Use

IDataAdapter Populates and synchronizes DataSet objects with the data store.

IDataParameter Represents a parameter passed to a command.

IDataParameterCollection Represents the collection of parameters passed to a command.

IDataReader Streams through a result set returned from a command.

18 3869 ch14 5/20/02 1:26 PM Page 373

IDbCommand Represents a query or command executed against the data store.

IDbConnection Represents a unique session with the data store usually correspond-
ing to a network connection.

IDbDataAdapter Represents a data adapter that works with relational databases to sup-
port various commands to insert, update, and delete data from the
data store. Implements the IDataAdapter interface.

IDbDataParameter Represents a database parameter with Precision, Scale and Size

passed to a command. Implements the IDataParameter interface.

IDbTransaction Represents a local transaction to group commands into logical units
of work.

Implementing a Provider: The ComputeBooks Provider
To illustrate generally how you would implement a provider, this section walks through
the implementation of a provider for ComputeBooks. This provider is quite simple in
that it simply abstracts access to XML documents stored in a location on the file system.

374 Day 14

TABLE 14.1 continued

Interface Use

Obviously, there are other ways to access XML documents, including using
the System.Xml classes directly or abstracting the access in a custom class.
The code shown in this example is used only for simplicity and to illustrate
the concepts and code required to implement a provider. Most providers will
be quite complex and will therefore run into thousands of lines of code.

Note

As discussed previously, the ComputeBooks provider is something of a lightweight
provider because it doesn’t implement all the interfaces shown in Table 14.1. In particu-
lar, there’s no need for IDbTransaction or IDataReader because there’s no concept of
transacted access to the file system and data will always be returned in a DataSet,
respectively. The provider also doesn’t support command builders, code access permis-
sions classes, or individual error objects. The architecture of the ComputeBooks provider
is shown in Figure 14.3.

As you can see from Figure 14.3, each of the classes uses the standard naming conven-
tion of prefixing with a three- or four-letter abbreviation for the provider; in this case,
Cbks to denote ComputeBooks. In addition, all the classes and enumerated types used by
the provider should be placed in the same namespace. The convention, of course, is that

18 3869 ch14 5/20/02 1:26 PM Page 374

Working with Other Providers 375

14

the highest-level namespace is that of the organization and the lowest-level namespace is
the name of the provider. So, in this case, all the classes are contained in the
ComputeBooks.Data.Cbks namespace and compiled into a single assembly so that it can
be versioned, secured, and deployed to other developers within ComputeBooks.

FIGURE 14.3
ComputeBooks
provider architecture.
This diagram contains
the classes implement-
ed by the
ComputeBooks .NET
Data Provider.

File System CbksParameter

CbksDataAdapter

CbksConnection CbksCommand

CbksException

DataSet

ComputeBooks .NET Data Provider

The Connection Class
The first class that you need to implement when building a provider is the connection
class; in this case, CbksConnection. Although they aren’t strictly required, connection
classes are typically relied on by the command class to provide it with the avenue
through which to execute. Some of the responsibilities of the connection class are to cap-
ture and verify the connection string and open and close the connection. Because
CbksConnection is the first class we’ll discuss, its complete code is shown in Listing
14.2. In later sections, you’ll see only portions of each class.

Although the previous code you’ve seen today was written in C#, the
ComputeBooks provider shown in the following sections is written in VB,
whereas the client code to access it is written in C#. This is done to illustrate
the fact that it doesn’t matter what managed language the provider is
implemented in.

Note

18 3869 ch14 5/20/02 1:26 PM Page 375

LISTING 14.2 Implementing a connection. This listing shows the complete code for the
CbksConnection class.

Public NotInheritable Class CbksConnection : Implements IDbConnection
Private _state As ConnectionState
Private _connect As String
Private _locationPath As String
Private _database As String

‘ The default constructor.
Public Sub New()
MyBase.New()
Me.InitClass()

End Sub

‘ Constructor that takes a connection string.
Public Sub New(ByVal connect As String)
MyBase.New()
Me.InitClass()
Me.ConnectionString = connect

End Sub

Private Sub InitClass()
_state = ConnectionState.Closed

End Sub

Public Property ConnectionString() As String _
Implements IDbConnection.ConnectionString
Get
‘ Always return exactly what the user set.
‘ Security-sensitive information may be removed.
Return _connect

End Get
Set(ByVal Value As String)
‘ Parse the connection string for syntax, not content
Dim h As Hashtable = _parseConnectionString(Value)
If Not h.ContainsKey(“Location”) Then
Throw New CbksException(“Must include Location attribute”)

Else
_locationPath = h.Item(“Location”).ToString()

End If
‘ Can look for other specific attributes here
_connect = Value

End Set
End Property

Private Function _parseConnectionString(ByVal s As String) As Hashtable
Dim pairs(), a As String
Dim h As New Hashtable()

376 Day 14

18 3869 ch14 5/20/02 1:26 PM Page 376

Working with Other Providers 377

14

‘ Split into an array of each name-value pair
pairs = s.Split(CType(“;”, Char))

For Each a In pairs
‘ Look for the name and value
Dim i As Integer = a.IndexOf(CType(“=”, Char))
If i = 0 Then
Throw New CbksException(“Connection string is improperly formatted”)

Else
‘ Place them in a hashtable
h.Add(a.Substring(0, i), a.Substring(i + 1))

End If
Next

Return h
End Function

Public ReadOnly Property ConnectionTimeout() As Integer _
Implements IDbConnection.ConnectionTimeout
Get
‘ Returns the connection time-out value set in the connection
‘ string. Zero indicates an indefinite time-out period.
Return 0

End Get
End Property

Public ReadOnly Property Database() As String _
Implements IDbConnection.Database
Get
‘ Returns an initial database as set in the connection string.
‘ An empty string indicates not set - do not return a null reference.
Return _database

End Get
End Property

Public ReadOnly Property State() As ConnectionState _
Implements IDbConnection.State
Get
Return _state
End Get

End Property

Overloads Sub Dispose() Implements IDisposable.Dispose
‘ Make sure all managed and unmanaged resources are cleaned up
‘ In this case there are no unmanaged resources

End Sub

Public Overloads Function BeginTransaction() As IDbTransaction _
Implements IDbConnection.BeginTransaction

LISTING 14.2 continued

18 3869 ch14 5/20/02 1:26 PM Page 377

Throw New NotSupportedException(“Transactions not supported”)
End Function

Public Overloads Function BeginTransaction(ByVal level As IsolationLevel) _
As IDbTransaction Implements IDbConnection.BeginTransaction
Throw New NotSupportedException(“Transactions not supported”)

End Function

Public Sub ChangeDatabase(ByVal name As String) _
Implements IDbConnection.ChangeDatabase
‘ Change the database setting on the back-end. Note that it is a method
‘ and not a property because the operation requires an expensive
‘ round trip.

‘ Change the path
Try
Dim dir As New DirectoryInfo(name)
_locationPath = name
_database = dir.FullName

Catch e As Exception
Throw New CbksException(“Cannot change database”, e)

End Try

End Sub

Public Sub Open() Implements IDbConnection.Open
‘ If the underlying connection to the server is
‘ expensive to obtain, the implementation should provide
‘ implicit pooling of that connection.

‘ If the provider also supports automatic enlistment in
‘ distributed transactions, it should enlist during Open().

‘ Make sure the path exists
Try
Dim dir As New DirectoryInfo(_locationPath)
_database = dir.FullName

Catch e As Exception
Throw New CbksException(“Cannot open connection”, e)

End Try
_state = ConnectionState.Open

End Sub

Public Sub Close() Implements IDbConnection.Close
‘ If the underlying connection to the server is
‘ being pooled, Close() will release it back to the pool.

_database = “” ‘ Reset the read-only properties
_state = ConnectionState.Closed

378 Day 14

LISTING 14.2 continued

18 3869 ch14 5/20/02 1:26 PM Page 378

Working with Other Providers 379

14

End Sub

Public Function CreateCommand() As CbksCommand
‘ Return a new instance of a command object.
Return New CbksCommand()

End Function
Private Function _createCommand() As IDbCommand _
Implements IDbConnection.CreateCommand
‘ Return a new instance of a command object.
Return Me.CreateCommand()

End Function

‘ Your custom properties / methods.
End Class

The first thing you should notice in Listing 14.2 is that the CbksConnection class
implements the IDbConnection interface. As a result, all the members of
IDbConnection must be implemented by the class. In VB, this is done with the
Implements keyword. You’ll also notice that although all the methods of the

interface are implemented, not all must be supported. To indicate that you don’t support
a method, simply throw the System.NotSupportedException, as is done in the over-
loaded BeginTransaction methods. You would use this technique when the client
expects some specific behavior to occur when the method is called. If the client wouldn’t
necessarily expect anything to happen, you can simply leave the body of the method
empty, as is done with the Dispose method. This is referred to as a no-op, or no opera-
tion. For a property that isn’t used, you can similarly return the default value in the Get
block and throw a NotSupportedException in the Set block.

The primary functionality in the CbksConnection class is to validate the
ConnectionString property when it is set, either through the constructor or directly, and
then to open the connection.

As you can see from the Set block in the ConnectionString property, the string is
passed to the private _parseConnectionString method, which parses a connection string
into a Hashtable by first splitting the string into attributes by looking for semicolons (;)
and then placing the individual name-value pairs into the Hashtable based on the pres-
ence of an equal sign (=). Note that if one of the attributes doesn’t contain an equal sign,
an exception is thrown. When the Hashtable is returned, the property looks for the
Location attribute and raises an exception if it isn’t found. If it is found, the location
path is stored in a private variable along with the entire connection string. You can use a
technique like this to parse your connection string and look for specific attributes.

LISTING 14.2 continued

NEW TERM

ANALYSIS

18 3869 ch14 5/20/02 1:26 PM Page 379

The Open method then simply determines whether the location found in the connection
string is valid by using a DirectoryInfo object. If the location exists, the full path is
placed in the _database private variable returned through the read-only Database prop-
erty. Of course, the Open method should then set the State property to the Open value of
the ConnectionState enumeration. Conversely, the Close method simply sets the state to
Closed and resets the read-only Database property to an empty string.

A client can use the CbksConnection object as follows:

CbksConnection con = new CbksConnection(“Location=.”);
con.Open();
Console.WriteLine(con.Database); //prints the full path of the current directory
con.Close();

The Command Class
The command class is responsible for managing the text and type of a command along
with its parameters, as well as actually using the connection object to execute the com-
mand. Listing 14.3 contains all the implemented code for the CbksCommand. It doesn’t
include the members that are no-ops and those that will throw a
NotSupportedException.

380 Day 14

When you’re developing classes that contain several members that won’t be
implemented, you can easily segregate them in VS .NET in a #Region state-
ment and then collapse the region so that you can concentrate on the code
you’re actually implementing.

Tip

LISTING 14.3 Implementing a command. This listing shows the simple CbksCommand class.
It implements only the ExecuteNonQuery method and the ability to retrieve data from XML
documents.

Public NotInheritable Class CbksCommand : Implements IDbCommand

Private _cmdText As String
Private _params As CbksParameterCollection
Private _con As CbksConnection

‘ Default constructor
Public Sub New()
_InitClass()

End Sub

‘ Overloaded constructor
Public Sub New(ByVal cmdText As String)
Me.CommandText = cmdText

18 3869 ch14 5/20/02 1:26 PM Page 380

Working with Other Providers 381

14

_InitClass()
End Sub

‘ Overloaded constructor
Public Sub New(ByVal cmdText As String, ByVal connection As CbksConnection)
Me.CommandText = cmdText
Me.Connection = connection
_InitClass()

End Sub

Private Sub _InitClass()
_params = New CbksParameterCollection()

End Sub

‘ Strongly typed and interface implementations
Public Property Connection() As CbksConnection
Get
Return _con

End Get
Set(ByVal Value As CbksConnection)
_con = Value

End Set
End Property
Private Property _connection() As IDbConnection _
Implements IDbCommand.Connection
Get
Return Me.Connection

End Get
Set(ByVal Value As IDbConnection)
Me.Connection = CType(Value, CbksConnection)

End Set
End Property

‘ Strongly typed and interface implementations
Public ReadOnly Property Parameters() As CbksParameterCollection
Get
Return _params

End Get
End Property
Private ReadOnly Property _parameters() As IDataParameterCollection _
Implements IDbCommand.Parameters
Get
Return Me.Parameters

End Get
End Property

Public Property CommandText() As String Implements IDbCommand.CommandText
Get
Return _cmdText

LISTING 14.3 continued

18 3869 ch14 5/20/02 1:26 PM Page 381

End Get
Set(ByVal Value As String)
‘ Usually commands are not validated until executed so simply set it here
_cmdText = Value

End Set
End Property

‘ Strongly typed and interface implementations
Public Function CreateParameter() As CbksParameter
‘ Return a new parameter
Return New CbksParameter()

End Function
Private Function _createParameter() As IDbDataParameter _
Implements IDbCommand.CreateParameter
‘ Return a new parameter
Return Me.CreateParameter()

End Function

Public Function ExecuteNonQuery() As Integer _
Implements IDbCommand.ExecuteNonQuery

‘ Check for a connection
If _con.State = ConnectionState.Closed Then
Throw New CbksException(“Connection must be open”)

End If

‘ Go get the files based on the parameters
Dim files() As String = _validateParms()
Dim s As String

Select Case Me.CommandText
Case “Delete”
‘ Delete each file
For Each s In files
Try
File.Delete(s)

Catch e As Exception
Throw New CbksException(“Error in command execution”, e)

End Try
Next
‘ Case other commands to execute here

Case Else
Throw New CbksException(“Command is not a non query command”)

End Select

End Function

382 Day 14

LISTING 14.3 continued

18 3869 ch14 5/20/02 1:26 PM Page 382

Working with Other Providers 383

14

Friend Function GetData() As XmlReader()
‘ Go get the data based on the command and return XmlReaders
‘ for each document

Dim readers As New ArrayList()

If Me.CommandText = “Get” Then
Dim files() As String = _validateParms()
Dim s As String
For Each s In files
Dim xlr As New XmlTextReader(s)
readers.Add(xlr)

Next
‘ Return the array of readers
Return CType(readers.ToArray(GetType(XmlReader)), XmlReader())

Else
Throw New CbksException(“Invalid command”)

End If

End Function

Private Function _validateParms() As String()
‘ Translate the parms into an array of files to work with
Dim filePath As String

‘ Build the filter
If _params.Contains(“Vendor”) Then
filePath = CType(_params.Item(“Vendor”), CbksParameter).Value.ToString()

Else
filePath = “”

End If

‘ Build the filter
If _params.Contains(“YearMonth”) Then
filePath &= CType(_
_params.Item(“YearMonth”), CbksParameter).Value.ToString & “.xml”

Else
filePath &= “*.xml”

End If

Return Directory.GetFiles(Me.Connection.Database, filePath)

End Function
End Class

You’ll notice in Listing 14.3 that the CbksCommand object stores the
CommandText, a parameter collection (discussed in the next section), and a refer-

ence to a CbksConnection object as private variables in the class. As with all classes in

LISTING 14.3 continued

ANALYSIS

18 3869 ch14 5/20/02 1:26 PM Page 383

the provider, you’re free to implement whatever constructors you see fit, although follow-
ing the patterns found in the SqlClient and OleDb providers will make your provider
more usable. For example, the CbksCommand object includes three constructors: an empty
or default constructor, one that accepts just the CommandText, and one that accepts both
the CommandText and the CbksConnection. The fourth constructor implemented by
SqlCommand, however, is not implemented because it accepts a transaction and this
provider doesn’t use transactions. These constructors are used to populate the private
variables.

One interesting aspect of Listing 14.3 is the dual implementations of the Connection and
Parameters properties and the CreateParameter method. Because the IDbCommand inter-
face dictates that these members be implemented, you must create methods to implement
them. However, when you do this, the type of the property or the return type of the
method must be the same as that found in the interface. In other words, the Connection
property would simply accept and return variables of type IDbConnection rather than the
strongly typed (and preferred) CbksConnection. To deal with this situation, you can
expose your own strongly typed public member and then make the interface’s implemen-
tation private. This way, you ensure that clients use only the strongly typed classes as
you would expect, while also being able to cast to the interface if the clients want to use
polymorphism. This is illustrated by the following code snippet:

CbksCommand com = new CbksCommand(“Get”);
// Calls the publicly exposed property
com.Connection = new CbksConnection(“Location=.”);
// Calls the private interface implementation
IDbCommand icom = com
Console.WriteLine(icom.Connection.ConnectiongString);

You’ll notice that when using the property directly, the public implementation is called,
whereas after casting to the interface, the private interface implementation is called. This
technique works exactly the same way when used with methods as well. Of course, this
design means that you need to write two methods, but you should write the code for the
methods only once in the public implementation, and then have the private implementa-
tion call it, as is done in both the Connection property and the CreateParameter
method.

You can create the same design in C# by implementing a public member that uses the
strong type and a second whose name includes the interface name and returns the type
from the interface. For example, in C#, the private implementation of the Connection
property would look like so:

IDbConnection IDbCommand.Connection
{

get

384 Day 14

18 3869 ch14 5/20/02 1:26 PM Page 384

Working with Other Providers 385

14

{
return this.Connection;

}
set
{

this.Connection = (CbksConnection)value;
}

}

The other point to note about CbksCommand is that the commands supported include just
Get and Delete. These commands simply retrieve and delete a file or files based on the
parameters associated with the command. Determining the granularity of the commands
you’ll support is the biggest issue you’ll face when building a provider. For example, in a
provider that is used for data aggregation, the commands you support might be less gran-
ular and simply point to a type of data and an action such as “get sales” or “get prod-
ucts.” However, in a provider used to access a proprietary data store, the commands
would need to be granular enough to access individual tables or sets of data analogous to
SQL. Generally speaking, the CommandText should point to the action you want to take,
coupled with the data elements you want, whereas the parameters define the filter to use.

In the case of CbksCommand, the ExecuteNonQuery method is implemented to be able to
delete files, whereas the GetData method is used to retrieve file data. Note that, in both
cases, the list of files to operate on is determined by the private _validateParms func-
tion, which returns an array of files. The GetData method is marked as Friend (inter-
nal in C#) because it will be used by the CbksDataAdapter when filling a DataSet but
shouldn’t be publicly available. This method illustrates a key design point: When imple-
menting the command object, encapsulate all the behavior of the command within itself.
This includes the parsing of the command text and parameters as well as the actual exe-
cution of the command. This seems straightforward, but it’s tempting, for example, to
write code in the Fill method of the data adapter that actually performs the query rather
than allowing the command object to do it. By allowing each class to do its own work,
the provider will be easier to maintain and extend.

The Parameters Classes
Although not required for lightweight providers, by implementing parameter and para-
meter collection classes, you can allow your commands to vary based on the parameters.
By not implementing parameters, you’re forced to allow the CommandText to contain
more information. However, as with other providers, you have the option of allowing
both parameterized commands and commands that hard code all the information. In the
ComputeBooks provider, it’s assumed that unless parameters are provided, the Get and
Delete commands will retrieve and delete all the files at the location specified by the
CbksConnection object.

18 3869 ch14 5/20/02 1:26 PM Page 385

For most implementations, the parameter and parameter collection classes will be the
most generic because they simply support the ability to create parameters and put them
in a collection. In fact, most of the code in the following listings is based on the sample
provider implementation you’ll find in the online documentation. The implementation of
the CbksParameter and CbksParameterCollection classes (once again, without their not
supported and no-op members) is shown in Listing 14.4.

LISTING 14.4 Implementing parameters. This is the code for the CbksParameter and
CbksParameterCollection classes used to associate parameters with commands in the
ComputeBooks provider.

Public NotInheritable Class CbksParameter : Implements IDbDataParameter
Private _dbType As DbType = DbType.Object
Private _nullable As Boolean = False
Private _paramName As String
Private _sourceVersion As DataRowVersion = DataRowVersion.Current
Private _value As Object

‘ Default constructor
Public Sub New()
End Sub

‘ Specify the type
Public Sub New(ByVal parameterName As String, ByVal type As DbType)
_paramName = parameterName
_dbType = type

End Sub

‘ Specify the type and value
Public Sub New(ByVal parameterName As String, ByVal value As Object)
_paramName = parameterName
Me.Value = value
‘ Setting the value also infers the type.

End Sub

Public Property DbType() As DbType Implements IDataParameter.DbType
Get
Return _dbType

End Get
Set(ByVal Value As DbType)
_dbType = Value

End Set
End Property

Public ReadOnly Property IsNullable() As _
Boolean Implements IDataParameter.IsNullable
Get
Return _nullable

386 Day 14

18 3869 ch14 5/20/02 1:26 PM Page 386

Working with Other Providers 387

14

End Get
End Property

Public Property ParameterName() As String _
Implements IDataParameter.ParameterName
Get
Return _paramName

End Get
Set(ByVal Value As String)
_paramName = Value

End Set
End Property

Public Property SourceVersion() As DataRowVersion _
Implements IDataParameter.SourceVersion
Get
Return _sourceVersion

End Get
Set(ByVal Value As DataRowVersion)
_sourceVersion = Value

End Set
End Property

Public Property Value() As Object Implements IDataParameter.Value
Get
Return _value

End Get
Set(ByVal Value As Object)
_value = Value
_dbType = _inferType(Value)

End Set
End Property

Private Function _inferType(ByVal value As Object) As DbType
Select Case (Type.GetTypeCode(value.GetType()))
Case TypeCode.Object
Return DbType.Object

Case TypeCode.Boolean
Return DbType.Boolean

Case TypeCode.Int16
Return DbType.Int16

Case TypeCode.Int32
Return DbType.Int32

Case TypeCode.Int64
Return DbType.Int64

Case TypeCode.Single
Return DbType.Single

Case TypeCode.Double
Return DbType.Double

LISTING 14.4 continued

18 3869 ch14 5/20/02 1:26 PM Page 387

Case TypeCode.Decimal
Return DbType.Decimal

Case TypeCode.DateTime
Return DbType.DateTime

Case TypeCode.String
Return DbType.String

Case Else
Throw New CbksException(“Value is of unsupported data type”)

End Select
End Function

End Class

Public NotInheritable Class CbksParameterCollection : Inherits ArrayList
Implements IDataParameterCollection

Friend Sub New()
‘ So that it is not publicly creatable, must go through CbksCommand

End Sub

Default Public Overloads Property Item(_
ByVal parameterName As String) As Object _
Implements IDataParameterCollection.Item
Get
Return Me(IndexOf(parameterName))

End Get
Set(ByVal Value As Object)
Me(IndexOf(parameterName)) = Value

End Set
End Property

Public Overloads Function Contains(ByVal parameterName As String) As Boolean _
Implements IDataParameterCollection.Contains
Return (-1 <> IndexOf(parameterName))

End Function

Public Overloads Function IndexOf(ByVal parameterName As String) As Integer _
Implements IDataParameterCollection.IndexOf
Dim index As Integer = 0
Dim item As CbksParameter

For Each item In Me
If 0 = _cultureAwareCompare(item.ParameterName, parameterName) Then
Return index

End If
index = index + 1

Next
Return -1

End Function

388 Day 14

LISTING 14.4 continued

18 3869 ch14 5/20/02 1:26 PM Page 388

Working with Other Providers 389

14

Public Overloads Sub RemoveAt(ByVal parameterName As String) _
Implements IDataParameterCollection.RemoveAt
RemoveAt(IndexOf(parameterName))

End Sub

‘ Overloaded Add methods
Public Shadows Function Add(ByVal value As CbksParameter) As Integer
Return MyBase.Add(value)

End Function

Public Shadows Function Add(ByVal parameterName As String, _
ByVal type As DbType) As Integer
Return Add(New CbksParameter(parameterName, type))

End Function

Public Shadows Function Add(ByVal parameterName As String, _
ByVal value As Object) As Integer
Return Add(New CbksParameter(parameterName, value))

End Function

Private Function _cultureAwareCompare(ByVal strA As String, _
ByVal strB As String) As Integer
Return CultureInfo.CurrentCulture.CompareInfo.Compare(strA, strB, _

CompareOptions.IgnoreKanaType Or CompareOptions.IgnoreWidth Or _
CompareOptions.IgnoreCase)

End Function
End Class

As you can see from Listing 14.4, the only really interesting aspect of the
CbksParameter class is in determining the type of the value. This is necessary

because the Value property is of type System.Object. The private _inferType method is
called from the Set block of the Value property. The case statement in the method can
be used to check for all the types that your provider supports, and will simply throw an
exception if the type isn’t supported. Although not implemented in the ComputeBooks
provider, this is also where you might implement provider-specific types (as in SqlClient)
and additionally map the value of the parameter to your specific types.

In the CbksParameterCollection class, you’ll notice that it inherits from ArrayList
(where it gains much of its functionality) and implements the
IDataParameterCollection interface. This class is used to hold the collection of para-
meters and isn’t publicly creatable, as evidenced by its constructor being marked as
Friend. This means that an instance of the class is available only through the
CbksCommand object. One of its interesting aspects is that the overloaded Item property is

LISTING 14.4 continued

ANALYSIS

18 3869 ch14 5/20/02 1:26 PM Page 389

marked as Default. This allows the property to be accessed directly and by its parameter
name, rather than only through the index as implemented in the ArrayList base class.
Likewise, the properties Contains, IndexOf, and RemoveAt simply provide additional
overloads to the methods in ArrayList in order to allow access by parameter name.
Finally, the Add method is overloaded to allow a parameter to be added in various ways.
The use of the Shadows keyword in VB hides the base class version of the Add method
that accepts an argument of type Object.

A client would then use the CbksCommand and CbksParameter objects like so:

CbksCommand com = new CbksCommand(“Get”,con);
com.Parameters.Add(“Vendor”, “Sams”);
com.Parameters.Add(“YearMonth”, 200203);

Console.WriteLine(com.Parameters[0].DbType.ToString()); //String
Console.WriteLine(com.Parameters[1].DbType.ToString()); //Integer

The Data Adapter Class
When you implement a data adapter, you have several options. In fact, there are two
abstract classes, DataAdapter and DbDataAdapter, that you can inherit from in addition
to two interfaces, IDataAdapter and IdbDataAdapter, that you can implement. As you
would expect, the DataAdapter class implements the IDataAdapter interface and the
DbDataAdapter class inherits from DataAdapter. This arrangement can be seen in
Figure 14.4.

390 Day 14

FIGURE 14.4
Data adapter classes
and interfaces. This
diagram shows the
relationships between
the classes and inter-
faces for building a
data adapter.

DataAdapter (base) IDataAdapter

DbDataAdapter IDbDataAdapter

Interface inheritance

As a result, you basically have two options:

1. If you’ve implemented a full provider complete with a data reader (discussed in the
next section), you can simply inherit from DbDataAdapter and override the
OnRowUpdating, CreateRowUpdatingEvent, CreateRowUpdatedEvent, and
OnRowUpdated protected methods to initialize and raise the appropriate events as
the data adapter is updated.

2. You can implement the IDbDataAdapter interface, which defines the four com-
mand properties used by the data adapter to select, insert, update, and delete data.

18 3869 ch14 5/20/02 1:26 PM Page 390

Working with Other Providers 391

14

After you’ve completed these steps, your work is done. The Fill, FillSchema, and
Update methods, along with the properties, are all implemented by the base class for
you!

The reason this works is that the overloaded Fill method DbDataAdapter class calls the
ExecuteReader method of the command object (passing it a command behavior of
Sequential), and uses the returned data reader to populate the DataSet or DataTable
objects passed to the method. Likewise, the FillSchema method calls the ExecuteReader
method with the command behavior set to the combination of KeyInfo and SchemaOnly

to build the schema only.

If you don’t implement a full provider, you can alternatively implement either of the
interfaces and code the methods yourself.

Implementing IDbDataAdapter brings IDataAdapter along as well because
the former implements the latter.

Note

The CbksDataAdapter class shown in Listing 14.5 takes this approach because the
provider doesn’t implement a data reader.

LISTING 14.5 Implementing a data adapter. This listing shows the CbksDataAdapter
class. It implements only interfaces, so the methods must be coded.

Public NotInheritable Class CbksDataAdapter
Implements IDbDataAdapter

Private _selCommand As CbksCommand

‘ Default Constructor
Public Sub New()
End Sub

Public Sub New(ByVal selectCommand As CbksCommand)
‘ Assign the command
_selCommand = selectCommand

End Sub

Public Sub New(ByVal selectCommand As String, ByVal connection As String)
‘ Create the connection and command
Dim con As New CbksConnection(connection)
_selCommand = New CbksCommand(selectCommand, con)

End Sub

18 3869 ch14 5/20/02 1:26 PM Page 391

Public Sub New(ByVal selectCommand As String, _
ByVal connection As CbksConnection)
‘ Create the new command
_selCommand = New CbksCommand(selectCommand, connection)

End Sub

‘ Implements only a SelectCommand
Public Property SelectCommand() As CbksCommand
Get
Return _selCommand

End Get
Set(ByVal Value As CbksCommand)
_selCommand = Value

End Set
End Property
Private Property _selectCommand() As IDbCommand _
Implements IDbDataAdapter.SelectCommand
Get
Return Me.SelectCommand

End Get
Set(ByVal Value As IDbCommand)
_selCommand = CType(Value, CbksCommand)

End Set
End Property

Public Function Fill(ByVal dataSet As DataSet) As Integer _
Implements IDataAdapter.Fill
‘ Adds to or loads data into the dataset based on the parameters
Dim xlr() As XmlReader
Dim opened As Boolean = False

‘ Make sure the connection is open
If Me.SelectCommand.Connection.State = ConnectionState.Closed Then
Me.SelectCommand.Connection.Open()
opened = True

End If

Try
‘ Execute the command and get the xml readers
xlr = Me.SelectCommand.GetData()
Dim r As XmlReader

For Each r In xlr
‘ Add each file to the DataSet
dataSet.ReadXml(r, XmlReadMode.Auto)
r.Close()

Next

392 Day 14

LISTING 14.5 continued

18 3869 ch14 5/20/02 1:26 PM Page 392

Working with Other Providers 393

14

Return -1
Catch e As Exception
Throw New CbksException(“Could not fill DataSet”, e)

Finally
If opened Then Me.SelectCommand.Connection.Close()

End Try

End Function

Public Function FillSchema(ByVal dataSet As DataSet, _
ByVal schemaType As SchemaType) As DataTable() _
Implements IDataAdapter.FillSchema

‘ Fill the schema of the DataSet and return the array of tables
‘ Note we’re ignoring the schemaType
Dim t As DataTable
Dim i As Integer
Dim xlr() As XmlReader
Dim opened As Boolean = False

‘ Make sure the connection is open
If Me.SelectCommand.Connection.State = ConnectionState.Closed Then
Me.SelectCommand.Connection.Open()
opened = True

End If

‘ Empty the DataSet
For Each t In dataSet.Tables
dataSet.Tables.Remove(t)

Next

Try
‘ Execute the command and get the xml readers
xlr = Me.SelectCommand.GetData()

Dim r As XmlReader
For Each r In xlr
‘ Add each file to the DataSet
dataSet.ReadXml(r, XmlReadMode.Auto)
r.Close()

Next

‘ Clear out the data
dataSet.Clear()

Dim tables(dataSet.Tables.Count - 1) As DataTable
For i = 0 To dataSet.Tables.Count - 1
tables(i) = dataSet.Tables(i)

Next

LISTING 14.5 continued

18 3869 ch14 5/20/02 1:26 PM Page 393

Return tables

Catch e As Exception
Throw New CbksException(“Could not fill the schema”, e)

Finally
If opened Then Me.SelectCommand.Connection.Close()

End Try

End Function

End Class

As with the other classes, you should follow the conventions and implement four
constructors for your data adapter class that accept different combinations of the

command used for selecting data and the connection if only the CommandText is speci-
fied.

You’ll notice that CbksDataAdapter implements the IDbDataAdapter interface, but pro-
vides a strongly typed implementation only for the SelectCommand because the data
adapter can only be used in a read-only mode. The only methods that are supported are
Fill and FillSchema, although you certainly have the option of implementing additional
overloaded Fill methods to populate a DataTable, as is done in DbDataAdapter.

In this case, the Fill method first makes sure that the connection object associated with
the SelectCommand is open and, if not, opens it. The Finally block is used to Close the
connection if it was opened within the Fill method (that is, implicitly). Then the
GetData method of the CbksCommand class exposed as Friend is called to retrieve the
array of XmlReader objects that will be used to read the XML documents. Each
XmlReader is then read in to the DataSet using the ReadXml method with the
XmlReadMode set to Auto. This will have the effect of augmenting any existing schema in
the DataSet using a schema either inferred from the XML data or provided inline in the
XmlReader. However, if the schema is incompatible, an exception will be thrown. Note
that if all the schemas for the XmlReader objects are identical, the end result will be to
append the XML data to the same tables within the DataSet.

The FillSchema method is very similar to Fill, although it first deletes all the tables
from the passed-in DataSet and additionally returns an array of DataTable objects. In
both cases, of course, the method needs to delete all the data using the Clear method
because only the schema should be returned.

394 Day 14

LISTING 14.5 continued

ANALYSIS

18 3869 ch14 5/20/02 1:26 PM Page 394

Working with Other Providers 395

14

Finally, a client can then use the entire provider as shown in the following code snippet:

CbksConnection con = new CbksConnection(“Location=.”);
CbksDataAdapter da = new CbksDataAdapter(“Get”, con);

da.SelectCommand.Parameters.Add(“Vendor”, “Sams”);

DataSet ds = new DataSet();
da.FillSchema(ds);

The Exception Class
All the classes in the ComputeBooks provider throw a CbksException when they
encounter exceptions they can’t handle. Creating custom exception classes is quite sim-
ple because you need only inherit from System.ApplicationException. The
ApplicationException class inherits from System.SystemException, and simply pro-
vides a means of determining whether an exception was raised by custom code or the
common language runtime itself. Of course, you can also extend your exception by
adding custom members to provide additional information, just as the SqlException and
OleDbException objects do.

In this case, the CbksException class shown in Listing 14.6 simply implements the con-
structors that call the constructors of ApplicationException. The second constructor is
used to embed an inner exception, and is useful when the provider classes catch an
exception so that the client is able to inspect it. You’ll notice that the class is marked with
the Serializable attribute to enable the common language runtime to copy it between
application domains in the event the exception is thrown from a remote domain. This
might occur, for example, if you use .NET remoting to call your provider across the net-
work hosted in IIS.

LISTING 14.6 Implementing an exception. This class implements the CbksException
object for the ComputeBooks provider.

<Serializable()> _
Public NotInheritable Class CbksException : Inherits ApplicationException

Public Sub New(ByVal message As String)
MyBase.New(message)

End Sub

Public Sub New(ByVal message As String, ByVal originalException As Exception)
MyBase.New(message, originalException)

End Sub

End Class

18 3869 ch14 5/20/02 1:26 PM Page 395

Summary
As you begin to develop in ADO.NET, you’ll likely need to use providers not shipped
with VS .NET. Microsoft and other vendors might build some of these, such as the Odbc,
Oracle, and DB2 providers, or you might need to build your own within your organiza-
tion. The programming pattern exposed in the System.Data and System.Data.Common

namespaces makes both using new providers and building providers relatively straight-
forward.

Today you learned how the Odbc provider from Microsoft works, along with a few of its
differences from SqlClient and OleDb. You also should now be familiar with the reasons
you might build your own provider and what a lightweight implementation might look
like.

Today’s lesson ends Week 2 and the discussion of .NET Data Providers. From here on
out, you’ll learn how to apply everything discussed in the previous weeks and look to the
future.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. How can you obtain the ODBC .NET Data Provider?

The Odbc provider doesn’t ship with VS .NET, so you must go to
msdn.microsoft.com and download it. After it is downloaded, it will install into
the Global Assembly Cache (GAC) and can be referenced in your projects using
the Add References dialog.

2. What kinds of connections can you use with the Odbc provider?

Just as traditionally done, you can use either a user or system DSN specified by the
DSN attribute, a file DSN specified with the FileDSN attribute, or a DSN-less con-
nection string that specifies the driver and any driver-specific attributes.

3. What is the advantage to implementing a data reader class in your provider?

If you implement both a command and a data reader class (that implements the
IDataReader interface), you can also implement a data adapter class with virtually
no work at all. This is possible because you can derive from the DbDataAdapter
class, which calls the ExecuteReader method behind the scenes.

396 Day 14

18 3869 ch14 5/20/02 1:26 PM Page 396

Working with Other Providers 397

14

4. What is the primary reason to implement a .NET Data Provider?

The most common reason to implement a provider is to provide managed access to
a proprietary data store. This makes a great deal of sense for organizations that pro-
duce packaged software and want to start developing .NET applications.

Exercise
To illustrate the side-by-side use of providers, write a method that uses the SqlClient
provider to populate a DataSet with Titles and use the Odbc provider to populate a sec-
ond table in the same DataSet with Publishers.

Answers for Day 14
Exercise Answer
One possible solution to the exercise follows:

public virtual DataSet PopulateTitles(string connect)
{

SqlConnection scon = new SqlConnection(connect);
SqlDataAdapter sda = new SqlDataAdapter(“SELECT * FROM Titles”,scon);

OdbcConnection ocon = new OdbcConnection(“Driver={SQL Server};” + connect);
OdbcDataAdapter oda = new OdbcDataAdapter(“SELECT * FROM Publishers”,ocon);

DataSet ds = new DataSet();

// Fill from SqlClient
sda.MissingSchemaAction = MissingSchemaAction.AddWithKey;
sda.Fill(ds);

// Fill from Odbc
oda.MissingSchemaAction = MissingSchemaAction.AddWithKey;
oda.Fill(ds);

// Add a relationship
ds.Relations.Add(ds.Tables[1].Columns[“PubCode”],
ds.Tables[1].Columns[“Publisher”]);

return ds;
}

Note that a DSN-less ODBC connection string can be built simply by prefixing the one
used for SqlClient.

18 3869 ch14 5/20/02 1:26 PM Page 397

18 3869 ch14 5/20/02 1:26 PM Page 398

In Review
This week you learned about the various objects that make up
the second major component of ADO.NET, the .NET Data
Providers. Along the way, I hope you picked up some tech-
niques for using the objects in various situations. In addition,
one of the key insights you should have gained is that
providers come in two basic flavors, narrow and specific, and
that both are based on the common base classes and inter-
faces in the System.Data namespace.

You started the week by learning about the responsibilities of
the various objects typically included in a .NET Data
Provider. You then proceeded to go in-depth with each object
in turn. This included learning about connections and transac-
tions and how to use connection pooling and connection
strings, command objects and the various methods they
expose, data readers and their differences from DataSet
objects, data adapters and how DataSet objects are filled and
updated, various aspects of accessing SQL Server, and tech-
niques for using the ODBC .NET Data Provider as well as
building your own provider.

You should now be quite familiar with using the objects in
the .NET Data Providers and also be ready to apply them in
the design and implementation of a modern multi-tier appli-
cation, as you’ll learn about next week. So, take a short break
to prepare your mind for a week of implementation and
futures.

WEEK 2 8

9

10

11

12

13

14

19 3869 WIR2 5/20/02 1:24 PM Page 399

19 3869 WIR2 5/20/02 1:24 PM Page 400

At a Glance
After learning about the two major components of ADO.NET
during the last two weeks, you should now be ready to apply
what you’ve learned in the context of multi-tier application
development during this final week.

The first five days of this week focus on the design and
implementation of multi-tier applications using ADO.NET.
The week begins with a short introduction and overview of
multi-tier development, and moves on to discuss techniques
that you can apply in the presentation, business, and data ser-
vices tiers on Days 16 and 17. On Day 18, the focus shifts
slightly to the implementation of a data factory class that can
be used internally in the data services tier to provide both
.NET Data Provider and database independence. Day 19 pre-
sents a discussion of using ADO.NET in conjunction with
XML Web Services.

Day 20 provides some performance and scalability tips in
addition to techniques for interoperating with ADO 2.x
Recordset objects. The week and this book conclude with a
discussion of some future directions that ADO.NET and data
access will likely take.

WEEK 3 15

16

17

18

19

20

21

20 3869 WAG3 5/20/02 1:21 PM Page 401

20 3869 WAG3 5/20/02 1:21 PM Page 402

DAY 15

WEEK 3

Using ADO.NET in a
Multi-Tier Application

Today, the start of Week 3, you begin the home stretch on your journey through
ADO.NET. In the past two weeks, you learned in detail about the two major
components of ADO.NET, the DataSet and .NET Data Providers. This week,
you will apply the knowledge you’ve gained to design and implement applica-
tions using ADO.NET.

The basic design approach that we’ll discuss today, a multi-tier (or n-tier)
approach, is one that is probably either explicitly or implicitly familiar to you.
As you learned on Day 1, “ADO.NET in Perspective,” this approach has been
widely adopted in the industry because it provides a maintainable and extensi-
ble architecture for distributed enterprise applications.

Today’s short lesson will focus on the multi-tier architecture in depth to make
sure that you understand where ADO.NET fits in and how it can be used.
Specifically, you’ll learn

• The reasons you might design applications with a multi-tier architecture

• How a multi-tier architecture relates to distributed applications

• Where ADO.NET fits into the tiers of a multi-tier application

21 3869 ch15 5/20/02 1:22 PM Page 403

The Multi-Tiered Architecture
On Day 1, you learned that one of the design goals of ADO.NET was to efficiently sup-
port a multi-tiered programming model. However, before we discuss how you can take
advantage of the features of ADO.NET in an application that uses the multi-tier architec-
ture, we need to define it.

404 Day 15

There are a variety of terms used in the industry for the approach described
in this section. Two of most prevalent are multi-tier and n-tier, so, as I men-
tioned earlier, these are the two I will use interchangeably in this discussion.
In addition, the terms design, approach, architecture, and programming
model are all used to convey the same idea: the way that multi-tier applica-
tions are put together.

Note

At the most basic level, multi-tier simply means multiple layers, so a multi-tier architec-
ture is one in which the code you write is divided into layers that interface with each
other and that have specific responsibilities. In most discussions of this approach, you’ll
see three layers or tiers, as shown in Figure 15.1.

FIGURE 15.1
Multi-tier architecture.
This diagram shows
the three primary tiers
of a multi-tier design.

Data Source

Presentation
System.Data System.Xml .NET Classes

Stored Procedures System.Messaging

Business Controller Classes

Presentation Web Forms, Services Windows Forms Services, console

Each of the three layers has certain responsibilities:

• Presentation Services Tier. The primary responsibility of the presentation ser-
vices tier is to provide the interaction with the client, either graphically or pro-
grammatically. For example, the presentation services are responsible for how the

21 3869 ch15 5/20/02 1:22 PM Page 404

Using ADO.NET in a Multi-Tier Application 405

15
data is displayed and how the user can interact with the data, but not for actually
retrieving or saving the data. As shown in Figure 15.1, the presentation services of
a .NET application are written using the classes of the .NET Framework to create
Web Forms, Windows Forms, XML Web Services, Windows Services, and Console
Applications. In addition, the presentation services layer is responsible for adapting
the presentation interface to variations in the client device’s capabilities. In VS
.NET, this is made much easier by the concept of ASP.NET server controls, which
can render HTML for both up- and down-level browsers, and the Microsoft Mobile
Internet Toolkit (MMIT), which enables you to build Web Forms that render
markup language for different devices by, for example, outputting HTML for
Pocket PCs and WML (Wireless Markup Language) for Web-enabled phones.

The MMIT is available for download from msdn.microsoft.com by searching
for Mobile Internet Toolkit. After it is installed in the Global Assembly Cache
(GAC), the assembly can be referenced in your ASP.NET projects and used to
build mobile forms using a suite of mobile controls.

Note

• Business Services Tier. The primary responsibility of the business
services tier is to ensure that business processes are able to be carried

out by the presentation services tier. The business services classes, sometimes
referred to as controller classes, are typically designed with very coarse-grained
methods that encompass an entire process and map to a logical unit of work (trans-
action). For example, a business services class might contain a PlaceOrder method
that accepts customer, order, and order detail data. This is then used to update one
or more backend data stores (message queues, relational databases, and XML doc-
uments) using classes in the data services tier, all within the scope of a single
transaction. If distributed transactions are required, controller classes can be run
under Component Services by inheriting from the
System.EntepriseServices.ServicedComponent class. Because the business
services tier is used to provide a standard interface to coordinate or control the
activities of other classes, it follows the façade design pattern. As a result, you’ll
sometimes see this tier described as a business façade.

• Data Services Tier. Finally, the data services tier is responsible for retrieving,
manipulating, and updating data in the underlying data stores and making it avail-
able to the business and presentation services. There are several approaches to
doing this, as shown in Figure 15.1. For example, the data services tier could
expose the data through ADO.NET DataSet objects that are then passed between
the presentation and business services tiers and finally synchronized again with the

NEW TERM

21 3869 ch15 5/20/02 1:22 PM Page 405

data store. Alternatively, it could expose the data through the classes of the
System.Xml namespace such as the XmlDocument or XmlReader, work with mes-
sage queues, or expose data through an object layer created with custom classes. In
addition, as you’ll learn at a high level later today and in detail on Day 17,
“ADO.NET in the Data Services Tier,” and Day 18, “Building a Data Factory,” the
data services tier can itself contain multiple layers of code in order to abstract the
provider used and take advantage of implementation inheritance. In addition,
because I recommend using a stored procedure layer for communication to the data
store, the data services tier includes the stored procedures as well.

Perhaps one of the biggest stumbling points for developers when first considering the
multi-tier architecture is their natural tendency to want to follow it rigidly. For example,
developers might assume that the presentation services tier should always and only com-
municate with the business services tier. Although this would provide the greatest
abstraction and therefore allow the data services tier to be changed independently of the
presentation services tier, it can increase complexity and the cost of maintenance for sim-
pler scenarios.

You’ll notice that, as depicted in Figure 15.1, the presentation services tier can communi-
cate directly with the data services tier. This makes good sense because not all the behav-
ior of an application needs to be abstracted. Doing so often results in lots of methods in
the business services tier that do nothing more than act as wrappers around methods in
the data services tier. This is both more complex and wasteful of resources. Where appro-
priate, I advocate invoking the data services directly, although that implies that the data
services tier must expose a set of meaningful methods.

406 Day 15

What About Web Services?

You’ll notice in Figure 15.1 that XML Web Services are placed in the presentation services layer
of the model. This might seem strange because you generally think of Web services as a means
of interacting with data, so you might think they should be placed in the data services tier.
However, in many scenarios, Web services simply provide an additional SOAP-based program-
matic interface to the data accessible through the firewall, and therefore will call the same
business and data services code behind the scenes that a Web Form might rely on.

Having said that, you can certainly create a design in which all your data access flows through
Web services that are published internally within your organization. In this design, the Web ser-
vice layer becomes the external API for the data services tier. In fact, Windows .NET Server will
ship with a UDDI (Universal Description, Discovery, and Integration) server that you can use to
publish Web services within your organization. However, such a design incurs a performance hit
because of the extra processing required to build and parse the SOAP messages. As a result, this
approach will be most useful in large and distributed organizations. Generally, within the fire-
wall, the most efficient way to access your data is to use a set of data access classes, in the data
services tier, that use specific .NET Data Providers.

21 3869 ch15 5/20/02 1:22 PM Page 406

Using ADO.NET in a Multi-Tier Application 407

15
Relation to Physical Tiers

It is important to keep in mind that the multi-tiered approach discussed in the
previous section is a logical construct that doesn’t require you to physically dis-

tribute the tiers on separate machines. In other words, when you create a data services
tier, it doesn’t have to be isolated on a separate server or farm of servers. In fact, many
Web-based multi-tier applications will locate all their code on a single Web server.
However, the design decisions you make when coding your data services tier will influ-
ence scalability if you decide to distribute the tiers on multiple servers. For example, the
use of the streamed programming model with data readers in ADO.NET is optimal when
the data services code runs in the same process as the presentation and business services,
but it can cause performance problems when used across machines due to the number of
roundtrips that would be incurred. Generally, the goal with a multi-tier architecture is to
be able to physically distribute the application at a later time if scalability becomes an
issue. This is referred to as the scale-out approach because it attempts to amortize the
processing of the application across multiple machines. This is contrasted with scale-up,
which focuses on increasing the resources available on a single server.

NEW TERM

Although scalability and performance are related, they can be thought of as
two different concepts. For example, an application can perform very well
(have high throughput) when serving 100 clients, but can slow to a crawl
when serving 1,000 clients. In this case, the application performed well for
its normal workload, but wasn’t scalable because its increase in throughput
did not track linearly with the number of clients. Making an application scal-
able means keeping the throughput high even as a greater number of
clients use the system. Although this can be done to some extent by design-
ing your application to use resources (memory, CPU, network bandwidth)
efficiently, at some point, any application will overwhelm the resources of a
single server. Scaling-out seeks to increase by scalability by isolating either
tasks or clients or both on dedicated servers.

Note

In that respect, there are several different physical architectures for scale-out that you
might employ. A typical one is shown in Figure 15.2.

You’ll notice from Figure 15.2 that one approach might be to isolate all the pre-
sentation services code on a cluster or farm of identical Web servers using the

Network Load Balancing (NLB) clustering feature of Windows 2000 Advanced and
Datacenter Server. NLB distributes incoming IP traffic across a cluster of up to 32
servers that appear to the client as a single IP address. Traffic is processed by the servers
based on priority and other configurable settings. When you use this approach, it’s

NEW TERM

21 3869 ch15 5/20/02 1:22 PM Page 407

important that the presentation services code be as stateless as possible so that subse-
quent requests from a particular client needn’t be handled by the same server (server
affinity). Although NLB supports server affinity (or “sticky IP”), doing so compromises
scalability and fault tolerance because the cluster needs to maintain the mapping of
clients to servers, and losing a server might wipe out the client’s state information (or
session state). The risk of losing a client’s session state is mitigated by the fact that
ASP.NET allows session information to be stored directly within SQL Server or using a
separate Windows Service configured through the Web.config file for the ASP.NET Web
site. NLB can be configured both independently and as a part of Application Center 2000
to ease the administration of the cluster.

408 Day 15

FIGURE 15.2
Physically distributing
an application. This
diagram shows how
the logical tiers might
be distributed across
machines.

NLB

Web server farm

CLB

COM+ Cluster

MCS

SQL Server 2000

NLB is a software-based approach used on Windows server. Two other
means of building Web farms include using round-robin domain name sys-
tem (RRDNS) at the network layer, and using load-balancing switches such as
the Cisco LocalDirector at the hardware layer.

Tip

21 3869 ch15 5/20/02 1:22 PM Page 408

Using ADO.NET in a Multi-Tier Application 409

15
Figure 15.2 also indicates that the business and data services code might utilize the com-
ponent load balancing (CLB) feature of Microsoft Application Center 2000. Simply put,
CLB allows for the creation of a cluster of servers used to load balance requests to com-
ponents configured in Component Services. As a result, CLB is useful only for business
and data services classes that use Component Services by inheriting from the
System.EnterpriseServices.ServicedComponent class. These classes can also be dec-
orated with the LoadBalancingSupportedAttribute to indicate that they support CLB if
installed.

However, not all business and data services classes will utilize Component Services, so
for many applications, scaling-out simply means running all three tiers on a farm of
servers, perhaps using NLB. For those applications, it might be more efficient because
the extra latency and complexity introduced by isolating the services on their own servers
will wipe out any benefits. Alternatively, as mentioned previously, you can also expose
your data services tier through XML Web Services, and then use NLB to create a cluster
of servers that expose the Web services for the presentation services tier to use.

You’ll also notice that if the business and data services are to be isolated on their own
cluster of servers, the issue of server affinity also comes into play. In other words, you
want to design your business and data services to be stateless so that any client from the
presentation tier can access any of the servers in the CLB cluster. A stateless design is
one in which the methods are given everything they need to do their work and do not
store any private data between calls. This design also pays dividends even on a single
server where the business and data services components can be pooled and reused by
Component Services if they are stateless.

Finally, the data store itself can be isolated in a separate fault-tolerant cluster of database
server machines. For example, Windows 2000 Advanced and Datacenter Servers support
the Microsoft Cluster Service (MCS) that SQL Server 2000 Enterprise Edition can uti-
lize. With MCS, you can create a failover cluster in SQL Server that allows one of the
two server machines in the cluster to provide fault tolerance by taking on the workload
of the other server if it goes down. As indicated in Figure 15.2, this works by the two
servers utilizing a shared disk subsystem and a “heartbeat” that allows the passive
machine in the cluster to determine whether the active machine is still functioning.
Although SQL Server 2000 can support a fully distributed database scenario using dis-
tributed partitioned views (DPV), for all but the largest applications, it’s typically more
cost effective to scale-up the servers in an MCS cluster rather than designing and main-
taining a distributed database.

Which physical configuration you use is, of course, totally dependent on your particular
application and its requirements.

21 3869 ch15 5/20/02 1:22 PM Page 409

Benefits of a Multi-Tier Approach
In addition to the benefit of being able to scale-out the application, there are several other
advantages to using a multi-tier approach:

• Maintainability. By separating the responsibilities of the application into separate
layers, it will be easier in the long run to isolate problems to a specific layer and
fix them while not affecting the other layers. Although this isn’t always the case,
and occasionally a change ripples through all the layers, by paying attention to
design ideas such as loose coupling, encapsulation, and well-thought-out and
defined interfaces, you can isolate changes to a specific layer and avoid introducing
bugs in other layers.

• Reusability. Because the layers will be isolated, they should also be able to be
reused in different applications. This is particularly true of the business and data
services tiers, which might need to be repackaged and reused by a different user
interface. For example, the same business and data services might be used both by
an ASP.NET application targeted to desktop browsers and one built with MMIT
targeted for mobile devices. A second example of reusability is the opportunity to
take advantage of implementation inheritance in the .NET Framework to, for
example, create base classes that can be used in the data services tier of multiple
applications.

• Extensibility. As an offshoot of maintainability, the introduction of new require-
ments should be able to be handled more easily because the tiers are separated.
Once again, in conjunction with the use of good object-oriented design patterns,
the code in one tier can be extended while not affecting the others.

• Specialization. Because not everybody can know everything, splitting the responsi-
bilities of the application into separate layers provides the opportunity for develop-
ers to specialize in the techniques and issues inherent in developing for a particular
tier. For example, a presentation services specialist might be well versed in writing
ASP.NET server controls and the ins and outs of Dynamic HTML, whereas a data
services specialist thoroughly understands connection pooling and how to write
stored procedures in SQL Server.

• Rapid Development. Although not generally thought of as a benefit for multi-tier
applications, I submit that multi-tier applications are in fact faster to develop
because they clearly delineate the responsibilities of various parts of the application
and provide a mental map that makes it simpler for developers to write appropriate
code. In many ways, this is the same issue as maintainability because in every soft-
ware development project, the requirements aren’t fully known when development

410 Day 15

21 3869 ch15 5/20/02 1:22 PM Page 410

Using ADO.NET in a Multi-Tier Application 411

15
begins, so following an approach that allows for abstraction will typically result in
less rewritten and reworked code.

For a good introductory discussion on object-oriented design patterns, see
Design Patterns Explained: A New Perspective on Object-Oriented Design by
Shalloway and Trott, published by Addison-Wesley. ISBN: 0-201-71594-5.

Note

ADO.NET in Context
Obviously, ADO.NET will be used primarily in the data services tier. However, in the
context of an entire multi-tier application, you can think of where you’ll write ADO.NET
code from both the external and internal view with respect to the data services tier.
Choosing an approach to take from each of these two views will lead you well on your
path to designing the data services tier of a multi-tier application.

The External View
In the external view, you can think of the data services tier as a black box that exposes
methods to which you make requests and from which results are returned. As mentioned
previously, the code making the requests may be located in either the presentation or
business services tiers, as shown in Figure 15.3.

FIGURE 15.3
External view of data
services. This diagram
depicts how code
external to the data
services tier will inter-
act with it.

Custom
Object

Data
Reader

DataSet

Client
(business or presentation services)

Data Services
(black box)

return?

? = o.GetTitles(isbn);

From the external view, the factor that determines whether ADO.NET components are
used directly is the mechanism used to return the data. As you see from Figure 15.3,
there are three basic approaches that the data services can take.

21 3869 ch15 5/20/02 1:22 PM Page 411

• Exposing DataSet Objects. The data services tier may expose all its data in one or
more DataSet objects. These objects have the benefit of being able to be automati-
cally serialized for transport between tiers, and can be strongly typed to expose
specific properties to represent the data. Using this approach, the external code will
use ADO.NET to instantiate DataSet objects and work with its associated
DataTable, DataRow, and DataColumn objects. The external code will then pass the
modified DataSet to a method in the data services tier to perform the update. This
approach has the benefit of allowing data binding in all .NET applications and
built-in means of performing disconnected updates using the data adapter.

• Exposing Data Readers. For performance reasons and perhaps because the appli-
cation uses mostly read-only data, the data services tier may expose all its data
through data readers. If this is the case, the tiers will likely reside on the same
machine. Using this approach, the external code will use ADO.NET to capture a
data reader and traverse it using its Read method, whereas updates will be per-
formed by invoking methods in the data services tier and passing data as parame-
ters. In this situation, the external code should also strive to use only the
IDataReader interface to avoid being tied down to using a particular .NET Data
Provider.

• Exposing Custom Objects. Using this approach, the data services tier will return
data through custom objects that expose properties and fields that contain the data.
From the external point of view, no ADO.NET code will be required, so the
System.Data namespace needn’t even be referenced in the project. This approach
has the benefit of allowing the other tiers to work with the data naturally through
objects. The downside is that it requires more work on the part of the data services
tier to populate and synchronize the objects.

In all three approaches just cited, the external code should strive to be loosely coupled
from the data services. For example, the external code should never have to instantiate or
work with command, parameter, connection, local transaction, command builder, or
exception objects that are particular to a data provider. The data services tier should com-
pletely abstract these concepts and should simply expose the data itself as directly as
possible. It’s the responsibility of the data services tier to work with the provider, not the
external code. For example, the data services tier shouldn’t contain methods that return
connection objects or expect command objects to be passed to them in parameters. In
other words, the external code should work only with DataSet or data reader objects and
no others from the System.Data namespace.

412 Day 15

21 3869 ch15 5/20/02 1:22 PM Page 412

Using ADO.NET in a Multi-Tier Application 413

15

The Internal View
From the view inside the data services tier, ADO.NET and all its features will be lever-
aged wherever possible. However, once again, there are three options for how you design
your data services tier, as depicted in Figure 15.4.

Of course, the data services may also expose methods that return simple
data types such as System.Int32, System.Boolean, or System.String. This
might be the case, for example, for a GetRevenue method that simply returns
the total amount of revenue generated for a particular book over a certain
time period.

Note

FIGURE 15.4
Data services tier
design. This diagram
depicts the various
approaches to the
internal design of the
data services tier.

DataSet
Data readers

Caching, other
objects

Method
Body

.NET Data
Provider

?

Provider Factory?

Data Factory?

Method Invoked from
Client

Data Services

Generally, these three approaches address the use of .NET Data Providers in the data ser-
vices tier. The approaches are as follows:

• Direct Approach. Thus far in this book you’ve seen examples of using a direct
approach to work with the various providers we’ve discussed. By direct approach,
I mean instantiating the concrete provider-specific SqlConnection, SqlCommand,
and SqlDataAdapter and other classes directly in your code and using them.
Within the data services tier, this means, for example, exposing a GetTitles
method that uses the SqlDataAdapter directly to fill a DataSet object and return it
to the presentation or business tier. This is the fastest approach in terms of develop-
ment time and performance, although it requires code to be rewritten in the event

21 3869 ch15 5/20/02 1:22 PM Page 413

the provider must be changed in the future. It also offers the least reusability
because common operations such as creating parameters are usually done in each
method.

• Abstracted Providers. By relying on the key interfaces we discussed
yesterday, a second approach is for the methods that make up the pub-

lic interface of the data services tier to internally use a specially designed helper
class I refer to as a provider factory to instantiate the actual provider used. This is
a common object-oriented design pattern called the abstract factory pattern that
can be used whenever your code needs to instantiate a related set of objects such as
those from a particular provider (such as OleDbConnection, OleDbCommand, and so
on). This approach allows the data access classes to be generic in terms of the
provider, making it easier to switch providers down the road if necessary. We’ll
discuss this approach in detail on Day 17.

• Internal Data Factory. A third approach is to not only abstract the provider inter-
nally in the data services tier, but also to abstract the most common algorithms per-
formed. For example, many methods in the public interface of the data services tier
need to create a connection object, create a data adapter and pass it the stored pro-
cedure, create parameter objects, populate the parameters and associate them
with the command, and finally fill a DataSet using the data adapter. All this can
be abstracted into an internal data factory class, relieving the burden from the
developer. In addition, an internal data factory gives you the opportunity to add
additional features, such as the caching of command objects when they are built.
We’ll discuss this approach in detail on Day 18.

As mentioned previously, regardless of which approach you take to build your data ser-
vices tier, you can take advantage of implementation inheritance and build one or more
base classes that take care of some of the common infrastructure-type work that any class
in the data services tier might need, such as connection management and logging.

Summary
Building enterprise applications requires a structured approach that allows you to isolate
code that you write into distinct services so that your application is maintainable, flexi-
ble, and scalable in the face of new requirements and increased workloads. Using a
multi-tier architecture gives you a mental map of how to accomplish this and therefore
provides a ready-made foundation for building applications.

ADO.NET will be used primarily in the data services tier of a multi-tier application,
although there are several design decisions you can make that affect how the other tiers

414 Day 15

NEW TERM

21 3869 ch15 5/20/02 1:22 PM Page 414

Using ADO.NET in a Multi-Tier Application 415

15
interact with the data services tier. These include the external perspective that relates to
how the data will be exposed and the internal perspective as to how you work with
providers.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What are the layers in a multi-tier architecture?

A multi-tier architecture can be divided into the presentation services tier, the busi-
ness services tier, and the data services tier. Each tier or layer has its own set of
responsibilities that tend to provide well-defined boundaries between the tiers or
layers.

2. What is relationship between the multi-tier architecture and physical machines?

Strictly speaking, there is none. The multi-tier architecture is a logical model that
speaks to how the application is designed, but not to how it is deployed. At the
same time, a multi-tier application can naturally be deployed across multiple
servers at the boundaries between the tiers.

3. What are some techniques you can use to increase scalability?

On the Windows platform, there are several tools you can use to scale-out your
application in order to increase scalability. Among these are network load balanc-
ing (NLB), component load balancing (CLB), and Microsoft Cluster Service
(MCS). Your application can also take steps to increase scalability by, for example,
not storing user state on the Web server and taking advantage of ASP.NET services
such as caching.

4. What factors influence the design of the data services tier?

When designing the data services tier, you need to determine how the classes will
expose data—for example, using DataSet objects, data readers, or custom
objects—and how the classes will deal with the issue of providers. After these
design decisions are made, the design of the methods themselves is fairly straight-
forward. In addition, you should strive to make your business and data services
tiers stateless so that they can be scaled-out efficiently.

Exercise
Because today’s lesson was primarily conceptual, there is no exercise.

21 3869 ch15 5/20/02 1:22 PM Page 415

21 3869 ch15 5/20/02 1:22 PM Page 416

DAY 16

WEEK 3

ADO.NET in the
Presentation Services Tier

As you learned yesterday, how you design your data services tier has an effect
on how the presentation services tier will work with the data in your applica-
tion. Today, you’ll explore those differences in the context of both Windows
Forms and Web Forms user interfaces.

Today’s discussion will concentrate on how to display and work with data
exposed by the objects associated with a DataSet and data reader because the
majority of user interfaces will use these classes directly. However, we’ll also
discuss the architecture of data binding, for example, so that you understand
how classes you build can also take advantage of the features of controls.

Today, you’ll learn the following concepts:

• How to use both simple and complex binding in Windows Forms applica-
tions

• How to validate data in Windows Forms applications

• How to use both single-value and multi-record binding in Web Forms
applications

22 3869 ch16 5/20/02 1:20 PM Page 417

• How to store state in Web Forms applications

• How to validate data in Web Forms applications

Windows Forms Applications
The user interface for a Windows-based application is built using the set of classes in the
System.Windows.Forms namespace, collectively referred to as Windows Forms. These
types are found in the System.Windows.Forms.dll assembly and take full advantage of
the user interface features of the Windows operating system. You can create a Windows
Forms application by selecting the Windows Application project template in the New
Project dialog.

From within a user interface built with Windows Forms, there are two primary concerns
when using ADO.NET:

• How you bind data in a DataSet, DataTable, DataView, or DataViewManager
object to controls

• How you validate the contents of those controls

In this section, you’ll learn how to do both.

Using Data Binding
When your data services tier returns data to the user interface, the main requirement, of
course, is to display that data so that the user can view and/or edit it. Rather than having
to write loops that traverse, for example, the rows and columns of a DataTable and place
the data in the properties of controls, it is more efficient and productive to take advantage
of the data-binding features provided by Windows Forms.

To act as a provider (or data source) to Windows Forms data binding, however, a class
must implement particular interfaces. At the most basic level, the
System.Collections.IList interface (itself derived from ICollection) that is the basis
for all lists in the framework must be implemented. This interface is implemented by
more than 40 classes in the .NET Framework, including Array and ArrayList, in addi-
tion to the CollectionBase class that provides the abstract base class for strongly typed
collections. In other words, Windows Forms controls can be bound not just to ADO.NET
objects, but also to other objects such as arrays and custom collections that implement
the IList interface. As a result, you can also use data binding with collections of objects
you create, as you’ll see tomorrow.

418 Day 16

22 3869 ch16 5/20/02 1:20 PM Page 418

ADO.NET in the Presentation Services Tier 419

16
At a slightly higher level, a data source can implement the IBindingList interface,
which itself implements the IList interface. The IBindingList interface adds additional
methods and properties used to enable editing, sorting, and notification of changes to the
list by raising the ListChanged event. The DataView class in ADO.NET implements this
interface.

Finally, the data source can implement the IEditableObject interface as the
DataRowView does to add commit and rollback functionality to the object.

After you have an object capable of acting as a data source, controls or even properties
on the Windows Form can act as consumers. The consumer architecture is shown in
Figure 16.1.

Technically, the DataSet and DataTable classes implement the IListSource
interface. This interface contains a method called GetList and a property
called ContainListCollection that return an IList that can be bound and
that specify whether the collection is a collection of IList objects or other
objects, respectively. The IListSource interface is useful because the object
might not implement the IList interface directly, as in this case.

Note

FIGURE 16.1
Windows Forms con-
sumer architecture.
This diagram shows
the data-binding archi-
tecture used on a
Windows Form.

Binding

Binding BindingCollection

CurrencyManagerBindingContext

Binding

Basically, when you use data binding, the Windows Form will contain instances of the
CurrencyManager and PropertyManager classes for each data source that is used on the
form, both of which inherit from the abstract BindingManagerBase class. The
PropertyManager class will be used when the data source returns only a single object,
whereas the CurrencyManager is used when the data source exposes a collection of
objects. The CurrencyManager keeps track of the position of the bound object through its
Position property. This architecture is interesting because it implies that the data source
object itself doesn’t have any notion of a position, so a single data source can be bound
to multiple controls and be navigated independently. Both classes then expose a collec-
tion of data bindings (Binding objects) through a BindingCollection object. The
Binding object is what actually maps the data source to the property of the control that is

22 3869 ch16 5/20/02 1:20 PM Page 419

being bound. In terms of the control acting as the consumer, the bindings are accessed
through the DataBindings property, which returns an instance of the
ControlBindingsCollection object.

The form (or actually any class that inherits from Control) then exposes a
BindingContext object that manages the descendants of BindingManagerBase.

420 Day 16

Although you’ll typically just use the BindingContext object exposed at the
form level, you can create a BindingContext object for a container control
such as a Panel or GroupBox. You might want to do this to make your code
simpler to write because it eliminates a level in the dot notation you must
use.

Tip

In the remainder of this section, you’ll see how you can use both simple and complex
binding to bind data from a data source to controls.

Simple Binding
Simple binding refers to the process of binding the property of a control that
contains a single value to a data source. In other words, controls such as the

TextBox and Label will be simple-bound because their Text properties return a single
value, whereas the ListBox control can use complex binding because it returns multiple
objects through its Items property. However, a control can use both complex and simple
binding because some of its properties might return single values whereas others might
return multiple values (as in the case of the MonthCalendar control). In addition, simple
binding can be used to bind other properties of controls (or forms) to the data source,
like those used to change the display, such as Font, ForeColor, Left, Right, and Top.

Simple binding can be performed both graphically at design time and programmatically
at run time. With ADO.NET, you would typically use design-time binding when you
have previously dragged and dropped a strongly typed DataSet or DataView onto the
form’s designer. In other words, to use the graphical interface, the DataSet or DataView
must be accessible at the form level by declaring them with the Friend (internal in
C#), Protected (protected), or Public (public) keywords in VB. They must also con-
tain tables and strongly typed columns.

When this is the case, it is a simple exercise to navigate to the DataBindings property in
the property window and either enter the binding expression in the appropriate sub-prop-
erty (such as Tag or Text) or click on the ellipsis next to the Advanced property to open
the Advanced Data Binding dialog. The Advanced dialog allows you to bind to many of
the other properties on the control, as shown in Figure 16.2.

NEW TERM

22 3869 ch16 5/20/02 1:20 PM Page 420

ADO.NET in the Presentation Services Tier 421

16

However, if you’re not using strongly typed DataSet objects, you’ll need to set up bind-
ing programmatically. This can be accomplished by creating a private method within
your Windows Form, for example, and creating the Binding objects directly. Listing 16.1
shows an example of programmatic data binding.

LISTING 16.1 Programmatic data binding. This method binds the columns of a DataSet
to controls on a Windows Form.

Private Sub _setupBinding()
‘ Set up the DataView
dv = New DataView(dsTitles.Tables(0))

‘ Set up bindings
txtISBN.DataBindings.Add(“Text”, dv, “ISBN”)
txtTitle.DataBindings.Add(“Text”, dv, “Title”)
txtDesc.DataBindings.Add(“Text”, dv, “Description”)
txtPrice.DataBindings.Add(“Text”, dv, “Price”)
txtPub.DataBindings.Add(“Text”, dv, “Publisher”)
txtAuthor.DataBindings.Add(“Text”, dv, “Author”)
txtPubDate.DataBindings.Add(“Text”, dv, “PubDate”)

End Sub

You’ll notice in Listing 16.1 that the DataView (also a form-level object like
dsTitles) was created from the first table in the dsTitles DataTable collection.

You might want to do this if you need to sort and filter the view of the data that the user
will see. The Add method of the DataBindings collection for each control was then
invoked and passed the property to bind to, the data source (in this case, the DataView),
and the member within the data source to get the data from. Alternatively, the Add
method can accept a separately instantiated Binding object.

FIGURE 16.2
Using simple binding.
This screen shows the
Properties window and
Advanced Data
Binding dialog used to
graphically bind a
property to a data
source.

ANALYSIS

22 3869 ch16 5/20/02 1:20 PM Page 421

One of the interesting points to note is that the second and third arguments of the Add
method may overlap, and that the precise syntax you use has an effect on how many
CurrencyManager objects are created within the BindingContext. For example, consider
what would happen if the method in Listing 16.1 had contained the following two state-
ments:

txtISBN.DataBindings.Add(“Text”, dsTitles.Tables(0), “ISBN”)

txtTitle.DataBindings.Add(“Text”, dv, “Title”)

Although both would bind to the DataView correctly, because the second argument
doesn’t refer to exactly the same data source, the BindingContext of the form will see
these as two separate data sources and thus create two CurrencyManager objects. The
result is that the Text properties of the two controls won’t be synchronized as the data is
navigated through. This is important because if you create bindings graphically and then
want to add a Binding programmatically that uses the same CurrencyManager, you need
to specify only the top-level data source object in the second argument and defer the rest
to the third argument. For example, the following two statements both bind the ISBN
column, but the second specifies the table name in the third argument rather than the
second:

txtISBN.DataBindings.Add(“Text”, dsTitles.Tables(“Table”), “ISBN”)

txtISBN.DataBindings.Add(“Text”, dsTitles, “Table.ISBN”)

Note also that in the third argument, you would use the actual name of the table—in this
case, the default “Table”--as specified in the TableName property.

422 Day 16

You can also use this behavior when binding to strongly typed DataSet
objects. In this case, you don’t have to fully qualify the DataSet and table
name in the second argument and defer the table name to the third argu-
ment using dot notation.

Note

Although this behavior might be useful if you need to display two different rows on the
same form, generally, you’ll want all the bindings to exist under the same
CurrencyManager for a particular data source.

Navigation

Of course, when using simple binding, you’ll also need to implement navigation. This is
easily done by manipulating the CurrencyManager object’s Position property and not-
ing the current position using its PositionChanged event.

22 3869 ch16 5/20/02 1:20 PM Page 422

ADO.NET in the Presentation Services Tier 423

16

For example, to create an event handler for a button that moves the position of the
CurrencyManager created in Listing 16.1, you could use the following code:

Private Sub btnNext_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnNext.Click
Me.BindingContext(dv).Position += 1

End Sub

Notice that the default property for the BindingContext property returns a
BindingManagerBase object when passed the data source object for the binding. In this
case, a CurrencyManager object is returned and its Position property is incremented.

Manipulating the Position property of the BindingManagerBase object
when it is instantiated as a PropertyManager object has no effect.

Note

In the event that the end of the CurrencyManager is reached, no exception will be thrown
and its position will remain at the end of the cursor. However, if you want to be notified
when the beginning or end occurs, you can catch the PositionChanged event and test the
current position as shown in Listing 16.2.

LISTING 16.2 Position notification. This event handler can be used to catch the invoca-
tion of the PositionChanged event for a CurrencyManager.

Protected Sub titles_PositionChanged(ByVal sender As _
Object, ByVal e As EventArgs)
If Me.BindingContext(dv).Position = Me.BindingContext(dv).Count - 1 Then

btnNext.Enabled = False
Else

btnNext.Enabled = True
End If
If Me.BindingContext(dv).Position = 1 Then

btnPrev.Enabled = False
Else

btnPrev.Enabled = True
End If

End Sub

You might want to do this to change the user interface, as in this case, where the
btnNext and btnPrev buttons are enabled and disabled. Note that the CurrencyManager
also fires a CurrentChanged method when the current row in its list changes. The differ-
ence is that the CurrentChanged method passes into the handler an instance of
ItemChangedEventArgs, which includes the Index property to enable you to determine
the locus of the navigation.

22 3869 ch16 5/20/02 1:20 PM Page 423

In order for the event to be called, you must also set up a handler for it by using the
AddHandler statement in VB or by adding to the invocation list of the delegate in C#. In
VB, you might use code like the following in the _setupBinding method shown in
Listing 16.1:

AddHandler Me.BindingContext(dv).PositionChanged, _
AddressOf Me.titles_PositionChanged

Formatting

When you use simple binding, you also typically need to format the value of the property
as it is bound to the control and then parse the value before it’s used to update the data
source. Fortunately, the Format and Parse events of the Binding object can be used to do
this.

The Format event fires as the data from the data source is pushed to the control and again
after it has been changed and pushed back to the control. A typical use for the Format
event is to format decimal values into currency formats for display in a TextBox. For
example, the Price column of the DataView in Listing 16.1 is bound to the txtPrice
TextBox control. For the price to display as currency, the event handler in Listing 16.3
could be written.

LISTING 16.3 Formatting data. This event handler handles the Format event of a
Binding object to format currency for display in a TextBox.

Private Sub _formatCurrency(ByVal sender As Object, ByVal e As ConvertEventArgs)
If e.DesiredType Is GetType(String) Then
e.Value = Format(e.Value, “currency”)

End If
End Sub

Note that this method accepts the ConvertEventArgs object as the second argu-
ment, which exposes the DesiredType and Value properties. The DesiredType

indicates the type of data that the control is expecting (in this case, String) when the
value from the data source is formatted. The Value property contains the value from the
data source. Here, the DesiredType is checked to ensure that the method is being called
only when the property of the control expects a String because the Format method
returns a String. By changing the Value, you can explicitly determine how the data will
be converted. If you don’t handle this event, the data will be automatically cast to the
appropriate type. Because this event fires after a user has changed the data in the control,
it effectively reformats the data for display when the user moves off the control. This has
a nice effect because the users can immediately see their changes properly formatted as

424 Day 16

ANALYSIS

22 3869 ch16 5/20/02 1:20 PM Page 424

ADO.NET in the Presentation Services Tier 425

16

they navigate the form. If the data can’t be formatted correctly, no exception will occur
and the old value will be displayed.

Although the documentation states that the Format event will fire the first
time the property is bound, that doesn’t appear to be the case. To make
sure that the Format event fires, you can set the Position property of the
CurrencyManager object to 1 immediately after you set up the bindings; for
example, in the _setupBinding method.

Note

Of course, for the _formatCurrency event to fire, you need to add an event handler
like so:

AddHandler txtPrice.DataBindings(0).Format, AddressOf Me._formatCurrency

To perform more sophisticated operations, you can also choose to handle the Parse
event, which will fire immediately before the data source is updated and before the
Format event. The Parse event is useful when the user can enter a more sophisticated
string that can’t be converted directly to the data type of the data source. For example, if
you allow users to enter ISBNs with hyphens (as in 0-6722-1236-5), the parse event
could be used to strip the hyphens before the data is sent to the data source. The Parse
event also populates an instance of ConvertEventArgs that you can use.

Although it is beyond the scope of this book, the Parse event is a good
place to use regular expressions, as found in the
System.Text.RegularExpressions namespace. As a simple example, the
RegEx class exposes a Replace method that can be used to replace all
occurrences of one pattern with another in a string. The string can then be
converted to the appropriate type within the Parse event. See the online
documentation for more details.

Tip

Complex Binding
Some controls support the ability to bind to an entire collection of items exposed
by the data source, referred to as a complex binding. Of course, when using

ADO.NET this means binding directly to the rows of DataTable objects or indirectly
using a DataSet or DataView object. These controls, such as the ListBox,
CheckedListBox, ComboBox, and DataGrid, expose their bindings for display through the

NEW TERM

22 3869 ch16 5/20/02 1:20 PM Page 425

DataSource property. Those controls that display only a single value for each item, such
as ListBox, CheckedListBox, and ComboBox, expose DisplayMember and ValueMember

properties that are set to the member (column) to display and the member to update in
the data source, respectively. The DataGrid, on the other hand, can display multiple val-
ues for each item, so additional properties aren’t required. However, the DataGrid does
expose a DataMember property that references the actual object (table) within the data
source that provides the items to bind to.

426 Day 16

Just as in simple binding, you have the option of creating the bindings
graphically or programmatically. Once again, the graphical approach works
particularly well for strongly typed DataSet objects.

Note

Programmatically, this means that when using a ComboBox to display a pickable list of pub-
lishers, for example, you could use the following code:

cbPub.DataSource = ds.Tables(0)
cbPub.DisplayMember = “Description”
cbPub.ValueMember = “PubCode”

In this case, cbPub is the ComboBox and you’ll notice that the DataSource property can be
set to either a DataTable or a DataView. In addition, the DisplayMember property indi-
cates that the Description column from the table will be shown to the user and will be
available through the SelectedText property. The PubCode column will be available
through the SelectedValue property.

In order to then bind the SelectedValue property to the DataView shown in Listing 16.1,
you can simply add a Binding object programmatically as follows:

cbPub.DataBindings.Add(“SelectedValue”, dv, “PubCode”)

This ensures that as the CurrencyManager for the DataView is positioned, the correct
value in the ComboBox is selected. It also ensures that if the user selects a different value
from cbPub, the underlying PubCode column in the DataView will be updated.

For a DataGrid, the DataSource property can be set to either a DataSet or a particular
DataTable or DataView. If a DataSet is specified, the DataMember property can also be
set to indicate which table is to be displayed. If a table isn’t specified in the DataMember
property, the grid will display all the table names and the users will have to drill down
into the table they want to view. This can be confusing to the user, so you should gener-
ally choose one of the tables to display by default.

22 3869 ch16 5/20/02 1:20 PM Page 426

ADO.NET in the Presentation Services Tier 427

16

The most interesting behavior of the DataGrid when bound to a DataSet, however, is
that if the DataSet contains relationships, the grid provides a drill-down capability to fil-
ter the child rows accordingly. For example, if the dsTitles DataSet contains tables that
hold both the Titles and Reviews, by drilling down into each Title, the Reviews for
that book will be shown. This is depicted in Figure 16.3.

FIGURE 16.3
Navigating
relationships. The
DataGrid automatical-
ly navigates the rela-
tionships when bound
to a DataSet.

You should also keep in mind that relations can be useful when combining simple and
complex binding. For example, assume that a form contains simple bound controls that
display the information for a book. In addition to the columns of the Titles table, you
might also want to display the number of stars for each review submitted for the book in
a ListBox control. This can be done by binding both the simple controls to the dsTitles
DataSet and then binding the ListBox through the relation. For example, the following
code displays the Stars column in the ListBox:

txtISBN.DataBindings.Add(“Text”, dsTitles, “Table.ISBN”)
‘ Other simple controls
lbReviews.DataSource = dsTitles
lbReviews.DisplayMember = “Table.TitlesReviews.Stars”

Here, the simple controls would need to be bound to the DataSet directly and then their
columns specified in the third argument to the Add method. The DisplayMember property
of the ListBox can then be set to the fully qualified name of the column as navigated to
through the view. In this case, the name of the relation is TitlesReviews.

Manual Binding

Although you might think that data readers would be bindable to Windows Forms con-
trols, they aren’t because they don’t expose the IList or the other interfaces discussed
previously. However, data readers can be useful for populating controls that don’t sup-
port complex data binding, and are typically used for read-only data such as the
TreeView and ListView, as shown in Listing 16.4.

22 3869 ch16 5/20/02 1:20 PM Page 427

LISTING 16.4 Manual binding. This listing shows how you might manually bind a data
reader to a ListView control.

Private Sub _bindLvTitles(ByVal dr As IDataReader)

‘ Setup the ListView
lvTitles.Columns.Add(“ISBN”, 250, HorizontalAlignment.Left)
lvTitles.Columns.Add(“Title”, 750, HorizontalAlignment.Left)
lvTitles.Columns.Add(“Author”, 500, HorizontalAlignment.Left)
lvTitles.LargeImageList = imgCover
imgCover.ImageSize = New Size(35, 50)

Dim n As Integer
Dim titleItem As ListViewItem

Try
Do While dr.Read
‘ Load the ListView
Dim bytebuffer() As Byte

‘ Read the Cover image
bytebuffer = CType(dr(“Cover”), Byte())
Dim ms As New MemoryStream(bytebuffer)
ms.Position = 0

‘ Load the image to the list
Dim i As New Bitmap(ms)
imgCover.Images.Add(i)
n += 1 ‘index into the ImageList

‘ Add the items to the ListView
titleItem = lvTitles.Items.Add(dr(“ISBN”).ToString(), n)
titleItem.SubItems.Add(dr(“Title”).ToString())
titleItem.SubItems.Add(dr(“Author”).ToString())

Loop
Catch ex As Exception
‘ Handle Exception

Finally
dr.Close()

End Try

End Sub

You’ll notice in Listing 16.4 that the _bindLvTitles method uses the lvTitles
ListView control to display information about the Titles. To allow the method

to work with any provider, it simply accepts an open data reader specified using the
IDataReader interface.

428 Day 16

ANALYSIS

22 3869 ch16 5/20/02 1:20 PM Page 428

ADO.NET in the Presentation Services Tier 429

16

Within the method, the columns of the lvTitles ListView control are created along with
associating an ImageList control with the LargeImageList property of the control. This
allows images to be displayed when the ListView control’s View property is set to
LargeIcon.

Within the Do loop, the Cover image of the book is read into the byteBuffer Byte array
and then read into a MemoryStream. The MemoryStream is then used to create a Bitmap
object that can be placed into the ImageList.

Finally, a new ListViewItem is created for each row using the ISBN column and is asso-
ciated with the proper index in the ImageList control. SubItem objects are then created
to display the additional columns; in this case, Title and Author.

Validating Controls
The final issue you need to consider when using data binding on Windows Forms is vali-
dation. Although validation is not dependent on data binding or vice versa, it is almost
always used in conjunction with it.

Of course, the most efficient way to validate the contents of controls is to not validate
them at all, but rather restrict the user from entering invalid data in the first place. This
can be accomplished by using controls appropriate to the data type you are binding to.
For example, if you need to display a date, you should use the DateTimePicker or
MonthCalendar controls. Likewise, if you need to bind to a Boolean, you should use the
CheckBox. If you’re binding to a small numeric value, use the NumericUpDown control,
and so on.

Aside from using the appropriate control, you can handle two sets of events to validate
data. The first set is the DataTable events ColumnChanged, ColumnChanging,
RowChanged, RowChanging, RowDeleted, and RowDeleting (which we discussed on Day
4, “DataSet Internals”). The second set is composed of events associated with the control
itself and includes

• Enter

• GotFocus

• Leave

• Validating

• Validated

• LostFocus

These events are fired in the order shown here. Of particular interest are the Validating
and Validated events. As in VB 6.0, these events fire only when the CausesValidation

22 3869 ch16 5/20/02 1:20 PM Page 429

property of the control that is navigated to (not the control to be validated) is set to True.
Typically, all the controls on the form except Help buttons would have their
CausesValidation property set to True in order to validate controls as the user navigates
the form. The Validating event is also used in conjunction with the ErrorProvider
control to avoid having to use message boxes or custom labels on the form.

430 Day 16

Another alternative is to handle the ItemChanged event of the
CurrencyManager object, which is fired immediately before a row becomes
current.

Note

To illustrate a simple validation scenario, assume that the txtISBN TextBox on a form
must be validated to ensure that it contains exactly 10 characters. To do so, you can han-
dle its Validating and Validated events as shown in Listing 16.5.

LISTING 16.5 Simple validation. This listing shows how you would handle the
Validating and Validated events for a control to restrict the contents of a TextBox.

Private Sub txtISBN_Validating(sender As Object, _
e As System.ComponentModel.CancelEventArgs) Handles txtISBN.Validating

If txtISBN.Text.Length <> 10 Then
‘ Cancel the event and select the text to be corrected
e.Cancel = True
txtISBN.Select(0, txtISBN.Text.Length)

‘ Set the ErrorProvider error with the text to display.
titlesError.SetError(txtISBN, “Must be 10 characters”)

End If

End Sub

Private Sub txtISBN_Validated(sender As Object, _
e As System.EventArgs) Handles txtISBN.Validated

‘ Clear the error provider of errors
titlesError.SetError(txtISBN, “”)

End Sub

As shown in Listing 16.5, the CancelEventArgs object passed into the
Validating event can be used to cancel the navigation and keep the focus on the

control by setting its Cancel property to True. In addition, the great aspect of using the

ANALYSIS

22 3869 ch16 5/20/02 1:20 PM Page 430

ADO.NET in the Presentation Services Tier 431

16

ErrorProvider control is that by calling the SetError method, it automatically pops up
a red icon next to the control passed to it and makes the error message available in a
ToolTip window. The Validated event is called only if the validation succeeds, and can
be used to clear the error provider of the error.

The Validating event is another great place to use regular expressions to
perform more sophisticated validation.

Tip

Web Forms Applications
One of the great things about ADO.NET is that is can be used efficiently in the presenta-
tion services tier of both Windows Forms and Web Forms (ASP.NET) applications even
though the two programming models differ greatly behind the scenes. You’ve probably
already gotten an understanding of this fact if you followed the discussion on Day 2,
“Getting Started.”

In this section, you’ll learn how data binding works in Web Forms applications and both
how to manage the state of your data and validate it. You can find the controls and other
types discussed in this section in the System.Web.UI namespace.

Using Data Binding
Right from the start, it should be noted that data binding in Web Forms applications is
much different than in Windows Forms applications because it relies on two key assump-
tions not present in Windows Forms applications:

• Most data is read-only.

• Web applications are stateless.

From these two assumptions, everything else flows. First, the read-only assumption
means that in Web Forms data binding, the value from the data source is pulled into the
control as the page is built, but it isn’t automatically pushed back to the data source
when the page is submitted back to the server. Although you can certainly update a data
source from a bound control, Web Forms data binding won’t do it for you. Because Web
Forms data binding is read-only, it also makes sense to use not only DataSet and
DataView objects for binding, but also data readers.

Second, the stateless nature of HTTP and thus Web applications means that Web Forms
data binding has no concept of BindingContext and CurrencyManager objects that auto-
matically track the state of the bound controls and the position within the data source.

22 3869 ch16 5/20/02 1:20 PM Page 431

Once again, this information is available, but you have to manually position the controls,
as shown in Listing 2.3 on Day 2. As you’ll see, this also has implications for balancing
the number of roundtrips to the data store your application will incur against the over-
head of storing this state information. The stateless architecture of the Web also fits nice-
ly with the disconnected nature of ADO.NET. As we discussed on Day 4, this was one of
its design goals.

To act as a provider for data binding to a collection of objects, a class simply needs to
implement the IEnumerable interface, which supports a simple iteration over a collection
of objects. This interface is itself implemented by the IList interface, so approximately
100 classes in the framework can all be bound to Web Forms controls. These classes
include collection classes such as Array, ArrayList, SortedList, Queue, and Hashtable,
as well as the ADO.NET DataSet, DataTable (once again through the IListSource
interface), and DataView, and data readers such as OleDbDataReader.

Of course, as in Windows Forms, in addition to the standard properties of controls such
as Text, any property or field of the controls or the page itself can consume data from a
data source both graphically at design time and programmatically at run time.

In the following sections, you’ll learn how to use simple binding (referred to as single-
value binding) and complex binding (referred to as multi-record binding) in Web Forms
applications.

Single-Value Binding
Single-value binding enables you to bind any property of any control to an
expression. This can be done by using the DataBindings dialog in VS .NET, by

editing the HTML directly, or using the DataBinding event exposed by each control
(inherited from System.Web.UI.Control) and the page (System.Web.UI.Page) itself.

In the simplest case, you can drag and drop a Web Forms control from the toolbox on a
Web Form and then open the DataBindings dialog shown in Figure 16.4 by clicking on
the ellipsis in the Properties window. This technique comes in handy when you’re using
strongly typed DataSet objects because they’ll appear in the box under the Simple
Binding radio button. It’s a simple matter to drill down into the DataSet and select the
column to bind to. This is shown in Figure 16.4 where the Address column of a strongly
typed DataSet called CustomersDs1 is being bound to a TextBox control.

One of the things you’ll notice in Figure 16.4 is that as you drill down into the DataSet
and underlying DataView, you’re automatically specifying a row (in this case, the first
row) to bind to. This is the case because the Web Form doesn’t have any concept of a
CurrencyManager, so you need to explicitly bind to a row.

432 Day 16

NEW TERM

22 3869 ch16 5/20/02 1:20 PM Page 432

ADO.NET in the Presentation Services Tier 433

16

You’ll also notice that the box under the Custom Binding Expression radio but-
ton is automatically populated. This denotes the actual syntax that is placed with-

in a data binding expression in the HTML page (which you can also edit directly by
clicking on the HTML tab in the designer). So, for Figure 16.4, the tag for the TextBox
would look as follows:

<asp:textbox id=txtAddress runat=”server”
Text=’<%# DataBinder.Eval(CustomerDs1,
“Tables[Customers].DefaultView.[0].Address”) %>’>

</asp:textbox>

The data binding expression is wrapped in the <%# %> tags and is evaluated during the
page processing on the server. In this case, given a data source, the shared Eval method
of the DataBinder class is used to evaluate the data binding expression and optionally
format the results as a String. For example, you can use the overloaded version of the
Eval method to format the Price column into currency using a format string like so:

<%# DataBinder.Eval(CustomerDs1,
“Tables[Titles].DefaultView.[0].Price”, “{0:c}”) %>

Although the DataBinder class makes formatting simpler, it does so at a cost because it
uses late binding. A more efficient technique when using single-value binding is simply
to bind directly to the data item and convert it yourself, as in this snippet, where dr is a
page-level variable that references the current DataRow to bind to:

FIGURE 16.4
Data binding in a Web
Form. You can use this
dialog to specify
single-value binding in
a Web Form.

When a property is bound with an expression, it will appear with a yellow
barrel icon in the Properties window and in the DataBindings dialog.

Note

NEW TERM

22 3869 ch16 5/20/02 1:20 PM Page 433

<%# Format(dr(“Price”),”currency”) %>

Alternatively, you can do the binding programmatically by handling the DataBinding
event at either the control or the page level. For example, the following event handler can
be added to the page to handle the DataBinding event for the TextBox that displays the
Price:

Private Sub txtPrice_DataBinding(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles txtPrice.DataBinding
txtPrice.Text = Format(dr(“Price”),”currency”)

End Sub

To set up the binding for the entire page, you can also handle the DataBinding event at
the Page level. When the page is processed by ASP.NET, if it encounters a call to the
DataBind method of a control, the page will evaluate any data binding expression for the
control and any child controls in the HTML page, and fire the DataBinding event for the
control and its children. Because the Page class is derived from Control, this applies to
the page as a whole as well. In other words, in Web Forms data binding, you must
explicitly call the DataBind method of individual controls or the page in order to instruct
it to evaluate the data-binding expressions and fire the DataBinding events. Simply call-
ing DataBind on the page will cascade the binding throughout the page.

434 Day 16

Typically, using the DataBinding events is easier than editing the HTML or
using the DataBindings dialog because the syntax is simpler and you have
full access to IntelliSense.

Tip

Typically, you would call the DataBind event in the Load event of the page, as shown in
Listing 2.2 on Day 2.

Multi-Record Binding
Multi-record binding is very similar to the complex binding in Windows Forms
in that controls that can bind to multiple records expose DataSource and

DataMember properties that can be used to bind to a DataSet, DataTable, or DataView.
These controls include DropDownList, ListBox, DataGrid, DataList, Repeater,
CheckBoxList, and RadioButtonList. Of those controls, only the DataGrid and
DataList also expose the DataKeyField property that can be used to specify the primary
key field and populate the DataKeys collection so that the key field needn’t be displayed
in the control.

In addition, the ListBox, DropDownList, RadioButtonList, and CheckBoxList controls
all expose DataValueField, DataTextField and DataTextFormat properties.

NEW TERM

22 3869 ch16 5/20/02 1:20 PM Page 434

ADO.NET in the Presentation Services Tier 435

16

DataValueField and DataTextField are analogous to the ValueMember and
DisplayMember properties of Windows Forms controls, and DataTextFormat is used to
apply formatting to the value that is displayed.

Because we looked at binding to the more sophisticated DataGrid control on Day 2, we
won’t look at more examples here. However, suffice it to say that the DataGrid, along
with the DataList and Repeater controls, is a template-based control. A template-based
control contains collection templates, each of which can contain child controls that dis-
play data in different sections of the control or when the control is in various states. On
Day 2, you saw how the EditItemTemplate could be used to display controls when a
row in the DataGrid is in edit mode. The template-based controls also expose differing
sets of templates, some of which have the same name but are used differently by each
control.

Basically, the DataGrid displays the data in a tabular format, whereas the DataList can
be used for more flexible formats. The Repeater is like the DataList in that it is flexible
but offers no design-time capabilities. Refer to the online documentation for additional
examples of using these controls.

Data binding expressions inside templated controls use the Container object
as a generic way to refer to the data source and row that is being evaluat-
ed. Within the Container, they use the DataItem property to reference the
column in the row. This is often used in conjunction with the
DataBinder.Eval method, as in DataBinder.Eval(Container.DataItem,
“Name”).

Note

Another typical use of multi-record data binding in a Web Form is to display lookup data
in a DropDownList control, as shown in Listing 16.6.

LISTING 16.6 Multi-record binding. This listing shows a method used on an ASP.NET
page to bind a data reader to a DropDownList control.

Private Sub _loadControls()

‘ Load the Publishers drop down
Dim dr As IDataReader

Try
dr = compData.GetPublishersReader()

With dlPublishers
.DataSource = dr

22 3869 ch16 5/20/02 1:20 PM Page 435

.DataTextField = “Name”

.DataValueField = “PubCode”

.DataBind()
End With

Catch ex As Exception
Throw New Exception(“Could not get publisher data”, ex)

Finally
dr.Close()

End Try

End Sub

As you can see in Listing 16.6, the private _loadControls method is called from
the Load event of the page and is responsible for getting a data reader and bind-

ing it to the dlPublishers DropDownList control. The method executes the
GetPublishersReader method of a data access class referenced by the compData variable
to return a data reader that is bound to the control using the DataSource, DataTextField,
and DataValueField properties. When the DataBind method is called, the rows are
retrieved from the data reader and are rendered by the control.

The interesting aspect of Listing 16.6 is that the dr variable is of type IDataReader, so it
can be used with data readers from various providers. Additionally, the data reader
returned is ostensibly opened using the CloseConnection command behavior so that
when the data reader is closed in the Finally block, the underlying database connection
is also closed or returned to the connection pool.

You might be thinking that the technique shown in Listing 16.6 would be a perfect place
to use the capability of data readers to return multiple result sets. By doing so, you could
encapsulate all the SELECT statements that return read-only data into a single SQL Server
stored procedure and then use the NextResult method between the With blocks to bind
each control to a result set. Although this does work, unfortunately, it can’t be used in
conjunction with the CloseConnection command behavior. Specifying this behavior
causes the connection to be closed after the first control’s DataBind method is called, and
therefore results in an exception when the NextResult method is executed. This behavior
is particular to SQL Server using both the SqlClient and OleDb providers. As a result,
you would need to explicitly create the connection and command objects in the presenta-
tion services code or expose a method in the data access class to close the connection.

436 Day 16

LISTING 16.6 continued

ANALYSIS

22 3869 ch16 5/20/02 1:20 PM Page 436

ADO.NET in the Presentation Services Tier 437

16

Mobile Control Binding

If you download and install the Microsoft Mobile Internet Toolkit (MMIT) from MSDN, you can
also build Mobile Forms that are targeted for a wide variety of mobile devices such as Web-
enabled phones (WAP phones) and Pocket PCs. Interestingly, MMIT includes its own set of
Mobile Controls, some of which also support data binding. For example, it includes the List
control, which is a template-based control that takes the place of the DataList and Repeater

controls; the ObjectList control, which is also templated and used in place of the DataGrid;
and the SelectionList control, which takes the place of the CheckBoxList, DropDownList,
ListBox, and RadioButtonList by setting its SelectType property accordingly.

The ability to create multiple user interfaces targeted to different devices in the presentation
services tier makes it all the more important to abstract the data and business services into sep-
arate tiers to get the maximum reuse possible.

Storing Object State
Because the nature of the Web—and thus the programming model exposed in a Web
Form—is stateless, any page-level objects (such as a DataSet, DataTable, or DataView)
you create will be destroyed with each new request to the Web server. As you saw on
Day 2, when using ADO.NET, this necessitates reretrieving and rebinding the data, as
well as perhaps repositioning list-based controls such as the DataGrid and DataList.
This is done in the Load event of the page and obviously incurs a roundtrip to the data
store each time the page is posted (even when using custom paging), which in Web
Forms might be frequent, especially if you handle lots of events on the server.

To minimize the roundtrips to the server, there are two strategies you can use to store the
object used as the data source for binding on the Web server. These include using the
Session object and using view state.

The two techniques discussed here are useful if you need to store data par-
ticular to a user. However, some read-only data might be able to be used by
multiple users. In these scenarios, you could cache the data in the
HttpApplicationState object (exposed through the Application property of
the HttpContext object) or by using the Cache object. The advantage to the
Cache object is that the items placed in the cache can have an associated
absolute or sliding expiration policy so that you can be notified and refresh
the data accordingly.

Note

22 3869 ch16 5/20/02 1:20 PM Page 437

Session State
Just as in ASP, ASP.NET applications can take advantage of the ability to store data
between browser requests in name-value pairs within an object managed by the Web
server. In ASP.NET, this is an HttpSessionState object referenced through the Session
property of the Page itself and through the HttpContext object.

438 Day 16

The HttpContext object is an object that flows throughout a request in
ASP.NET and encapsulates all the HTTP-specific information about the
request, including references to the Server, Request, and Response objects,
in addition to the Session, Application, and other objects the runtime uses
to implement features such as tracing and caching. The HttpContext object
is accessible through the Context property of the Page class, and thus the
HttpSessionState can also be referenced through Context as in
Me.Context.Session. See Chapter 10 of my book Building Distributed
Applications with Visual Basic .NET (published by Sams) for more informa-
tion on the ASP.NET runtime and processing model.

Note

As in ASP, the Global.asax file in ASP.NET includes Session_OnStart and
Session_OnEnd methods to intercept the Start and End events associated
with a user’s session. You can use the OnStart event to preload and cache
some information that you know a user will need.

Note

This mechanism enables you to place DataSet objects, for example, in session state
rather than having to repopulate them from a data store. For example, using session state,
the Load event of a page that populates two tables in DataSet might look like that shown
in Listing 16.7.

LISTING 16.7 Using session state. This listing shows the Load event of a page using ses-
sion state information.

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

If Not Page.IsPostBack Then
‘ Fill the DataSet with titles from a particular publisher
dsTitles = compData.GetTitles(Me.Request.Form(“PubCode”))
Me.Session(“dsTitles”) = dsTitles

Else
dsTitles = CType(Me.Session(“dsTitles”), DataSet)

End If

22 3869 ch16 5/20/02 1:20 PM Page 438

ADO.NET in the Presentation Services Tier 439

16

‘ Bind the Data
DataGrid1.DataSource = dsTitles
DataGrid1.DataBind()

End Sub

In Listing 16.7, you’ll notice that if the page has been reposted to the server, the
data will have already been queried. Thus, it can be safely retrieved from the

HttpSessionState object and placed in a page-level variable that other methods in the
page will utilize. If this is the first request, the data is queried from the data store using
the GetTitles method of a data access class, the DataSet saved in session state. In either
case, the DataSet is then bound to the DataGrid control to display the data.

LISTING 16.7 continued

ANALYSIS

As with classic ASP tracking, session state requires overhead, so if a particu-
lar page won’t be accessing the Session object, you should set the
EnableSessionState attribute of the Page directive at the top of the HTML
to False. You can also turn off session state for the entire site by setting the
mode attribute of the sessionState element to Off in the configuration file
Web.config.

Tip

In ASP, it wasn’t recommended to store data in the Session object because its imple-
mentation had two significant weaknesses:

• The 120-bit SessionID used to identify the session was always stored as a cookie
on the browser. Therefore, if the security policy of a user’s employer didn’t allow
cookies, the Session object couldn’t be populated.

• The data associated with the session and accessed through the SessionID was
stored in process on the Web server that initiated the session. As a result, the ses-
sion data couldn’t be shared in a Web farm scenario in which multiple Web servers
are processing requests from multiple clients. Although programmatic techniques
and system software such as the Windows 2000 Network Load Balancing (NLB)
service can be configured to force a client to access the same Web server for each
request (referred to as sticky IP), the overhead and possible imbalance that server
affinity creates reduces scalability.

Fortunately, the ASP.NET session implementation addresses both of these weaknesses.

By default, sessions in ASP.NET are configured in the same way as classic ASP; that is,
an in-memory cookie is sent to the browser that contains the SessionID; the session data

22 3869 ch16 5/20/02 1:20 PM Page 439

itself is stored in the memory of the server that initiated the session, and the session
timeout is set to 20 minutes. However, the manner and storage attributes for session data
can also be configured in the Web.config file within the ASP.NET application. For exam-
ple, to use cookieless sessions, in which ASP.NET no longer sends a cookie but includes
the SessionID in the query string of each request, you simply set the cookieless attribute
of the sessionState tag to true as follows:

<sessionState mode=”InProc” cookieless=”true” timeout=”20” />

When the page is processed, it then extracts the SessionID from the query string and
associates the user request with the appropriate session. In this way, cookies are not
required.

Using a cookieless session has no impact on where the session data is stored, only on
how it is accessed. However, ASP.NET includes two options for storing the session data
outside the Web server.

SQL Server Storage

The first option is to store the session data in a SQL Server database. This can be done
by setting the mode attribute of the sessionState element in Web.config to “SqlServer”.
When this is set, the ASP.NET runtime stores session data in a SQL Server database
called ASPState on the SQL Server pointed at by the sqlConnectionString attribute.
This attribute should contain the data source and security credentials necessary to log on
to the server like so:

<sessionState mode=”SQLServer”
sqlConnectionString=”server=ssosa;uid=aspSession;pwd=@#r6t;
trusted_connection=yes;pooling=true”
cookieless=”false”
timeout=”20” />

When configured, the application should run identically to when the session data is
stored in-process on the Web server. However, keep in mind that all the objects in the
session’s collection will be serialized at the end of each Web request and transported over
the network and saved in the SQL Server database. On each request, the data is read
from the database and deserialized into the appropriate objects. This implies that all
objects saved in the Session object’s collections must be able to be serialized and deseri-
alized by being marked with the Serializable attribute, or additionally derived from
MarshalByValueComponent, or have implemented the ISerializable interface.

Obviously, storing session state in the database is a tradeoff between scalability and relia-
bility over performance in the following ways:

440 Day 16

22 3869 ch16 5/20/02 1:20 PM Page 440

ADO.NET in the Presentation Services Tier 441

16

• Session data stored in SQL Server increases the amount of network traffic and
database connections generated by the application.

• Session data decoupled from the Web server can be easily shared across servers in
a Web farm, thereby increasing scalability.

• Session data stored on a separate machine isn’t lost when the application crashes or
is restarted.

• Session data stored separately from the Web server doesn’t impact the memory
requirements of the Web server as does in-process storage.

If none of the previous considerations are relevant to your application, use the in-process
setting because it performs better.

State Server

In addition to storing session data in a SQL Server, ASP.NET also provides for
storing data in a separate in-memory cache controlled by a Windows service.

The service is called the ASP.NET State service (aspnet_state.exe) and can be run on
either the same machine as the Web server or a separate machine. To use the service, the
mode attribute of the sessionState element in Web.config is set to “StateServer”, and
the stateConnectionString attribute must include the server and port used to connect to
the service like so:

<sessionState mode=”StateServer” stateConnectionString=”tcpip=ssosa:42424”
cookieless=”false” timeout=”20” />

In this case, the state service is running on a machine called “ssosa” at the port 42424,
which is the default. The port can be configured at the server by modifying the Port
value in the aspnet_state registry key under the
HKLM\SYSTEM\CurrentControlSet\Services.

Obviously, using the state service has the same advantage of process isolation and shara-
bility across a Web farm. However, if the state service is stopped, all session data is lost.
In other words, the state service doesn’t persistently store the data as does SQL Server; it
simply holds it in memory.

View State
The ASP.NET programming model supports the concept of view state where information
about the state of a Web Form is embedded in the HTML page sent to the browser. This
information is used by the ASP.NET runtime to populate the properties of the controls on
the page and the page itself when the form is posted back to the server. The view state is
represented in the hidden __VIEWSTATE control on the page in the browser and the
ViewState property of the Page object.

NEW TERM

22 3869 ch16 5/20/02 1:20 PM Page 441

To add custom information such as a DataSet to the ViewState, you can programmati-
cally manipulate the underlying StateBag object exposed by the ViewState property.
The StateBag class simply exposes a collection of StateItem objects by implementing
the ICollection, IDictionary, and IEnumerable interfaces. You can add items to the
StateBag of a page by calling the Add method and providing the key and the value as
arguments. For example, as shown in Listing 16.8, you could use add a DataSet to the
ViewState in the same way that you could use the HttpSessionState object.

LISTING 16.8 Using view state. This listing shows the Load event of a page using view
state information.

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

If Not Page.IsPostBack Then
‘ Fill the DataSet with titles from a particular publisher
dsTitles = compData.GetTitles(Me.Request.Form(“PubCode”))
Me.ViewState.Add(“dsTitles”) = dsTitles

Else
dsTitles = CType(Me.ViewState(“dsTitles”),DataSet)

End If

‘ Bind the Data
DataGrid1.DataSource = dsTitles
DataGrid1.DataBind()

End Sub

Using the view state in this way has two advantages over session state. Particularly, there
is less overhead on the server because the objects aren’t persisted anywhere and simply
travel with the form. In addition, view state promotes information hiding because only
this particular Web Form needs to see these values. However, the flip side is that an
object stored in view state is accessible only in the particular page in which it’s created.
If the object must be accessible across pages, you’ll need to use session state. Also,
because view state is represented as a binary string embedded in the page sent to the
browser, the larger the object you store in view state, the more bandwidth it takes to
move the object back and forth between the browser and Web server. For this reason, you
should consider using view state only if the DataSet or DataTable contains a limited
number of rows.

Validating Controls
As with Windows Forms controls, you also need to be able to validate user input in a
Web Form. To make this process simple, ASP.NET includes controls derived from
BaseValidator, as shown in Table 16.1.

442 Day 16

22 3869 ch16 5/20/02 1:20 PM Page 442

ADO.NET in the Presentation Services Tier 443

16

TABLE 16.1 Web Forms validation controls. The controls listed here all derive from
BaseValidator.

Control Description

CompareValidator Used to compare the contents of the control with a constant or
another control

CustomValidator Used to validate the contents of the control based on custom logic

RangeValidator Used to ensure that the control’s value is between a lower and
upper limit

RegularExpressionValidator Used to validate a control based on a regular expression

RequiredFieldValidator Used to ensure that the control has a value

ValidationSummary Used to display the error messages from all the validation controls
on the page

As shown in Table 16.1, the six validation controls handle everything from making sure
that a control is populated to handling custom validation code running on the server. In
total, these controls offer a level of functionality that must be custom coded in Windows
Forms. Each instance of one of these controls, with the exception of the
ValidationSummary control, can be used to validate one control on the form. To validate
multiple controls, you need to add multiple instances of the validator controls to the page
as well. After you do so, the HTML code in the page for a single control might look like
the following code snippet:

<asp:RequiredFieldValidator id=LNameValidator
ControlToValidate=”txtLName” Display=Dynamic
CssClass=”body-copy” runat=”server”
ErrorMessage=”Last Name is required” Text=”*” >

</asp:RequiredFieldValidator>

In this case, the RequiredFieldValidator is used to make sure that the txtLName con-
trol on the form contains a value (as indicated by the ControlToValidate property). You
might also use a RegularExpressionValidator control to make sure that an e-mail
address is entered in the appropriate format, like so:

<asp:RegularExpressionValidator
id=”EmailAtValidator” runat=”server”
ErrorMessage=”Email Address must contain @”
ValidationExpression=”(.)+(@)+(.)+”
Display=Static Text=”*” CssClass=”body-copy”
ControlToValidate=”txtEmail”>

</asp:RegularExpressionValidator>

22 3869 ch16 5/20/02 1:20 PM Page 443

Finally, you can also place a ValidationSummmary control on the page that enables you
to display all the error messages in a central location. In this way, the messages can be
grouped so that users don’t have to scan the page searching for error messages. A
ValidationSummary control on the page would be rendered as follows:

<asp:ValidationSummary id=ValidationSummary
runat=”server” ShowMessageBox=True CssClass=”body-copy”
DisplayMode= BulletList HeaderText=”Errors occurred.”>

</asp:ValidationSummary>

Note that the DisplayMode property is set to BulletList to indicate that the errors dis-
play in a list of bulleted items directly beneath the HeaderText. The ShowMessageBox
property takes effect when the validation is done on the client and displays a message
box with all the errors in addition to printing them to the validation summary control. In
addition, error messages print out in red by default. This can be changed by setting the
properties of the control (such as ForeColor) or using a Cascading Style Sheet (CSS). In
this case, the CSSClass property is set to “body-copy”, which sets the font according to
the style sheet linked in the LINK tag at the top of the page.

By default, the validation controls perform the validation on the client if the browser sup-
ports DHTML by rendering JavaScript code in the HTML page. This is the default so
that server roundtrips are reduced and makes the application more responsive. To force
validation to occur on the server for individual controls, you can set the
EnableClientScript property of the control to False, whereas for the entire page, you
can set the ClientTarget attribute of the Page directive to “downlevel”.

444 Day 16

Of course, as with other controls, you can programmatically manipulate the
properties of validation controls in the code for the page as well.

Note

Here, the RegularExpressionValidator is used to ensure that the e-mail address con-
tains an “@”. Note that the ValidationExpression property is populated with a regular
expression where the expression ensures that at least one character (.)+ precedes the
“@” symbol (@) followed by at least one more character (.)+.

In the case where a single control is the target of two validation controls,
there is an order of precedence to how they are fired. As you might expect,
the RequiredFieldValidator is fired first, followed by the
RegularExpressionValidator.

Note

22 3869 ch16 5/20/02 1:20 PM Page 444

ADO.NET in the Presentation Services Tier 445

16You’ll also notice in the previous code snippets that both the ErrorMessage and Text

properties are set. Typically, you’d only set the ErrorMessage property, but because the
page includes a ValidationSummary control, the Text property specifies the message that
will be displayed at the location of the validation control, whereas the ErrorMessage is
displayed in the ValidationSummary control. In this way, you can provide a visual cue to
the user as to which fields were in error, much like the ErrorProvider control, and still
group all the error messages in one place.

When the validation controls use client-side validation and all the validation passes, the
form is posted back to the server. However, if the validation controls actually perform
their validation on the server, the validation occurs before the server event that initiated
the postback occurs. Rather than taking any special action (other than error reporting)
when errors are encountered, the validation controls simply set the IsValid property of
the individual controls and the Page object to False. As a result, code on the server must
check for this value before proceeding. Not checking this property results in errors
reported to the client but normal processing to otherwise continue.

Validation can be disabled on the server by setting the Enabled property of
the validation control to False. If validation must be disabled from client-
side script, you can set the Page_ValidationActive global variable to False.
This variable is included on pages that use client validation through a
JavaScript file (WebUIValidation.js) included with the page.

Note

Customizing Validation

Although the RegularExpressionValidator control is especially flexible, you have the option of
customizing the validation process. You can accomplish this on the server by adding a
CustomValidator control to the page and setting its ControlToValidate property to the appro-
priate control. Then, within the page class, you can create a method to handle the
ServerValidate event of the control.

This method then performs the validation by referring to the value argument that contains the
value of the control being validated. Returning True from this function means that the valida-
tion was successful. This technique can be used, for example, to dynamically validate the con-
trol against values read from a database.

An analogous technique can be used to perform custom validation on the client by populating
the ClientValidationFunction property with the name of a client-side function to execute.

22 3869 ch16 5/20/02 1:20 PM Page 445

Summary
When building the presentation services tier of a multi-tier application, you need to be
concerned with issues of data binding, navigation, and validation, among others. Today
you learned the basics of how the objects exposed by ADO.NET can be used in both
Windows Forms and Web Forms applications to display, edit, and validate data.

However, to get the data that the presentation services tier works with, you need to create
classes in the data services tier. Tomorrow, you’ll learn some strategies and techniques
you can use to implement the data services tier.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What is the purpose of the CurrencyManager object on a Windows Form?

The CurrencyManager object manages the position and state of a data source on a
Windows Form. This is required because the data source itself has no concept of an
internal cursor.

2. Are there any caveats to setting up data binding on a Windows Form?

The biggest caveat is that you must make certain that the data source you specify
when adding bindings to the BindingCollection object is the same for all con-
trols. Using a different expression by, for example, specifying just the DataSet in
one case and both the DataSet and DataTable in the other, will result in two
CurrencyManager objects being created. The end result will be that the controls
won’t be synchronized when navigation occurs.

3. What are the assumptions you need to consider when using Web Forms data bind-
ing?

Data binding in Web Forms assumes that most binding is read-only and so it does
not support automatically updating a data source with data from the bound con-
trols. In addition, it adheres to the stateless nature of the Web by not trying to man-
age the position of a data source as the CurrencyManager does in Windows Forms.

4. What are some techniques for minimizing the roundtrips to the data store when
using data binding in Web Forms?

In order to reduce the traffic to the database server when using binding in Web
Forms, you can opt to store the data in session state (HttpSessionState object),
view state, application state (HttpApplicationState object), or the Cache object.

446 Day 16

22 3869 ch16 5/20/02 1:20 PM Page 446

ADO.NET in the Presentation Services Tier 447

16

Each has its advantages for particular scenarios, although session state is the most
flexible. This is because session state enables you to cache data on a per-user basis
that is available to all pages accessed by that user and can be stored externally to
the Web server to support Web farm scenarios.

Exercise
Build a simple Windows Forms application that contains a DataGrid and controls for
several of the columns in the Titles table in the ComputeBooks database. Ensure that as
you scroll through the DataGrid, the values in the other controls track with the current
row.

Answers for Day 16
Exercise Answer
One possible solution is to create a simple form that retrieves a DataSet, creates a
DataView, and then binds the control to the DataView as shown in Listing 16.9 (note that
the Web Form designer generated code is omitted).

LISTING 16.9 Binding to titles. This form binds a DataView created from a DataSet to
both a DataGrid and other controls.

Imports System.Data.SqlClient

Public Class TitlesForm
Inherits System.Windows.Forms.Form

Protected dvTitles As DataView

Private Sub TitlesForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim con As New SqlConnection(_
“server=ssosa;database=computebooks;trusted_connection=yes”)
Dim da As New SqlDataAdapter(“usp_GetTitles”, con)
Dim dsTitles As New DataSet()

da.SelectCommand.CommandType = CommandType.StoredProcedure

da.MissingSchemaAction = MissingSchemaAction.AddWithKey
Try
da.Fill(dsTitles)
dvTitles = New DataView(dsTitles.Tables(0))
DataGrid1.DataSource = dvTitles

22 3869 ch16 5/20/02 1:20 PM Page 447

Catch sqlE As SqlException
MsgBox(sqlE.Message)

End Try

‘ Set up bindings
txtISBN.DataBindings.Add(“Text”, dvTitles, “ISBN”)
txtTitle.DataBindings.Add(“Text”, dvTitles, “Title”)
txtDesc.DataBindings.Add(“Text”, dvTitles, “Description”)
txtPrice.DataBindings.Add(“Text”, dvTitles, “Price”)
txtAuthor.DataBindings.Add(“Text”, dvTitles, “Author”)
dtPubDate.DataBindings.Add(“Value”, dvTitles, “PubDate”)

AddHandler txtPrice.DataBindings(0).Format, AddressOf Me._formatCurrency
End Sub

Private Sub _formatCurrency(ByVal sender As Object, _
ByVal e As ConvertEventArgs)
If e.DesiredType Is GetType(String) Then
e.Value = Format(e.Value, “currency”)

End If
End Sub

End Class

Figure 16.5 shows the resulting form.

448 Day 16

LISTING 16.9 continued

FIGURE 16.5
Binding to titles. This
form uses both simple
and complex binding
to display data from a
DataView object.

22 3869 ch16 5/20/02 1:20 PM Page 448

DAY 17

WEEK 3

ADO.NET in the Data
Services Tier

As you learned yesterday, for your presentation services tier to be able to
consume data, your data services tier needs to supply it. To that end, the data
services tier is responsible for providing an interface through which both the
presentation and business services tiers can interact. This approach abstracts the
data access code from the other tiers and makes it possible to reuse the classes
in other applications.

Today and tomorrow, you’ll learn about designing the data access classes that
live in the data services tier. You’ll also learn how you can take advantage of
implementation inheritance and other features of the .NET Framework to create
a flexible and robust solution. Specifically, today you’ll learn

• How to design a base class for your data services tier for both serviced
and non-serviced components

• Strategies for incorporating custom exception handling and logging

• How to design data access classes

• How to abstract the creation of provider-specific objects

• How to use pure .NET classes

23 3869 ch17 5/20/02 1:27 PM Page 449

Using an Abstract Base Class
As we’ve discussed elsewhere in this book, the fact that the common language runtime
and thus managed languages can use implementation inheritance enables you to take
advantage of polymorphism and write code that is both reusable and generic. It comes as
no surprise that you can utilize this feature when you build your data access classes.

In the following sections, you’ll learn how to create a base class for both non-serviced
and serviced components. These base classes will incorporate some commonly imple-
mented features and will be reusable across projects.

Creating a Base Class
When designing a reusable base class, you first need to understand its benefits and think
clearly about what kinds of services it should and should not provide.

Of course, the fundamental reason to create a base class is so that developers deriving
from the class can increase their productivity by not having to reinvent the wheel in order
to handle issues such as logging. At the same time, the base class can be used to ensure
that core services such as connection management, logging, and exception handling are
handled in a standard fashion across your organization. For that reason, a data access
base class should implement only features that are common to all your data access class-
es. In other words, it should not assume that its descendants will always work with
DataSet objects as opposed to data readers, or that the descendants will always be run-
ning from within a particular environment such as ASP.NET. Your goal should be to
design the base class to be as generic as possible and yet to provide useful services.

To illustrate these concepts, consider the base class shown in Listing 17.1.

LISTING 17.1 A data access base class. This base class implements connection manage-
ment, logging, and exception handling.

Option Strict On
Imports System.Data.SqlClient

Namespace ComputeBooks.Data
Public MustInherit Class ComputeBooksDABase : Implements IDisposable

Private _connect As String
Private _daSwitch As BooleanSwitch
Private _sqlCon As SqlConnection
Private _disposed As Boolean

Protected ReadOnly Property Disposed() As Boolean
Get

450 Day 17

23 3869 ch17 5/20/02 1:27 PM Page 450

ADO.NET in the Data Services Tier 451

17

Return _disposed
End Get

End Property

Protected ReadOnly Property SqlCon() As SqlConnection
Get
Return _sqlCon

End Get
End Property

Protected ReadOnly Property SwitchEnabled() As Boolean
Get
Return _daSwitch.Enabled

End Get
End Property

Public Property ConnectString() As String
Get
Return _connect

End Get
Set(ByVal Value As String)
_connect = Value
Me.SqlCon.ConnectionString = _connect
Me.WriteTrace(“ConnectString set to” & _connect)

End Set
End Property

Public Sub New(ByVal connect As String)
_initClass()
Me.ConnectString = connect
Try
Me.SqlCon.ConnectionString = Me.ConnectString

Catch e As Exception
Me.ThrowComputeBookException(“Could not set the connection string”, e)

End Try
End Sub

Public Sub New()
_initClass()

End Sub

Private Sub _initClass()
_sqlCon = New SqlConnection()
_daSwitch = New BooleanSwitch(“daSwitch”, “Data Access”)
Me.WriteTrace(“Instance created”)

End Sub

Protected Sub WriteTrace(ByVal message As String)
‘ Write a message to the trace if the switch is enabled

LISTING 17.1 continued

23 3869 ch17 5/20/02 1:27 PM Page 451

Trace.WriteLineIf(Me.SwitchEnabled, Now & “:” & message)
End Sub

Public Sub Dispose() Implements IDisposable.Dispose
Dispose(True)

End Sub

Protected Sub Dispose(ByVal disposing As Boolean)
If disposing Then
‘ Clean up SQL Connection
If Me.SqlCon.State = ConnectionState.Open Then
Me.SqlCon.Close()

End If
_sqlCon = Nothing

End If

Me.WriteTrace(“Disposed”)
Trace.Flush()
_disposed = True

‘ Make sure Finalize does not run
GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()
Dispose(False)

End Sub

Protected Sub ThrowComputeBookException(ByVal message As String, _
ByVal e As Exception)
Dim newMine As New ComputeBookDAException(message, e)

‘ Trace the error
Me.WriteTrace(message & “{“ & e.Message & “}”)

‘ Throw
Throw newMine

End Sub

End Class

End Namespace

As you can see in Listing 17.1, the ComputeBooksDABase class is placed in the
ComputeBooks.Data namespace. The class follows the naming conventions sug-

gested in the online documentation, where organization name is at the highest level fol-
lowed by the functionality. In this case, this class would also likely be compiled into its
own assembly so that other developers (perhaps even working in different languages)

452 Day 17

LISTING 17.1 continued

ANALYSIS

23 3869 ch17 5/20/02 1:27 PM Page 452

ADO.NET in the Data Services Tier 453

17

could reference it in their projects. The classes that developers would derive from the
base class might then be placed in namespaces directly under the ComputeBooks.Data
namespace, such as ComputeBooks.Data.OrderProcessing. Once again, this illustrates
that the base class should be generic so that it can be reused across projects.

Alternatively, the base class could be compiled into a .NET module (using the
command-line compiler) and then used in multi-file assemblies built with the
Assembly Linker (AL.exe) command-line utility. However, it would be far eas-
ier to compile it into an assembly along with any other interfaces or classes
that might be used by data access developers in your organization. With an
assembly, you also have the option of placing it in the Global Assembly
Cache (GAC) so that multiple applications on the same machine access the
same version.

Note

You’ll notice that the class is also marked as MustInherit (abstract in C#) so that
instances of it can’t be created directly. This makes sense because the class provides only
auxiliary services and therefore can’t be used in a standalone mode. Because the class is
abstract, the name has been appended with “Base” as is recommended in the design
guidelines in the online documentation.

The class itself contains the Disposed, SqlCon, SwitchEnabled, and ConnectString

properties, along with the Dispose, WriteTrace, and ThrowComputeBookException

methods. The first three properties are read-only because they are created by the base
class. They are also protected so that they can be seen only by a descendant of this class
and are not available publicly. The ConnectString is specified either through the over-
loaded constructor or using the property. In total, the base class provides the following
services:

• Connection Management. The private _initClass method creates a new
SqlConnection object when an instance of the class is created and returns it
through the protected SqlCon property. In addition, the connection string to use is
exposed through the ConnectString property and can be set in the constructor. In
this way, derived classes needn’t worry about creating a connection object or asso-
ciating it with the connection string. In addition, the class implements the
IDisposable interface so that clients have the option (although they don’t have to
use it) of disposing of the SqlConnection object. The inclusion of both the private
and public Dispose methods follows the pattern shown in the online documenta-
tion.

23 3869 ch17 5/20/02 1:27 PM Page 453

• Tracing. You’ll notice that the class includes a private variable called _daSwitch
that is instantiated as a BooleanSwitch object in the _initClass method. This
object is used in conjunction with the SwitchEnabled property and protected
WriteTrace method to provide a way for the base class and its descendants to con-
ditionally write tracing information to a log. (We’ll discuss this feature in more
depth in the following section.)

• Exception Handling. In conjunction with a custom class called
ComputeBookDAException, the base class handles wrapping exceptions that are
caught into instances of the custom exception class and throws them back to the
caller in the protected ThrowComputeBookException method. (We’ll discuss
ComputeBookDAException in more detail shortly.)

After a class inherits from this base class, it has access to all of the public and protected
members.

Conditional Tracing
As you learned in the previous section, one of the base class’s services is the use of con-
ditional tracing. This is accomplished by using the Trace and BooleanSwitch classes
from the System.Diagnostics namespace.

The Trace class is used to instrument your application to output diagnostic information
so that developers and administrators can pinpoint performance problems or validate the
input and output of methods. In addition, tracing is helpful for understanding what is
happening in nonvisual code segments like those in the data services tier. The Trace
class exposes Write, WriteIf, WriteLine, and WriteLineIf methods that can be used to
write data to one or more listeners. You can see that the WriteTrace method of the
ComputeBooksDABase class uses the WriteLineIf method.

Listeners are objects derived from TraceListener and are exposed through the
Listeners property of both the Trace and Debug objects (these objects share the

underlying TraceListenerCollection). By default, the only object in the collection is
an instance of DefaultTraceListener that writes both the Trace and Debug output to the
Output window within VS .NET. However, applications can add new listeners to the col-
lection to redirect the output. In fact, TraceListener serves as the base class for the
EventLogListener and TextWriterTraceListener classes, which write output to the
event log and to a file or stream, respectively.

For example, an application can allow the Trace output from the ComputeBooksDABase
class and its descendants to be logged to a file by adding a TextWriterTraceListener
object to the collection as follows:

Trace.Listeners.Add(New TextWriterTraceListener(“DataAccess.log”))

454 Day 17

NEW TERM

23 3869 ch17 5/20/02 1:27 PM Page 454

ADO.NET in the Data Services Tier 455

17

The constructor of TextWriterTraceListener also accepts Stream or TextWriter
objects.

As you might expect, the extensibility of the .NET Framework also enables you to create
your own listener by deriving from TraceListener and overriding its Write and
WriteLine methods. This is especially useful if you want to standardize application trac-
ing throughout your organization.

Developing a custom listener can also be a powerful technique because the
overloaded Write and WriteLine methods of the Debug and Trace classes
also support passing objects directly to the listener. In this way, you can
write a listener that abstracts the trace processing of an object so that devel-
opers using your listener don’t need to be concerned with passing specific
data to the listener.

Note

The second part of the conditional tracing technique shown in the base class is the use of
the BooleanSwitch object. Basically, switch objects like _daSwitch in the
ComputeBooksDABase class enable applications to control whether trace or debug output
is displayed. In this case, you’ll notice that the switch is instantiated in the _initClass
method and is passed two values in the constructor. The first is the DisplayName; the sec-
ond is the Description. The DisplayName property is the name associated with the
switch throughout the application and used in the application’s configuration file to turn
the switch on and off. The Description is simply human-readable text.

To use the switch, the client application can include a system.diagnostics element with
the application configuration file. For example, a client application that uses a descen-
dant of ComputeBooksDABase might have the following section in its configuration file
(Web.config for ASP.NET applications):

<?xml version=”1.0”?>
<configuration>
<system.diagnostics>

<switches>
<add name=”daSwitch” value=”1” />

</switches>
<trace autoflush=”true” indentsize=”4”>
</trace>

</system.diagnostics>
</configuration>

Here, daSwitch is set to 1, which is on or enabled. By default, if the switch isn’t found
in the configuration file, its Enabled property will be set to False. In addition, the file
here indicates that the AutoFlush property of the Trace object should be set to True so

23 3869 ch17 5/20/02 1:27 PM Page 455

that data will automatically be flushed from the buffer to the underlying stream with each
write.

Now you can see how the WriteTrace method works. It simply tests to the Enabled
property of the switch object using the protected SwitchEnabled property and then
writes the message passed to it to the trace listeners.

Custom Exceptions
The other service that base class encapsulates is the throwing of exceptions. The tech-
nique used here is for the base class to use a custom exception class particular to the
ComputeBooks data services tier called ComputeBooksDAException, as shown in
Listing 17.2.

LISTING 17.2 A custom exception. This class is used by the base class and its descendants
to wrap exceptions.

Namespace ComputeBooks.Data

<Serializable()> _
Public Class ComputeBookDAException : Inherits ApplicationException

Public Sub New(ByVal message As String)
MyBase.New(message)

End Sub

Public Sub New(ByVal message As String, _
ByVal originalException As Exception)
MyBase.New(message, originalException)

End Sub

Protected Sub New(ByVal info As SerializationInfo, _
ByVal context As StreamingContext)
MyBase.New(info, context)

End Sub

‘ Add custom members here
End Class

End Namespace

Like the base class, the ComputeBooksDAException class exists in the
ComputeBooks.Data namespace, although it derives from

ApplicationException. Because it inherits most of its functionality from
ApplicationException, it simply needs to define constructors that, in this case, accept
either a message or a message in conjunction with the original exception that was
thrown.

456 Day 17

ANALYSIS

23 3869 ch17 5/20/02 1:27 PM Page 456

ADO.NET in the Data Services Tier 457

17

The protected ThrowComputeBookException method then uses this class by creating a
new instance of it and throwing it back to the caller. An example of how this technique is
used can be seen in the constructor of ComputeBooksDABase that accepts the connect
string. There, the code uses a Try Catch block to catch exceptions raised by setting the
ConnectionString property of the SqlConnection object. If one is caught, it is encapsu-
lated in a ComputeBookDAException and is thrown. In this way, clients can differentiate
exceptions coming from the base class and its descendants from other classes using their
own Try Catch logic.

Handling Serviced Components
The base class shown in Listing 17.1 works wonderfully when your data access classes
don’t rely on Component Services for distributed transactions, object pooling, and other
services. For a class to use these services, it must inherit directly or indirectly from the
ServicedComponent class in the System.EnterpriseServices namespace. Because the
.NET Framework supports only single inheritance, classes derived from
ComputeBooksDABase, as shown in Listing 17.1, can’t use Component Services. As a
result, if you know that your classes will use these services, you can create a second base
class that mimics the first but that derives from ServicedComponent, as shown in Listing
17.3. Both classes can then be made available in the same assembly so that developers
can choose which to derive from, depending on their requirements.

LISTING 17.3 Serviced component base class. This class can be used as the base class for
serviced components.

Namespace ComputeBooks.Data
<ClassInterface(ClassInterfaceType.AutoDual), _
Transaction(TransactionOption.Supported), _
EventTrackingEnabled(True), _
ConstructionEnabled(Enabled:=True)> _

Public MustInherit Class ComputeBooksDAServicedBase
Inherits ServicedComponent

Private _connect As String
Private _daSwitch As BooleanSwitch

The class is marked with the Serializable attribute so that it can be serial-
ized across application domains by the common language runtime in the
event that this exception is raised in code running remotely. You’ll note that
the class also includes a protected constructor that assists in the serialization
process.

Note

23 3869 ch17 5/20/02 1:27 PM Page 457

Private _sqlCon As SqlConnection

Public Sub New()
_sqlCon = New SqlConnection()
_daSwitch = New BooleanSwitch(“daSwitch”, “Data Access”)
‘ Add a listener for the Event Log
Trace.Listeners.Add(New EventLogTraceListener(“ComputeBooksDA”))

End Sub

Protected ReadOnly Property SqlCon() As SqlConnection
Get
Return _sqlCon

End Get
End Property

Public Property ConstructString() As String
Set(ByVal Value As String)
_connect = Value

End Set
Get
Return _connect

End Get
End Property

Protected ReadOnly Property SwitchEnabled() As Boolean
Get
Return _daSwitch.Enabled

End Get
End Property

Protected NotOverridable Overrides Sub Construct(ByVal s As String)
‘ Implements object construction
_connect = s
Try
_sqlCon = New SqlConnection(_connect)

Catch e As Exception
Me.ThrowComputeBookException(“Connect string cannot be set”, e)

End Try
End Sub

Protected Overrides Function CanBePooled() As Boolean
‘ Default is that the objects will not be pooled
Return False

End Function

Protected Overrides Sub Activate()
WriteTrace(“Activate”)

End Sub

458 Day 17

LISTING 17.3 continued

23 3869 ch17 5/20/02 1:27 PM Page 458

ADO.NET in the Data Services Tier 459

17

Protected Overrides Sub Deactivate()
WriteTrace(“Deactivate”)

End Sub

Protected Overridable Sub WriteTrace(ByVal eventMessage As String)
‘ Writes the event to the Application log
Dim objLog As EventLog

Try
Trace.WriteLineIf(Me.SwitchEnabled, _
Now & “: “ & eventMessage & vbCrLf & _createTraceString())

Catch e As Exception
‘ Not important so skip it

End Try
End Sub

Private Function _createTraceString() As String
‘ Used to write events to the application event log
Dim traceMess As New StringBuilder()

With traceMess
.Append(“Class: “ & Me.GetType.ToString & vbCrLf)
.Append(“Construct String: “ & _connect & vbCrLf)
.Append(“Activity:” & ContextUtil.ActivityId.ToString & vbCrLf)
.Append(“Context:” & ContextUtil.ContextId.ToString & vbCrLf)
.Append(“Transaction?” & ContextUtil.IsInTransaction.ToString & vbCrLf)
.Append(“Security?” & ContextUtil.IsSecurityEnabled.ToString & vbCrLf)
If ContextUtil.IsInTransaction Then
.Append(“TransactionId:” & _
ContextUtil.TransactionId.ToString & vbCrLf)

.Append(“Direct Caller:” & _
SecurityCallContext.CurrentCall.DirectCaller.AccountName & vbCrLf)

.Append(“Original Caller:” & _
SecurityCallContext.CurrentCall.OriginalCaller.AccountName)

End If
End With

Return traceMess.ToString()
End Function

Protected Sub ThrowComputeBookException(ByVal message As String, _
ByVal e As Exception)
Dim newMine As New ComputeBookDAException(message, e)

‘ Trace the error
WriteTrace(message & “{“ & e.Message & “}”)

‘ Throw
Throw newMine

End Sub

LISTING 17.3 continued

23 3869 ch17 5/20/02 1:27 PM Page 459

End Class
End Namespace

You can see that the ComputeBooksDAServicedBase class is substantially the
same as the class shown in Listing 17.1, with the following changes:

• It inherits from ServicedComponent to give it access to the Component Services
infrastructure.

• It includes attributes from the System.EnterpriseServices namespace to indicate
that a dual COM interface is created when the class is placed in Component
Services, that distributed transactions are supported, that statistical tracking is
enabled, and that the object construction is enabled.

• It overrides the Construct method of ServicedComponent in order to catch the
connection string that is specified in the Component Services Manager.

• Its constructor automatically creates an EventLogTraceListener so that trace out-
put will also be redirected to the Application event log under the source
ComputeBooksDA.

• The private _createTraceString method collects information about the serviced
component through the ContextUtil and CallContext objects so that the
WriteTrace method can output this information to the log.

In addition to these differences, you’ll notice that the ComputeBooksDAServicedBase
doesn’t expose a parameterized constructor. It doesn’t need to because the connection
string will be fed to the object from the Construct method automatically. In any event,
serviced components shouldn’t expose parameterized constructors because Component
Services doesn’t know how to handle them.

It’s also important to note that even though the base class specifies attributes such as
Transaction as defaults, the derived class can and should override them by specifying
the attribute as well. For example, the declaration of the following class overrides the
transactional behavior because the component requires transactions rather than simply
supporting them:

<ClassInterface(ClassInterfaceType.AutoDual), _
Transaction(TransactionOption.Required)> _
Public Class ComputeBooksStores : Inherits ComputeBooksDAServicedBase

<AutoComplete()> _
Public Sub DoSomething()
‘ Do my work

460 Day 17

LISTING 17.3 continued

ANALYSIS

23 3869 ch17 5/20/02 1:27 PM Page 460

ADO.NET in the Data Services Tier 461

17

MyBase.WriteTrace(“Done doing my stuff”)
End Sub

End Class

For more information about using Component Services, see Chapter 9 of my
Sams book Building Distributed Applications with Visual Basic .NET.

Note

Designing Data Access Classes
After your base class has been created, you can move on to creating the actual data
access classes that make up your data services tier. Once again, the purpose of the data
access classes is to isolate the data access logic from the other tiers and provide a robust
interface for manipulating the data in your application.

As you design and implement the classes, however, you’ll run across several design
issues that you must address. This section is designed to give you a feel for those issues
and then show how you can abstract the .NET Data Provider used and implement a pure-
ly class-based approach in your data services tier, as mentioned on Day 15, “Using
ADO.NET in a Multi-Tier Application.”

Design Issues
There are several design issues that you’ll want to address as you design your classes.
These apply not only to data access classes, but also to other classes that you design for
reuse.

For additional information on class design issues in .NET, see “Design
Guidelines for Class Library Developers” in the online documentation.
Microsoft released a tool on www.gotdotnet.com called Microsoft FxCop. This
utility analyzes assemblies and provides information as to how well it con-
forms to the Microsoft design guidelines.

Note

Data-Centric Versus Application-Centric
As you approach data access classes, one of your first decision points is whether to
design your data access classes to be data-centric or application-centric. In other words,
should the methods of the classes simply reflect how the data is stored in the data store,
or should they reflect how the data is used in the application? Using the former approach

23 3869 ch17 5/20/02 1:27 PM Page 461

results in a very granular approach because you create a class for each table in the
ComputeBooks database and well-defined methods for each class, such as Get, Add,
Delete, and Update. The latter approach typically results in fewer classes defined along
functional boundaries, such as a WebData class used in ComputeBook’s public Web site.
This class might contain methods such as GetTitles that support the arguments typically
used for displaying title information on the site. Of course, depending on the complexity
you expect, you might also factor the methods into multiple application-specific classes
along data-centric lines, such as Titles, Stores, and Orders.

Generally, I recommend using the application-centric approach because it offers the
biggest bang for the buck. Using this approach, the classes are immediately able to be
used productively and result in fewer lines of code in the presentation and business ser-
vices tiers. Further, the ways in which the data needs to be accessed in multiple applica-
tions usually converge, and so using this approach often results in reusability as well. By
contrast, using a data-centric approach results in you having to write more code in both
the data services and other tiers. Remember that one of the goals of the data services tier
is abstraction, so simply exposing each table as a class basically exposes the data model
itself. However, it should be cautioned that using an application-centric approach doesn’t
mean that your data access classes perform business logic. Always keep in mind that the
purpose of the data access classes is to select, insert, update, and delete data, not to apply
business rules or processes.

462 Day 17

I would also make the same recommendation at the stored procedure layer.
Generally, you want to create application-specific stored procedures that
access data as it needs to be manipulated in the application. This entails
using WHERE, JOIN, and ORDER BY clauses liberally and returning only the
columns required for the application-specific functionality. For this reason, if
multiple applications are going to access the same database, you should
consider using an additional application-specific prefix in your naming con-
ventions for stored procedures.

Tip

Naming Conventions and Constructors
After you’ve decided on an approach, you need to apply solid coding practices to the
design. Two of the primary issues you’ll need to consider are using naming conventions
and constructors.

Naming Conventions

You’ve probably noticed that the capitalization conventions for classes, variables, data
types, arguments, and so on are slightly different than those you might have used before.
In fact, the .NET Framework classes use three different styles of capitalization:

23 3869 ch17 5/20/02 1:27 PM Page 462

ADO.NET in the Data Services Tier 463

17

• Pascal case

• Camel case

• Uppercase

Pascal case is the most prevalent and refers to identifiers with no spaces and
where each individual word is capitalized. In .NET, you should use Pascal case

to identify classes, enumerated types, events, public fields, interfaces, methods, name-
spaces, and properties. For example, the declaration of the ComputeBooksDABase class in
Listing 17.1 uses Pascal case.

The second most prevalent convention is the use of camel case. Camel case
refers to identifiers in which the first word in the identifier is left as lowercase

whereas subsequent words are capitalized. In the .NET Framework, camel case is used
for parameters and protected fields, so, for example, the constructor of the
ComputeBookDAException class was defined as follows:

Public Sub New(ByVal message as String, ByVal originalException as Exception)

NEW TERM

NEW TERM

Notice that the parameters use camel casing, whereas the names of the
method and the types use Pascal casing.

Note

Uppercase is reserved only for identifiers that consist of two or fewer letters. As
a result, you’ll typically see uppercase used for namespaces such as System.IO

and System.Web.UI. Keep in mind as well that different languages handle capitalization
differently, so you don’t want to create code that requires case sensitivity. In other words,
if you are writing a class in C# (which is case sensitive), you shouldn’t create both
ReadXml and readXml methods because clients using VB .NET (which is case sensitive)
wouldn’t be able to differentiate between the two.

NEW TERM

What Happened to Hungarian Notation?

VB .NET developers will note that in VB and VBScript, parameters and variables often had a
two- or three-letter prefix that denoted the data type. Some also had a prefix that denoted the
scope. For example, str was used for strings and int was used for integers, whereas m was used
for modules level and l was used for local. This Hungarian notation was informative but result-
ed in long variable and parameter names. For the most part, Hungarian notation is no longer
used in .NET. Instead, the identifier, especially if it is visible externally, should be in camel case
and simply describe the meaning of the variable or parameter. The only prefix that you’ll typi-
cally see is an underscore to denote that a field or method is private to a class.

23 3869 ch17 5/20/02 1:27 PM Page 463

Namespaces should also use Pascal case, as in the ComputeBooks.Data namespace we
discussed earlier.

You should use consistent naming rules when naming your classes and interfaces. In the
earlier example of the ComputeBookDAException class, the class name is a noun or noun
phrase, uses Pascal casing, and is not prefixed with a “C” as you sometimes see (particu-
larly in previous versions of VB). In addition, class names shouldn’t use underscores and
should avoid abbreviations where possible. In this case, the class name also contains a
piece of its base class name to identify that ComputeBookDAException is a type of
Exception. This can be useful as a general rule in order to assist developers using your
class in getting an immediate feel for how your class might behave. However, it isn’t a
hard and fast rule.

Interfaces follow many of the same rules, such as the prohibition on underscores and
abbreviations and the use of Pascal casing. However, interfaces should be prefixed with
an “I” and can be named using an adjective phrase that describes the functionality
exposed by the interface (instead of using a descriptive noun or noun phrase). For exam-
ple, the .NET Framework contains the ICloneable interface, which is implemented by a
whole host of classes, such as String, Stack, Array, SortedList, and Delegate among
others. Here, “cloneable” is an adjective that describes the functionality that the class
gains by implementing the interface. Class and interface names should also only differ by
the “I” prefix when the class is the standard implementation of the interface. For exam-
ple, the ComputeBooksDABase class might provide the standard implementation of the
IComputeBooksDABase interface.

Constructors

A concept that might be new to some developers developing data access classes
is the use of constructors that can be parameterized and overloaded to allow

parameters to be passed into the instance of a class during its initialization. There are
several guidelines that you should be aware of, however, when defining constructors on
your classes.

First, make sure that you limit the amount of work done in the constructor. Typically, a
constructor should only capture the parameters passed to it and initialize private data
within the instance. By performing lots of other work, you’ll cause the class to appear
sluggish and perhaps do extra work for nothing because the user of the class might never
call another method on it. Rather, you should defer the work until the user of the class
calls the specific feature. Additionally, the parameters you pass into a constructor should
be viewed as shortcuts for setting properties on the class after the class has been created
using an empty constructor. Thus, the following two C# code snippets should be semanti-
cally equivalent:

464 Day 17

NEW TERM

23 3869 ch17 5/20/02 1:27 PM Page 464

ADO.NET in the Data Services Tier 465

17

Stores s = new Stores();
s.Switch = mySwitch;
s.ConnectString = “server=ssosa;database=Quilogy;trusted_connection=yes”;

Stores s = new Stores(
“server=ssosa;database=Quilogy;trusted_connection=yes”, mySwitch);

Note as well that the order the properties are set in the first snippet and the
order they are exposed in the constructor in the second snippet shouldn’t
matter. In other words, all properties in a class should be able to be set in
any order.

Note

Second, in cases in which the constructor is overloaded to include different signatures,
you should use a consistent ordering and naming pattern for the parameters. The typical
approach is to provide an increasing number of parameters in order to allow the user of
the class to provide more detailed information if required. In the previous example, the
Stores class might provide the following three constructors:

Public Class Stores
Public Sub New()
‘ implementation

End Sub

Public Sub New(ByVal connect As String)
‘ implementation

End Sub

Public Sub New(ByVal connect As String, ByVal trace As Switch)
‘ implementation

End Sub
End Class

In this case, the user can pass in more detailed information by using the second
constructor and passing in a class derived from System.Diagnostics.Switch to

capture trace output. Along these same lines, C# includes an interesting syntax that
enables you to easily allow one constructor to call another using what is referred to as an
initializer list. This is useful because it allows a default constructor (the one with no
arguments), for example, to call one of the more specific constructors using default para-
meters. If the Stores class were rewritten in C#, the default constructor could call one of
the other constructors automatically, as follows:

public Class Stores
{
public Stores() : this(“server=ssosa”)

NEW TERM

23 3869 ch17 5/20/02 1:27 PM Page 465

{
// implementation

}

public Stores(String connect)
{
// implementation

}

public Stores(String connect, Switch trace)
{
// implementation

}
}

For special purposes, you can also create constructors that aren’t public. Creating a pro-
tected constructor allows derived classes to pass specific information to the base class
that it needs to operate while creating an empty private constructor in a class if you don’t
want instances of the class to be created. The latter technique is useful if the class expos-
es only Shared (static in C#) methods and so shouldn’t be able to be instantiated. Keep
in mind that if you don’t create a constructor for a class, both C# and VB .NET will cre-
ate a default constructor that accepts no arguments. However, after you create a construc-
tor that accepts arguments, the compiler doesn’t create the empty constructor.

Finally, constructors must also be considered when you create derived classes. For exam-
ple, it’s often necessary to pass information obtained in a parameterized constructor into
the base class. This is the case, for example, when a class derived from Exception
accepts a message in its constructor, as the ComputeBookDAException class does in
Listing 17.2. At first glance, this might seem difficult because you would think that a
base class must be initialized before its descendant classes. However, both VB .NET and
C# include specific syntax that enables you to pass information from a derived construc-
tor to its base class. In VB .NET, this is done by calling the New method of the MyBase
object in the first line of the constructor, passing it the arguments it needs, as shown in
Listing 17.2. In C#, the constructor declaration uses the base keyword like so:

public ComputeBookDAException(String message) : base(message)
{
// other initialization here

}

In both cases, the base class is initialized using the message parameter passed to the
constructor.

Overloaded and Private Methods
Finally, the design of your data access classes should take advantage of the ability to
overload methods. This technique, which allows a single method to expose multiple

466 Day 17

23 3869 ch17 5/20/02 1:27 PM Page 466

ADO.NET in the Data Services Tier 467

17

signatures so that developers can choose which signature to call based on their needs, is
especially effective in the methods used to query a data store. For example, consider the
Books class shown in Listing 17.4.

LISTING 17.4 Data access class. This class takes advantage of overloaded and private
methods to allow querying on the Titles table.

Option Strict On

Imports System.Data.SqlClient
Imports System.Data

Namespace ComputeBooks.Data

Public Class Books : Inherits ComputeBooksDABase

Public Sub New(ByVal connect As String)
MyBase.New(connect)

End Sub

Public Sub New()
MyBase.New()

End Sub

Public Overloads Function GetTitles() As DataSet
_checkDisposed()
Return _getTitles(Nothing, Nothing, Nothing, Nothing, Nothing)

End Function

Public Overloads Function GetTitles(ByVal isbn As String) As DataSet
_checkDisposed()

‘ Validate
If isbn Is Nothing OrElse isbn.Length = 0 Then
Throw New ArgumentNullException(“isbn”, “Cannot be null or empty”)
Return Nothing

End If
Return _getTitles(Nothing, Nothing, isbn, Nothing, Nothing)

End Function

Public Overloads Function GetTitles(ByVal params() As Object) As DataSet
_checkDisposed()

‘ Validate
If params.Length <> 5 Then
Throw New ArgumentException(“Must pass in an array of 5 values”)
Return Nothing

End If

23 3869 ch17 5/20/02 1:27 PM Page 467

Dim author, isbn, title As String
Dim pubdate As Date
Dim catId As Guid

Try
author = CType(params(0), String)
title = CType(params(1), String)
isbn = CType(params(2), String)
pubdate = CType(params(4), Date)
catId = CType(params(3), Guid)

Catch e As Exception
Throw New ArgumentException(“Arguments are not of the correct type”)

End Try

Return _getTitles(author, title, isbn, pubdate, catId)
End Function

Private Function _getTitles(ByVal author As String, ByVal title As String, _
ByVal isbn As String, ByVal lowPubDate As Date, _
ByVal catID As Guid) As DataSet
Dim da As New SqlDataAdapter(“usp_GetTitles”, MyBase.SqlCon)
Dim titleDs As New DataSet()

da.SelectCommand.CommandType = CommandType.StoredProcedure
Try
If Not isbn Is Nothing AndAlso isbn.Length > 0 Then
da.SelectCommand.Parameters.Add(New SqlParameter(“@isbn”, _
SqlDbType.NVarChar, 10))

da.SelectCommand.Parameters(0).Value = isbn
Else
If Not title Is Nothing AndAlso title.Length > 0 Then
da.SelectCommand.Parameters.Add(New SqlParameter(“@title”, _
SqlDbType.NVarChar, 100))

da.SelectCommand.Parameters(0).Value = title
End If
If Not author Is Nothing AndAlso author.Length > 0 Then
da.SelectCommand.Parameters.Add(New SqlParameter(“@author”, _
SqlDbType.NVarChar, 250))

da.SelectCommand.Parameters(0).Value = author
End If
If lowPubDate.Equals(Nothing) Then
da.SelectCommand.Parameters.Add(New SqlParameter(“@pubDate”, _
SqlDbType.DateTime))

da.SelectCommand.Parameters(0).Value = lowPubDate
End If
If Not catID.Equals(Guid.Empty) Then
da.SelectCommand.Parameters.Add(New SqlParameter(“@catId”, _
SqlDbType.UniqueIdentifier))

da.SelectCommand.Parameters(0).Value = catID

468 Day 17

LISTING 17.4 continued

23 3869 ch17 5/20/02 1:27 PM Page 468

ADO.NET in the Data Services Tier 469

17

End If
End If

da.Fill(titleDs)
Return titleDs

Catch e As SqlException
da = Nothing
titleDs = Nothing
Call MyBase.ThrowComputeBookException(“GetTitles Failed”, e)

Finally
If Not MyBase.SqlCon Is Nothing Then MyBase.SqlCon.Close()

End Try
End Function

‘ Other methods here

Private Sub _checkDisposed()
If MyBase.Disposed Then
Throw New ObjectDisposedException(“Books has been disposed”)

End If
End Sub

End Class

End Namespace

You’ll notice in Listing 17.4 that the Books class exists in the
ComputeBooks.Data namespace and inherits from ComputeBooksDABase. After

exposing both a parameterized and empty constructor, it exposes three signatures for the
GetTitles method using the Overloads keyword.

LISTING 17.4 continued

ANALYSIS

The Overloads keyword isn’t required in VB as long as none of the method
signatures uses it. However, I recommend using it because it makes explicit
your intention. In C#, there is no equivalent keyword.

Note

You’ll notice that methods allow the caller to specify no arguments, only the ISBN, or an
array of optional parameters. In all three cases, the public method ultimately calls the
private _getTitles method that accepts each argument individually. Obviously, imple-
menting the logic of the GetTitles method once in a private method makes it easier to
maintain and extend. However, before the private method is called, the public method is
responsible for validating the arguments. For example, the signature that accepts the

23 3869 ch17 5/20/02 1:27 PM Page 469

ISBN ensures that a valid value is passed in and, if not, throws the
ArgumentNullException. In the case of the method that accepts the array of objects, it
checks to ensure that the array contains the correct number of objects and then parses the
array into the local variables passed to the private method.

The private _getTitles method is then responsible for creating the SqlDataAdapter
object and populating its Parameters collection. Note that the parameters are added to
the collection only if the values are valid. In this way, the method can effectively support
optional parameters. Note also that the usp_GetTitles stored procedure is where the
work of creating the SELECT statement to retrieve the data is performed. In this way, only
one stored procedure is needed to query the Titles table in different ways. After the
parameters are populated, the DataSet is filled and returned.

470 Day 17

The usp_GetTitles stored procedure defaults the parameters to NULL and
then builds a SELECT statement based on the parameters that are actually
passed. The statement is then executed using the SQL Server sp_executesql
system stored procedure.

Note

Using this technique also has the advantage of being maintainable because the signature
that exposes the array of objects can obviously be extended to query using different or an
extended set of parameters without affecting the public interface exposed to callers.

To call the GetTitles method, a client can then instantiate the Books class and then call
either of the three versions of the GetTitles method. This is shown in the following
snippet:

Books b = new Books(_connect);
DataSet ds = new DataSet();

ds = b.GetTitles(); // returns all titles
ds = b.GetTitles(“06720001X”); //returns one ISBN
ds = b.GetTitles(new Object[]
{“Fox, Dan”, null, null, null, null }); // returns books authored by me

Abstracting Providers
As you learned last week, one of the decisions you must make when designing an appli-
cation is which .NET Data Provider to use because ADO.NET supports both specific and
generic providers. Which provider you choose depends on a variety of factors, including
the functionality and performance of the provider in addition to the likelihood of your
switching data stores in the future. In fact, many independent software vendors (ISVs)
developing packaged applications will need to make this decision very early in their use
of ADO.NET.

23 3869 ch17 5/20/02 1:27 PM Page 470

ADO.NET in the Data Services Tier 471

17

You’ll notice that both the ComputeBooksDABase and Books classes assume that they will
always access SQL Server because they are hardcoded to use the objects in the
System.Data.SqlClient namespace. In the event that ComputeBooks moved to an
Oracle solution in the future, these classes would have to be rewritten to use either the
OleDb provider or a specific Oracle provider that might be available by then. To make
these classes more generic, one solution, of course, would be to simply use the OleDb
provider because it can be used to access either SQL Server or Oracle based on the OLE
DB provider in use. Although this would result in a single code base, you would lose the
performance and functionality gains of a specific provider like SqlClient. A second
option is to develop multiple versions of each class and then compile various versions of
the application using command line switches. This might appeal to ISVs that need to
support multiple data stores but require the performance of specific providers.

However, a more elegant solution is to design your classes with an additional layer of
abstraction using the abstract factory design pattern. Using this pattern, both the base
class and the data access class can rely on a factory class to create the objects of the
appropriate type based on configuration settings. The ProviderFactory class that uses
this approach is shown in Listing 17.5.

LISTING 17.5 Abstracting providers. This class abstracts the creation of provider-specific
objects and uses interfaces to return the objects.

Namespace ComputeBooks.Data

Public Enum ProviderType
SqlClient = 0
OLEDB = 1

End Enum

Public Class ProviderFactory

Sub New(ByVal provider As ProviderType)
_pType = provider

End Sub

Sub New()
End Sub

Private _pType As ProviderType = ProviderType.SqlClient
Private _pTypeSet As Boolean = False

Public Property Provider() As ProviderType
Get
Return _pType

End Get

23 3869 ch17 5/20/02 1:27 PM Page 471

Set(ByVal Value As ProviderType)
If _pTypeSet Then
Throw New ReadOnlyException(“Provider already set to “ & __
pType.ToString)

Else
_pType = Value
_pTypeSet = True

End If
End Set

End Property

Public Function CreateDataAdapter(ByVal commandText As String, _
ByVal connection As IDbConnection) As IDataAdapter
Try
Select Case _pType
Case ProviderType.SqlClient
Return New SqlDataAdapter(commandText, _
CType(connection, SqlConnection))

Case ProviderType.OLEDB
Return New OleDbDataAdapter(commandText, _
CType(connection, OleDbConnection))

End Select
Catch e As Exception
Throw New ComputeBookDAException(_
“Could not create IDbDataAdapter object”, e)

End Try
End Function

Public Overloads Function CreateParameter(ByVal paramName As String, _
ByVal paramType As Object) As IDataParameter
Try
Select Case _pType
Case ProviderType.SqlClient
Return New SqlParameter(paramName, paramType)

Case ProviderType.OLEDB
Return New OleDbParameter(paramName, paramType)

End Select
Catch e As Exception
Throw New ComputeBookDAException(_
“Could not create IDataParameter object”, e)

End Try
End Function

Public Overloads Function CreateParameter(ByVal paramName As String, _
ByVal paramType As Object, ByVal size As Integer) As IDataParameter
Try
Select Case _pType
Case ProviderType.SqlClient

472 Day 17

LISTING 17.5 continued

23 3869 ch17 5/20/02 1:27 PM Page 472

ADO.NET in the Data Services Tier 473

17

Return New SqlParameter(paramName, _
CType(paramType, SqlDbType), size)

Case ProviderType.OLEDB
Return New OleDbParameter(paramName, _
CType(paramType, OleDbType), size)

End Select
Catch e As Exception
Throw New ComputeBookDAException(_
“Could not create IDataParameter object”, e)

End Try
End Function

Public Function CreateConnection(ByVal connect As String) As IDbConnection
Try
Select Case _pType
Case ProviderType.SqlClient
Return New SqlConnection(connect)

Case ProviderType.OLEDB
Return New OleDbConnection(connect)

End Select
Catch e As Exception
Throw New ComputeBookDAException(_
“Could not create IDbConnection object”, e)

End Try
End Function

Public Function CreateCommand(ByVal cmdText As String, _
ByVal connection As IDbConnection) As IDbCommand
Try
Select Case _pType
Case ProviderType.SqlClient
Return New SqlCommand(cmdText, CType(connection, SqlConnection))

Case ProviderType.OLEDB
Return New OleDbCommand(cmdText, _
CType(connection, OleDbConnection))

End Select
Catch e As Exception
Throw New ComputeBookDAException(“Could not create IDbCommand object”, e)
End Try

End Function

End Class
End Namespace

The ProviderFactory class simply exposes a property called Provider, which
can be passed in the constructor and which specifies the provider that is to be

LISTING 17.5 continued

ANALYSIS

23 3869 ch17 5/20/02 1:27 PM Page 473

used using the ProviderType enumerated type (which, in this case, supports the
SqlClient and OleDb providers). The class then includes a series of Create methods that
create the appropriate data adapter, parameter, connection, and command objects for the
provider using a simple Select Case statement. Note that the CreateParameter method
is overloaded so that the size can also be specified.

474 Day 17

A more generic technique to implement a provider factory could easily be
implemented by using a configuration file that enumerated the supported
providers. Then the Activator class in the System namespace could be used
to dynamically create instances of the appropriate classes. We’ll look at this
technique tomorrow.

Note

In all cases, the factory methods accept parameters and return values using the interfaces
that both providers support and that we discussed on Day 8, “Understanding .NET Data
Providers.”

After the ProviderFactory is in place, classes such as Books can create an instance of
the class in their constructors, passing in the appropriate provider, typically found in a
configuration file, like so:

Public Sub New(ByVal connect As String, ByVal provider As ProviderType)
MyBase.New()
_pf = New ProviderFactory(provider)
MyBase.Con = _pf.CreateConnection(connect)

End Sub

In this case, the variable _pf refers to a private data member that references an instance
of the ProviderFactory class. Note that the constructor of the class has been augmented
to support passing in the provider as well as the connection string. In addition, the base
class has also been modified so that the protected Con property (of type IDbConnection)
can be set using the CreateConnection method.

If your base class needs to rely on the ProviderFactory as well, you might
instead simply declare a private variable of ProviderFactory in the base
class and expose it as a protected property.

Note

Methods within the data access classes such as _getTitles can then be rewritten to use
the instance of the ProviderFactory class as shown in Listing 17.6.

23 3869 ch17 5/20/02 1:27 PM Page 474

ADO.NET in the Data Services Tier 475

17

LISTING 17.6 Using the ProviderFactory class. This method uses the ProviderFactory
to create the appropriate objects based on the provider.

Private Function _getTitles(ByVal author As String, ByVal title As String, _
ByVal isbn As String, ByVal lowPubDate As Date, _
ByVal catID As Guid) As DataSet
Dim da As IDbDataAdapter
Dim titleDs As New DataSet()

da = _pf.CreateDataAdapter(“usp_GetTitles”, MyBase.Con)

da.SelectCommand.CommandType = CommandType.StoredProcedure
Try
If Not isbn Is Nothing AndAlso isbn.Length > 0 Then
da.SelectCommand.Parameters.Add(_pf.CreateParameter(“@isbn”, _
DbType.String, 10))

da.SelectCommand.Parameters(0).Value = isbn
Else
If Not title Is Nothing AndAlso title.Length > 0 Then
da.SelectCommand.Parameters.Add(_pf.CreateParameter(“@title”, _
DbType.String, 100))

da.SelectCommand.Parameters(0).Value = title
End If
If Not author Is Nothing AndAlso author.Length > 0 Then
da.SelectCommand.Parameters.Add(_pf.CreateParameter(“@author”, _
DbType.String, 250))

da.SelectCommand.Parameters(0).Value = author
End If
If lowPubDate.Equals(Nothing) Then
da.SelectCommand.Parameters.Add(_pf.CreateParameter(“@pubDate”, _
DbType.DateTime))

da.SelectCommand.Parameters(0).Value = lowPubDate
End If
If Not catID.Equals(Guid.Empty) Then
da.SelectCommand.Parameters.Add(_pf.CreateParameter(“@catId”, _
DbType.GUID))

da.SelectCommand.Parameters(0).Value = catID
End If

End If

da.Fill(titleDs)
Return titleDs

Catch e As Exception
da = Nothing
titleDs = Nothing
Call MyBase.ThrowComputeBookException(“GetTitles Failed”, e)

Finally
If Not MyBase.Con Is Nothing Then MyBase.Con.Close()

End Try
End Function

23 3869 ch17 5/20/02 1:27 PM Page 475

The point to note in Listing 17.6 is that the method doesn’t use any of the SqlClient-
specific objects (or enumerations), so it can be executed using either provider.

Returning Custom Objects
The final issue to consider when designing data access classes is how the data will be
returned. As you learned on Day 15, your choices include exposing DataSet objects, data
readers, or custom objects. Although the first two options are simplified by the fact that
ADO.NET supports them natively, the third option is attractive because it provides a pure
object-based interface to the data for clients rather than through the abstraction of
DataSet or data reader. As you’ll see, however, this approach also results in you having
to write more code to populate the classes and manipulate their data.

As an example, consider the case in which ComputeBooks wants to expose its customer
data using custom classes. To begin, you would write a Customer class that exposed the
properties of the customer. In addition, you could factor properties that have their own
properties such as Address into separate classes as shown in Listing 17.7.

LISTING 17.7 Data as an object. This listing shows the Customer and Address classes used
to represent a customer.

<Serializable()> _
Public Class Customer

Private _custId As Guid
Private _fName As String
Private _lName As String
Private _emailAddress As String

<XmlElement()> _
Public Address As Address

Public Sub New(ByVal values() As Object)
‘Array of values
If values.Length = 8 Then
Me.CustomerID = values(0)
Me.FName = values(1)
Me.LName = values(2)
Me.EmailAddress = values(7)

Me.Address = New Address()
With Me.Address
.Street = values(3)
.City = values(4)
.StateProv = values(5)
.PostalCode = values(6)

End With

476 Day 17

23 3869 ch17 5/20/02 1:27 PM Page 476

ADO.NET in the Data Services Tier 477

17

Else
Throw New ComputeBookDAException(_
“The array passed into the Customer was invalid”)

End If
End Sub

Public Sub New()
End Sub

<XmlAttributeAttribute(“ID”)> _
Public Property CustomerID() As System.Guid
Get
Return _custId

End Get
Set(ByVal Value As System.Guid)
_custId = Value

End Set
End Property

<XmlElement()> _
Public Property FName() As String
Get
Return _fName

End Get
Set(ByVal Value As String)
_fName = Value

End Set
End Property

<XmlElement()> _
Public Property LName() As String
Get
Return _lName

End Get
Set(ByVal Value As String)
_lName = Value

End Set
End Property

<XmlElement()> _
Public Property EmailAddress() As String
Get
Return _emailAddress

End Get
Set(ByVal Value As String)
_emailAddress = Value

End Set
End Property

LISTING 17.7 continued

23 3869 ch17 5/20/02 1:27 PM Page 477

End Class

<Serializable()> _
Public Class Address

Private _address As String
Private _city As String
Private _stateProv As String
Private _postalCode As String
Private _addType As AddressType

Public Enum AddressType
Home = 0
Business = 1

End Enum

<XmlAttributeAttribute()> _
Public Property Type() As AddressType
Get
Return _addType

End Get
Set(ByVal Value As AddressType)
_addType = Value

End Set
End Property

<XmlElement()> _
Public Property Street() As String
Get
Return _address

End Get
Set(ByVal Value As String)
_address = Value

End Set
End Property

<XmlElement()> _
Public Property City() As String
Get
Return _city

End Get
Set(ByVal Value As String)
_city = Value

End Set
End Property

<XmlElement()> _
Public Property StateProv() As String

478 Day 17

LISTING 17.7 continued

23 3869 ch17 5/20/02 1:27 PM Page 478

ADO.NET in the Data Services Tier 479

17

Get
Return _stateProv

End Get
Set(ByVal Value As String)
_stateProv = Value

End Set
End Property

<XmlElement()> _
Public Property PostalCode() As String
Get
Return _postalCode

End Get
Set(ByVal Value As String)
_postalCode = Value

End Set
End Property

End Class

Although much of Listing 17.7 is straightforward, the interesting aspect is that
the class is marked with the

System.Xml.Serialization.SerializableAttribute. This attribute ensures that the
common language runtime can serialize an instance of this class. This is necessary if the
object is passed between application domains or serialized to XML using the
XmlSerializer class, for example, if you wanted to save the object to disk. In addition,
each property is marked with an attribute that specifies how the property is to be repre-
sented when serialized (in this case, either an element, attribute, or array, although you
could also specify other XML types or ignore the property altogether).

LISTING 17.7 continued

ANALYSIS

If you already have an XSD document that describes your data, you can
alternatively use the XSD.exe command-line utility to auto-generate these
skeleton classes for you.

Tip

To represent multiple customers, you could create a strongly typed collection class to
hold them as shown in Listing 17.8.

23 3869 ch17 5/20/02 1:27 PM Page 479

LISTING 17.8 Creating a collection. This class holds a collection of Customer objects and
is derived from CollectionBase.

Public Class CustomersCollection : Inherits CollectionBase
‘ Stores a collection of customers

Public Sub Add(ByVal c As Customer)
Me.InnerList.Add(c)

End Sub

Default Public ReadOnly Property Item(_
ByVal i As Integer) As Customer
Get
Return Me.InnerList(i)

End Get
End Property

End Class

In this case, the CustomersCollection class inherits from CollectionBase and simply
holds an ArrayList that contains the Customer objects. Because this class supports the
IList and IEnumerable interfaces, it can be bound to controls in both Windows and Web
Forms user interfaces, as you learned yesterday. This class can then be used to return a
collection of customers in a data access class like so:

Public Class Customers : Inherits ComputeBooksDABase

<XmlArray()> _
Public Function GetCustomers() As CustomersCollection
‘ implementation

End Function

‘ Other members
End Class

After this infrastructure has been coded, you have to write some code that loads the per-
sisted state of the object to an instance of your class. For example, your data access class
could expose a GetCustomer method like that shown in Listing 17.9 to create an instance
of the Customer object and return it to the client.

LISTING 17.9 Populating an object. Behind the scenes, you can use an ADO.NET data
reader to populate your objects.

Public Function GetCustomer(_
ByVal emailAddress As String) As Customer

‘ Go get a customer
Dim cm As IDbCommand

480 Day 17

23 3869 ch17 5/20/02 1:27 PM Page 480

ADO.NET in the Data Services Tier 481

17

Dim parm As IDataParameter
Dim dr As IDataReader
Dim cust As Customer
Dim values(7) As Object

cm = pf.CreateCommand(“usp_GetCustomers”, _
MyBase.Con)

cm.CommandType = CommandType.StoredProcedure
parm = pf.CreateParameter(“@emailAddress”, DbType.String)
parm.Value = emailAddress
cm.Parameters.Add(parm)

Try
MyBase.Con.Open()
dr = cm.ExecuteReader(CommandBehavior.CloseConnection)
dr.Read()
dr.GetValues(values)
_cleanValues(values)
cust = New Customer(values) ‘ Create a new Customer
Catch Ex As Exception
MyBase.ThrowComputeBookException(“Could not get customer “ & _
emailAddress, Ex)

Return Nothing
Finally
dr.Close()
End Try

Return cust

End Function

In Listing 17.9, the ProviderFactory from Listing 17.5 is used to create the
command object to read the customer information from a stored procedure. The

GetValues method then reads the entire row into an array and passes it to a private
method that performs cleanup, such as trimming the string values and converting the null
columns (DBNull.Value) to Nothing. The array is then passed to the constructor of the
Customer object shown in Listing 17.7 and the new customer is returned from the
method. Of course, you could also extend this code to retrieve more than one customer
and populate the CustomerCollection. You would also need to provide your own imple-
mentation to save changes to the customer back to the data store.

Summary
When you design your data services tier, it’s important to take advantage of the features
of the .NET Framework to create flexible and effective classes. Today, you learned how

LISTING 17.9 continued

ANALYSIS

23 3869 ch17 5/20/02 1:27 PM Page 481

you can use features such as implementation inheritance, overloaded methods, interface-
based programming, and serialization in your data access classes.

However, even if you follow the recommendations and techniques discussed today, you’ll
still end up writing quite a bit of repetitive ADO.NET code in your data access classes.
Tomorrow, you’ll learn how to take the abstractions discussed today one step further and
implement a data factory class.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What is the purpose of creating a base class for your data services tier?

Because there is some functionality that will be common across data access class-
es, both within a particular application and within an organization, it makes sense
to implement that functionality once and then reuse it across all your classes. By
factoring the common code into an abstract base class, you or other developers can
take advantage of implementation inheritance in .NET to reuse core code that han-
dles the common features, such as connections, logging, and exception handling.

2. Why would you need to create a separate base class for classes that will use
Component Services?

For a object to utilize the services of Component Services, such as distributed
transactions, object pooling, and just-in-time activation, the class must ultimately
be derived from the ServicedComponent class in the System.EnterpriseServices
namespace. Because .NET supports only inheritance from a single base class, your
base class needs to inherit from ServicedComponent.

3. What are some considerations you should be aware of as you design data classes?

The most fundamental decision regards the granularity and design methods
themselves. Typically, your classes will encapsulate more functionality if they are
application-centric rather than data-centric. The former approach entails creating
methods that map to the functionality of your application rather than mapping only
to the data itself. Other considerations include using naming conventions and con-
structors and taking advantage of overloading in your classes.

4. Why might you use a provider factory class in your data services tier?

A provider factory class can be used to offload the creation of provider-specific
objects into a separate class that your data access classes can rely on. This allows

482 Day 17

23 3869 ch17 5/20/02 1:27 PM Page 482

ADO.NET in the Data Services Tier 483

17

the decision as to which provider to use to be delayed until runtime. This works by
programming to the interfaces that all providers support rather than the concrete
classes themselves.

Exercise
Augment the Books class shown in Listing 17.4 to add a GetReviews method that
retrieves the reviews associated with a particular ISBN using the usp_GetReviews stored
procedure and the ProviderFactory class shown in Listing 17.5.

Answers for Day 17
Exercise Answer
As with the GetTitles method, one possible solution is to create a method that uses the
CreateDataAdapter and CreateParameter methods of the ProviderFactory class to
create the appropriate objects and fill a DataSet, as shown in the following code:

Public Function GetReviews(ByVal isbn As String) As DataSet

Dim da As IDbDataAdapter
Dim reviewDs As New DataSet()

da = _pf.CreateDataAdapter(“usp_GetReviews”, MyBase.Con)
da.SelectCommand.CommandType = CommandType.StoredProcedure

‘ Validate
If isbn Is Nothing OrElse isbn.Length = 0 Then
Throw New ArgumentNullException(“isbn”, “Cannot be null or empty”)
Return Nothing

End If

Try
da.SelectCommand.Parameters.Add(_
_pf.CreateParameter(“@isbn”, DbType.String))

da.SelectCommand.Parameters(0).Value = isbn
da.Fill(reviewDs)
Return reviewDs

Catch e As Exception
da = Nothing
reviewDs = Nothing
Call MyBase.ThrowComputeBookException(“GetReviews Failed on ISBN “ & isbn,

e)
Finally
If Not MyBase.Con Is Nothing Then MyBase.Con.Close()

End Try
End Function

23 3869 ch17 5/20/02 1:27 PM Page 483

23 3869 ch17 5/20/02 1:27 PM Page 484

DAY 18

WEEK 3

Building a Data Factory
Yesterday, you learned how .NET features such as inheritance can be used to
create classes in the data services tier of a multi-tier application. Along the way
you saw examples of both the direct and abstracted providers approaches to
using .NET Data Providers. The former approach entails declaring provider-
specific objects in your methods and coding directly to them, whereas the latter
approach allows for the use of a ProviderFactory class that abstracts the cre-
ation of provider-specific objects. However, there is also a third approach that
you can use, known as the internal data factory. This approach is more compli-
cated and will be the focus of today’s lesson.

Specifically, today you’ll learn

• The purpose and benefits of creating a data factory

• Another technique for abstracting the .NET Data Provider

• How to abstract statements executed against a data store

• How to increase performance by using a cache

24 3869 ch18 5/20/02 1:25 PM Page 485

Creating a Data Factory
Simply put, a data factory is a class that exposes methods and properties that
abstract not only the provider used, but also common operations such as the

instantiation and population of connection, command, and parameter objects. In this way,
the data factory abstracts as much of the ADO.NET code as possible from the rest of the
application.

486 Day 18

MSDN recently published an article that described a data factory for SQL
Server called a “Data Access Application Block.” The primary difference
between that approach and the one described today is that the Data Access
Application Block is SQL Server–specific and is therefore neither provider nor
database independent.

Note

Obviously, this approach has several benefits, foremost among them being the reduction
in the amount of code that you have to write and the ability to dynamically decide which
provider to use. However, in addition to those benefits, the data factory can be designed
to include second-level benefits such as

• Database Independence. Not only is it possible to abstract the provider by using
interface-based programming, but a data factory can also abstract all the database-
specific syntax from your application by introducing the concept of “statements”
that map to particular database-specific SQL statements.

• Caching. After the data factory has created a particular command object and its
parameters based on a logical statement, the factory can then cache it, thereby
allowing it to be reused. In this way, performance is increased because the data
factory never has to create the same command object twice.

To illustrate the functionality that the data factory provides to your data access classes,
Table 18.1 includes a description of each of its public methods and properties and their
purposes. The remainder of today will be devoted to looking at a couple of key aspects
of the factory, including how the provider and statement are abstracted and how caching
is implemented.

Because the entire data factory class is more than 1,000 lines of code, all the
code can’t be shown. To get the entire class, download the code files associ-
ated with this book on the Sams Web site at www.samspublishing.com.

Tip

NEW TERM

24 3869 ch18 5/20/02 1:26 PM Page 486

Building a Data Factory 487

18

TABLE 18.1 Public Members of the Data Factory Class

Signature Description

Properties

CacheFilePath Property that specifies the path where the statement files can be found

Connection Property that returns the connection object

Provider Property that specifies the provider to use

UseCache Property that specifies whether to cache any new statements and whether
to use those already in the cache

Methods

BeginTransaction Starts a transaction and returns it

CreateDataAdapter Creates and returns a data adapter based on the statements passed to it

CreateSqlFiles Overloaded; shared method that creates XML statement files asynchro-
nously for all stored procedures in a SQL Server database

CreateSqlFile Shared method that creates an XML statement file for a particular SQL
Server stored procedure

ExecuteDataReader Overloaded; returns a data reader based on the statement passed to it
and optionally can use transactions and command behaviors

ExecuteNonQuery Overloaded; executes a statement and optionally uses a transaction and
returns a return value and output parameters

ExecuteScalar Overloaded; executes a statement and returns the value. Optionally
returns the return value and uses a transaction

ExecuteSqlXmlReader Executes a statement that uses the FOR XML functionality of SQL Server;
will throw an exception if the instance isn’t using SqlClient

GetDataSet Overloaded; returns a DataSet based on the statement and optionally
uses a transaction

GetDataTable Overloaded; returns a DataTable based on the statement and optionally
uses a transaction

GetProviders Shared method that returns an array containing the intrinsically support-
ed providers

GetXsltResults Transforms the results from the statement using the given stylesheet

RemoveStatement Shared method that removes a particular statement from the internal
cache

SyncDataSet Synchronizes the given DataSet using the given data adapter

Events

SqlFilesCreated Event raised when the asynchronous CreateSqlFiles method completes

24 3869 ch18 5/20/02 1:26 PM Page 487

The data factory class itself is written in VB. Because it will be used by the entire
ComputeBooks organization, it is placed in the ComputeBooks.Data namespace. The
class is also sealed (marked as NotInheritable) and imports several namespaces in
addition to those that are defaulted for all VB projects. Listing 18.1 shows the resulting
declaration of the class.

LISTING 18.1 The DataFactory class. This class is used internally in data access classes to
abstract much of the ADO.NET code that must be written.

Option Strict On

Imports System.Collections.Specialized
Imports System.Xml
Imports System.Xml.Xsl
Imports System.IO
Imports System.Data.SqlClient
Imports System.Data.OleDb
Imports System.Reflection
Imports System.Data.Common

Namespace ComputeBooks.Data
Public NotInheritable Class DataFactory

‘ Public and private members
End Class

End Namespace

Abstracting the Provider
As with the ProviderFactory class discussed yesterday, one of the main jobs of the data
factory is to abstract the provider. However, the DataFactory class does this using a dif-
ferent technique.

The basic approach used is that when an instance of the DataFactory is created, it is
passed the connection string and optionally the provider in the constructor (the provider
may also be set using the Provider property). This triggers the _createProviderTypes
private method that creates five Type objects for the particular provider specified. These
Type objects represent the connection, command, data reader, parameter, and data
adapter, and are used to dynamically instantiate the provider-specific types when needed.
In fact, the method then also creates an instance of the connection object to be exposed
through the Connection property.

The interesting aspect of _createProviderTypes, however, is that if the Provider prop-
erty isn’t set to “SqlClient” or “OleDb,” it will look for an XML file called
DataFactory.config and read other provider information it contains. For example, if the

488 Day 18

24 3869 ch18 5/20/02 1:26 PM Page 488

Building a Data Factory 489

18

DataFactory were going to use a custom provider created by ComputeBooks, the
DataFactory.config file would look as shown in Listing 18.2.

LISTING 18.2 Configuring the DataFactory class. This file can be used to specify addi-
tional providers that the class supports.

<?xml version=”1.0” encoding=”utf-8” ?>
<DataFactory>
<Provider name=”Cbks” assembly=”ComputeBooksData.dll”>
<Connection type=”ComputeBooks.Data.CbksConnection” />
<Command type=”ComputeBooks.Data.CbksCommand” />
<Parameter type=”ComputeBooks.Data.CbksParameter” />
<DataAdapter type=”ComputeBooks.Data.CbksDataAdapter” />
<DataReader type=”ComputeBooks.Data.CbksDataReader” />

</Provider>
</DataFactory>

Listing 18.3 shows the complete _createProviderTypes method.

LISTING 18.3 Creating provider types. This private method creates the provider-specific
Type objects used by the class.

Private Sub _createProviderTypes()
‘ Provider and connection string are set so instantiate the connection object
‘ May need to read from the XML file

Dim xmlConfig As New XmlDocument()
Dim provNodes As XmlNodeList
Dim prov As XmlNode
Dim provAssembly As [Assembly]

Select Case Me.Provider
Case “SqlClient”
_conType = GetType(SqlConnection)
_comType = GetType(SqlCommand)
_drType = GetType(SqlDataReader)
_daType = GetType(SqlDataAdapter)
_parmType = GetType(SqlParameter)
_paramtypes = _sqlParamTypes

Case “OleDb”
_conType = GetType(OleDbConnection)
_comType = GetType(OleDbCommand)
_drType = GetType(OleDbDataReader)
_daType = GetType(OleDbDataAdapter)
_parmType = GetType(OleDbParameter)
_paramtypes = _oledbParamTypes

Case Else

24 3869 ch18 5/20/02 1:26 PM Page 489

_paramtypes = _otherParamtypes
‘ Load a provider dynamically
Try
xmlConfig.Load(“DataFactory.config”) ‘ Relative path
provNodes = xmlConfig.GetElementsByTagName(“Provider”)

For Each prov In provNodes
If prov.Attributes(“name”).Value = Me.Provider Then
‘ Load the assembly
_provAssembly = prov.Attributes(“assembly”).Value
provAssembly = [Assembly].LoadFrom(_provAssembly)

‘ Load the data provider types
If Not prov.SelectSingleNode(“Connection”) Is Nothing Then
_sconType = prov.SelectSingleNode(_

“Connection”).Attributes(“type”).Value
_conType = provAssembly.GetType(_sconType, True, True)

End If
If Not prov.SelectSingleNode(“Command”) Is Nothing Then
_scomType = prov.SelectSingleNode(_

“Command”).Attributes(“type”).Value
_comType = provAssembly.GetType(_scomType, True, True)

End If
If Not prov.SelectSingleNode(“DataAdapter”) Is Nothing Then
_sdaType = prov.SelectSingleNode(_

“DataAdapter”).Attributes(“type”).Value
_daType = provAssembly.GetType(_sdaType, True, True)

End If
If Not prov.SelectSingleNode(“DataReader”) Is Nothing Then
_sdrType = prov.SelectSingleNode(_

“DataReader”).Attributes(“type”).Value
_drType = provAssembly.GetType(_sdrType, True, True)

End If
If Not prov.SelectSingleNode(“Parameter”) Is Nothing Then
_sparmType = prov.SelectSingleNode(_

“Parameter”).Attributes(“type”).Value
_parmType = provAssembly.GetType(_sparmType, True, True)

End If
End If

Next
Catch e As Exception
_throwException(_
“Could not load the provider, check the DataFactory.config file”, e)

End Try
End Select

‘ Create an instance of the connection object
Try
If Not _conType Is Nothing Then

490 Day 18

LISTING 18.3 continued

24 3869 ch18 5/20/02 1:26 PM Page 490

Building a Data Factory 491

18

_connection = CType(Activator.CreateInstance(_conType, _
False), IDbConnection)

_connection.ConnectionString = _connect
End If

Catch e As Exception
_throwException(“Could not create connection object.”, e)

End Try
End Sub

You’ll first note in Listing 18.3 that a simple Select Case statement is used if
the provider is set to either “SqlClient” or “OleDb.” If so, the GetType method is

used to simply return the types and store them in private Type variables. However, in the
Case Else block, an XmlDocument object is used to load the DataFactory.config file into
memory where each Provider element is traversed to see whether it matches the
Provider property. If so, the shared LoadFrom method of the
System.Reflection.Assembly class is invoked to load the assembly that contains the
provider by creating an Assembly object.

LISTING 18.3 continued

You’ll notice in Listing 18.3 that the Assembly class is referenced using brack-
ets [] both in the declaration and when calling the shared method. This is
required in VB because Assembly is also a reserved keyword.

Note

Next, each of the five Type objects is populated by navigating to the appropriate XmlNode
in the document and using the GetType method of the Assembly object. If the
DataFactory.config file is in error, the private _throwException method is called. As you
probably guessed, the variables such as _conType and _sconType are declared at the
class level as Type and String objects, respectively.

After the types have been specified, the connection object is created and its connection
string is set using the shared CreateInstance method of the
System.Reflection.Activator class. Note that the connection object is cast to the
IDbConnection interface using the CType method because even though the actual object
is of type SqlConnection, for example, the connection will be referenced by the inter-
face. This is the technique that is used throughout the data factory class to dynamically
create provider objects.

Handling Data Types
You’ve probably also noticed in Listing 18.3 that the _paramTypes variable is populated
for each provider. For example, if SqlClient is the provider, the variable is set to

ANALYSIS

24 3869 ch18 5/20/02 1:26 PM Page 491

_sqlParamTypes. If OleDb is the provider, the variable is set to _oledbParamTypes, and
if there is a custom provider, the variable is set to _otherParamTypes. Each of these
three variables refers to shared Hashtable objects that contain the names of data types
and the values they correspond to in the SqlDbType, OleDbType, and DbType enumera-
tions, respectively. All four of the variables are declared at the class level as follows:

Private Shared _sqlParamTypes As New Hashtable()
Private Shared _oledbParamTypes As New Hashtable()
Private Shared _otherParamtypes As New Hashtable()
Private _paramtypes As Hashtable

The Hashtable objects themselves are populated in the shared constructor of the class, a
small snippet of which is shown in Listing 18.4.

LISTING 18.4 Referencing data types. The shared constructor populates the Hashtable
objects that map the names of data types to the values in the enumerations.

Shared Sub New()
‘ Setup the types used by the providers
_sqlParamTypes.Add(“bigint”, SqlDbType.BigInt)
_sqlParamTypes.Add(“bit”, SqlDbType.Bit)
_sqlParamTypes.Add(“varchar”, SqlDbType.VarChar)
_sqlParamTypes.Add(“char”, SqlDbType.Char)
_sqlParamTypes.Add(“string”, SqlDbType.NVarChar)
_sqlParamTypes.Add(“integer”, SqlDbType.Int)
‘ [Others omitted]

‘ OleDb types
_oledbParamTypes.Add(“BigInt”, OleDbType.BigInt)
_oledbParamTypes.Add(“Boolean”, OleDbType.Boolean)
_oledbParamTypes.Add(“BSTR”, OleDbType.BSTR)
_oledbParamTypes.Add(“string”, OleDbType.VarWChar)
_oledbParamTypes.Add(“int”, OleDbType.Integer)
_oledbParamTypes.Add(“long”, OleDbType.BigInt)
‘ [Others omitted]

‘ Other provider types
_otherParamtypes.Add(“string”, DbType.String)
_otherParamtypes.Add(“integer”, DbType.Int32)
_otherParamtypes.Add(“short”, DbType.UInt16)
_otherParamtypes.Add(“boolean”, DbType.Boolean)
_otherParamtypes.Add(“date”, DbType.Date)
‘ [Others omitted]

End Sub

The purpose of _paramTypes and of the Hashtable objects to which it refers is two-
fold. First, it allows the DataFactory class to associate the appropriate data types with

492 Day 18

24 3869 ch18 5/20/02 1:26 PM Page 492

Building a Data Factory 493

18

parameter objects, and second, it allows database-independent statement files to be writ-
ten. We’ll discuss these files later.

Abstracting the Statement
The creation of the provider Type objects and the connection object occur when an
instance of the DataFactory class is created. When one of its methods, such as
GetDataSet, is invoked, the class must then use the types to execute the method.

However, in addition to abstracting the provider, the DataFactory class also
abstracts the SQL that’s executed against the provider using the concept of state-

ments. A statement is simply the definition of the SQL and the set of parameters that
need to be executed. In this way, a statement is analogous to a command object, but isn’t
provider or database specific.

By abstracting the statement and the specification of parameters, the methods in the
DataFactory class—and in the data access classes that use it—needn’t be concerned
with database specifics. The mechanisms used to achieve this independence are statement
files formatted as XML used to encapsulate each specific statement executed by your
application.

For example, a method in a data access class written in C# that needs to return all the
books written by a particular author could be coded as follows:

DataFactory df = new DataFactory(_connect, “SqlClient”);
df.CacheFilePath = new DirectoryInfo(“.”);

HybridDictionary parms = new HybridDictionary();
parms.Add(“author”, “Fox, Dan”);
DataSet ds = new DataSet();
ds = df.GetDataSet(“GetTitles”, parms);

In this small code snippet, a new instance of the DataFactory class is created and is
passed both a connection string and the hardcoded value of “SqlClient” specifying that
SQL Server will be used.

Obviously, your classes could also read the provider value from a configura-
tion file, as was done with the connection string as shown on Day 9, “Using
Connections and Transactions.”

Note

NEW TERM

24 3869 ch18 5/20/02 1:26 PM Page 493

The CacheFilePath property is then set, which specifies the directory in which to search
for statement files (in this case, the default directory). The GetDataSet method is then
passed a HybridDictionary, which contains the parameters as name-value pairs along
with the string “GetTitles”, which is the name of the statement. Internally, the
DataFactory class translates the “GetTitles” string into the command object it repre-
sents by reading its information from a statement file.

494 Day 18

The HybridDictionary class can be found in the
System.Collections.Specialized namespace and is interesting because
when the collection is small, it stores its item in a ListDictionary. As the
number of items grows, it switches to using a Hashtable. As a result, this
class is useful when you don’t know ahead of time how many elements the
collection will contain.

Note

Because this process is the meat of the DataFactory class, we’ll take each aspect of
statements in turn, including parsing the statement file, using the statement cache, and
creating statement files.

Parsing the Statement File
As mentioned previously, the statement is abstracted into a statement file that specifies
the SQL and parameters needed to execute the statement. Listing 18.5 shows an example
of a statement file for the GetTitles statement.

LISTING 18.5 A statement file. This file abstracts the calling of the usp_GetTitles stored
procedure in a SQL Server database.

<?xml version=”1.0” encoding=”utf-8” ?>
<DataFactory>

<Statement name=”GetTitles” type=”StoredProcedure”>
<Sql>usp_GetTitles</Sql>
<Parameters>
<Param name=”author” SqlName=”@author” type=”string”
maxLength=”30” direction=”Input” />
<Param name=”title” SqlName=”@title” type=”string”
maxLength=”100” direction=”Input” />

</Parameters>
</Statement>

</DataFactory>

Although the file is straightforward, note that the Sql element specifies the
database-specific SQL syntax to use and can therefore also contain inline SQL

statements such as the following:

ANALYSIS

24 3869 ch18 5/20/02 1:26 PM Page 494

Building a Data Factory 495

18

<Sql>SELECT * FROM Titles WHERE author = @author</Sql>

After the GetDataSet method is invoked as in the earlier code snippet, the DataFactory
ultimately calls its private _getStatement method, which returns an IDbCommand object
with its parameters and connection fully specified. Figure 18.1 shows the process flow
for this method.

FIGURE 18.1
Returning a statement.
This diagram shows
the process flow of the
_getStatement method
that either pulls a
statement out of the
cache or creates it
dynamically.

Execute a statement Load and parse statement file

Create the command object
with parameters

Pull out the command
object and clone it

Populate the
parameters

Return
command

Is statement
in the cache?

No

Yes

As you can see from Figure 18.1, the _getStatement method initially determines
whether the statement has already been executed and therefore is in shared cache. If so,
and if the UseCache property is set to True, the statement is pulled out of the cache and
processed, as you’ll see in the next section.

However, if the statement is not in the cache, as would happen the very first time the
“GetTitles” statement is executed, the method must load and parse the statement file
and create the command and parameter objects. It does this by invoking a private
_getStatementFromFile method that looks in the path specified by CacheFilePath for a
file with the name statement.config. If the file is found, it is loaded and parsed using an
XmlTextReader as shown in Listing 18.6.

LISTING 18.6 Parsing the statement file. This method loads and parses the statement
file.

Private Function _getStatementFromFile(ByVal statement As String) As Statement
Dim found As Boolean
Dim s As statement
Dim xlr As XmlTextReader
Dim fileName, temp As String

‘ Get the file name
fileName = Me.CacheFilePath.FullName & “\” & statement & “.config”

24 3869 ch18 5/20/02 1:26 PM Page 495

If Not File.Exists(fileName) Then
_throwException(“File for statement “ & statement & _

“ does not exist.”, Nothing)
Else
xlr = New XmlTextReader(fileName)

End If

Try
xlr.WhitespaceHandling = WhitespaceHandling.None
xlr.MoveToContent()

Do While xlr.Read()
Select Case xlr.Name
Case “Statement”
If xlr.GetAttribute(“name”) = statement Then
‘ Found it
found = True
s = New statement()
s.Parms = New ArrayList()
s.CommandType = CType(System.Enum.Parse(s.CommandType.GetType, _
xlr.GetAttribute(“type”), True), CommandType)
xlr.Read()
s.SQL = xlr.ReadElementString(“Sql”)
s.Name = statement

End If
Case “Param”
If found Then
Dim p As New Parm()
p.Name = xlr.GetAttribute(“name”)
p.SQLName = xlr.GetAttribute(“SqlName”)
p.Type = xlr.GetAttribute(“type”)
temp = xlr.GetAttribute(“maxLength”)
If Not temp Is Nothing Then p.maxLength = CInt(temp)
temp = Nothing
temp = xlr.GetAttribute(“SourceColumn”)
If Not temp Is Nothing Then p.SourceColumn = temp
p.Direction = CType(System.Enum.Parse(p.Direction.GetType, _
xlr.GetAttribute(“direction”), True), ParameterDirection)

s.Parms.Add(p)
End If

End Select
Loop

If _daSwitch.Enabled Then
Trace.WriteLine(“Successfully read “ & fileName)

End If
Return s ‘ success

496 Day 18

LISTING 18.6 continued

24 3869 ch18 5/20/02 1:26 PM Page 496

Building a Data Factory 497

18

Catch e As Exception
_throwException(“Could not parse “ & fileName, e)

Finally
xlr.Close()

End Try
End Function

In Listing 18.6, the method first builds the file path and determines whether the
file exists using the System.IO.File class. If so, it loads the file using the

XmlTextReader object and parses it using a Do Loop and the Read method. The Select
Case statement then looks for Statement and Param elements in the statement file, which
are then parsed and loaded into Statement and Parm structures. The structures are
declared as Friend within the assembly that contains the DataFactory class as follows:

Friend Structure Statement
Public Name As String
Public SQL As String
Public CommandType As CommandType
Public Parms As ArrayList
Public Command As IDbCommand

End Structure

Friend Structure Parm
Public Name As String
Public SQLName As String
Public Type As String
Public Direction As ParameterDirection
Public maxLength As Integer
Public SourceColumn As String
End Structure

As you might expect, the Parms field of the structure holds an ArrayList used to contain
instances of the Parm structure. After the structures are populated, the Statement struc-
ture s is returned from the method. The Command field of the Statement structure is used
to reference the fully instantiated command object with its parameters.

LISTING 18.6 continued

ANALYSIS

Just as in the base classes we discussed yesterday, the DataFactory classes
uses a BooleanSwitch to control tracing output so that you can generate a
log file.

Note

24 3869 ch18 5/20/02 1:26 PM Page 497

Using the Statement Cache
To minimize the number of times the DataFactory class needs to access the file system,
and to avoid having to create command and parameter objects repeatedly, the class stores
statements that have already been accessed in a shared Hashtable.

As shown in Figure 18.1, the _getStatement method first checks the cache to see
whether the statement has already been loaded. It does this by checking a Hashtable
referred to with the _procs variable. Just as with the Hashtable objects used to store the
data types for each provider, the _procs variable points to a Hashtable that is provider
specific. This is required because multiple instances of the DataFactory using different
providers might be used in the same application. This is implemented by declaring
_procs and a synchronized Hashtable at the class level like so:

Private Shared _provCache As Hashtable = Hashtable.Synchronized(New Hashtable())
Private _procs As Hashtable

498 Day 18

The Hashtable class contains a shared Synchronized method that automati-
cally creates a thread-safe wrapper for the Hashtable class. This means that
multiple threads can add to the Hashtable concurrently.

Note

Then, when the Provider property is set, the _provCache Hashtable is inspected to see
whether a Hashtable already exists for the provider. If not, a new synchronized
Hashtable is created and added to _provCache. Listing 18.7 shows the definition of the
Provider property.

LISTING 18.7 Setting the provider. The Set block of the Provider property creates or
references the provider-specific Hashtable.

Public Property Provider() As String
‘ Sets up the provider to use
Get
Return _provider

End Get
Set(ByVal Value As String)
‘ See if there is a cache for this provider
If _provCache.ContainsKey(Value) Then
_procs = CType(_provCache(Value), Hashtable)

Else
_provCache.Add(Value, Hashtable.Synchronized(New Hashtable()))
_procs = CType(_provCache(Value), Hashtable)

End If
_provider = Value

24 3869 ch18 5/20/02 1:26 PM Page 498

Building a Data Factory 499

18

_createProviderTypes()
End Set

End Property

As you can see in Listing 18.7, the provider cache is first checked with the
ContainsKey method to see whether a Hashtable exists in its collection for the

provider (specified by Value). If so, the _procs variable simply references it; if not, a
new Hashtable is created and added to _provCache. In either case, the
_createProviderTypes method is then executed to create the provider-specific Type
objects, as shown in Listing 18.3.

The _getStatement method in Listing 18.8 then uses the _procs variable and the
_getStatementFromFile method to implement the algorithm shown in Figure 18.1.

LISTING 18.8 Creating and caching a statement. This method implements the process
flow shown in Figure 18.1.

Private Function _getStatement(ByVal statement As String, _
ByVal parms As HybridDictionary, ByVal setParmValue As Boolean) As IDbCommand
Dim s As statement
Dim com, newCom As IDbCommand
Dim p As Parm
Dim newParm As IDbDataParameter

‘ See if its in the cache
If Not Me.UseCache OrElse _procs.ContainsKey(statement) Then
If _daSwitch.Enabled Then
Trace.WriteLine(“Cache hit for “ & statement)

End If
‘ Pull it out of the cache
s = CType(_procs.Item(statement), statement)
newCom = CType(_cloneObject(s.Command), IDbCommand)

Else
s = _getStatementFromFile(statement)
‘ Build the command, add the parameters
com = CType(Activator.CreateInstance(_comType, False), IDbCommand)
com.CommandText = s.SQL
com.CommandType = s.CommandType

‘ Now add the parameters
For Each p In s.Parms
Dim args(1) As Object
args(0) = p.SQLName
‘ Get the type
If _paramtypes.ContainsKey(p.Type) Then

LISTING 18.7 continued

ANALYSIS

24 3869 ch18 5/20/02 1:26 PM Page 499

args(1) = _paramtypes(p.Type)
Else
_throwException(“Invalid type in statement “ & statement, Nothing)

End If

‘ Create the parameter object
newParm = CType(Activator.CreateInstance(_parmType, args), _
IDbDataParameter)
‘ Set its properties
newParm.Direction = p.Direction
If Not p.SourceColumn Is Nothing Then

newParm.SourceColumn = p.SourceColumn
End If
If p.maxLength > 0 Then newParm.Size = p.maxLength
newParm.Value = DBNull.Value
‘ Add it to the collection
com.Parameters.Add(newParm)

Next

s.Command = com

‘ Add it to the cache
If Me.UseCache Then
_procs.Add(statement, s)
‘ Clone the object that was just created
newCom = CType(_cloneObject(com), IDbCommand)
If _daSwitch.Enabled Then
Trace.WriteLine(“Added “ & statement & “ to cache.”)

End If
Else
newCom = com

End If

End If

‘ Populate the parameters
For Each p In s.Parms
If setParmValue AndAlso parms.Contains(p.Name) Then
CType(newCom.Parameters(p.SQLName), IDataParameter).Value = _
parms.Item(p.Name)

End If
Next

‘ Return the command with the populated parameters
newCom.Connection = _connection
Return newCom

End Function

500 Day 18

LISTING 18.8 continued

24 3869 ch18 5/20/02 1:26 PM Page 500

Building a Data Factory 501

18

The _getStatement method first checks the cache (_procs) for the statement,
and if it finds the statement, it extracts the Command field and passes it to the pri-

vate _cloneObject method to make a copy of the command object.

ANALYSIS

The _cloneObject method simply casts for the ICloneable interface and, if it
exists, uses its Clone method to create a copy of the object. This works for
both SqlCommand and OleDbCommand objects because they both support the
interface and perform deep copies (copies that also copy the object’s collec-
tions, such as the parameters collection). In order for custom providers to be
used with the DataFactory, therefore, their command objects would need to
do likewise.

Note

This must be done so that multiple instances of the DataFactory running on multiple
threads won’t be competing to work with the same command object. This is especially
the case because each command object must have its parameter values set differently
each time a method is called.

If the statement isn’t found in the cache, the appropriate command object is created
using the CreateInstance method of the Activator class. Its CommandText and
CommandType properties are then set to the values in the Statement structure. Next, the
parameters are created by traversing the Parms ArrayList of the Statement structure.
The interesting aspect of this code is that when the parameter object is created with the
CreateInstance method, it is passed an array (args) as the second argument. This array
is mapped to the constructor of the class, for example OleDbParameter, and contains the
name of the parameter and its data type. Note that the parameter type is retrieved from
the _paramtypes Hashtable we discussed earlier.

After the parameter object is created, its Direction, SourceColumn, Size, and Value

properties are all set and the parameter is added to the collection. The new command
object is then referenced in the Command field of the Statement structure.

As you can tell from this code, although some providers such as SqlClient
don’t require you to create all the parameter objects if you don’t use them,
the DataFactory does in fact create all the parameter objects defined in the
statement file regardless of whether they will ultimately be called. If the
parameters have default values in the stored procedure, a client needn’t
populate its HybridDictionary object with values for all the parameters.

Note

24 3869 ch18 5/20/02 1:26 PM Page 501

If the cache is in use, the statement is added to the cache for future use and a new com-
mand is created that will actually be used during this execution.

For this particular execution, then, the parameter objects need to be populated with val-
ues. This is accomplished by traversing the Parms ArrayList and determining whether
the HybridDictionary passed into the method from the client (that contains author =
“Fox, Dan” for example) contains parameters of the same name. If so, the Value proper-
ty is populated by retrieving the value from the parameter. This technique was used so
that clients needn’t add the parameters to the HybridDictionary in any particular order
and needn’t provide values for all the parameters.

Finally, the command object is associated with the private connection object and is
returned. At this point, a fully populated command object with the appropriate parameter
values has been created. It can then be used to execute the command through the
ExecuteScalar or ExecuteDataReader method, or to populate a DataSet, DataTable, or
data reader.

Creating Statement Files
Of course, using statement files implies that someone or something must create a state-
ment file for each stored procedure or SQL statement executed against the data store. In
particularly large applications, this can be a daunting task.

To automate the process, the DataFactory exposes shared CreateSqlFile and
CreateSqlFiles methods, which create a file for a single SQL Server stored procedure
and for all the stored procedures in a database, respectively. Both methods are overloaded
and end up calling the private _createSqlFile and _createSqlFiles methods.

Most of the work is accomplished in the _createSqlFile method, which is passed the
SqlConnection object, the name of the stored procedure, the directory to create the file
in, and a flag indicating whether to populate the SourceColumn attribute. The method
relies on the sp_procedure_params_rowset system stored procedure, and uses a
SqlDataReader to read the procedure metadata returned and an XmlTextWriter object to
write out the statement file, as shown in Listing 18.9.

LISTING 18.9 Creating statement files. This method creates a statement file for a single
stored procedure.

Private Shared Sub _createSqlFile(ByVal con As SqlConnection, _
ByVal procName As String, ByVal cacheDir As DirectoryInfo, _
ByVal defaultSourceColumn As Boolean)
‘ Writes the file for a stored procedure in SQL Server 2000

502 Day 18

24 3869 ch18 5/20/02 1:26 PM Page 502

Building a Data Factory 503

18

Dim com As New SqlCommand(“sp_procedure_params_rowset”, con)
Dim dr As SqlDataReader
Dim statement As String
Dim fs As FileStream
Dim xlr As XmlTextWriter
Dim closeOnFinish As CommandBehavior = CommandBehavior.Default

com.CommandType = CommandType.StoredProcedure
com.Parameters.Add(“@procedure_name”, procName)

‘ Take off the prefix if one exists
If Left(procName, Len(ProcPrefix)) = ProcPrefix Then
statement = Mid(procName, 5)

Else
statement = procName

End If

Dim fileName As String = cacheDir.FullName & “\” & statement & “.config”

Try
If con.State = ConnectionState.Closed Then
closeOnFinish = CommandBehavior.CloseConnection
con.Open()

End If

dr = com.ExecuteReader(closeOnFinish)

‘ Open the file
If File.Exists(fileName) Then
File.Delete(fileName)

End If

fs = New FileStream(fileName, FileMode.CreateNew)
xlr = New XmlTextWriter(fs, Text.Encoding.Default)
xlr.Indentation = 2
xlr.Formatting = Formatting.Indented
xlr.WriteStartDocument()
xlr.WriteComment(“Generated by the DataFactory at “ & _
Now.ToLongDateString())
xlr.WriteStartElement(“DataFactory”)
xlr.WriteStartElement(“Statement”)
xlr.WriteAttributeString(“name”, statement)
xlr.WriteAttributeString(“type”, “StoredProcedure”)
xlr.WriteElementString(“Sql”, procName)
xlr.WriteStartElement(“Parameters”)

Do While dr.Read
xlr.WriteStartElement(“Param”)
xlr.WriteAttributeString(“name”, Mid(dr(“PARAMETER_NAME”).ToString(), 2))

LISTING 18.9 continued

24 3869 ch18 5/20/02 1:26 PM Page 503

xlr.WriteAttributeString(“SqlName”, dr(“PARAMETER_NAME”).ToString())
xlr.WriteAttributeString(“type”, dr(“TYPE_NAME”).ToString())
If defaultSourceColumn Then
xlr.WriteAttributeString(“SourceColumn”, _
Mid(dr(“PARAMETER_NAME”).ToString(), 2))

End If
If Not IsDBNull(dr(“CHARACTER_MAXIMUM_LENGTH”)) Then
xlr.WriteAttributeString(“maxLength”, _
dr(“CHARACTER_MAXIMUM_LENGTH”).ToString)

End If
Select Case dr(“PARAMETER_TYPE”)
Case 4
xlr.WriteAttributeString(“direction”, “ReturnValue”)

Case 1
xlr.WriteAttributeString(“direction”, “Input”)

Case 2
xlr.WriteAttributeString(“direction”, “InputOutput”)

Case 3
xlr.WriteAttributeString(“direction”, “Output”)

End Select
xlr.WriteEndElement() ‘ Param

Loop
xlr.WriteEndDocument()

Catch e As Exception
Throw New Exception(“Could not create XML for “ & procName, e)

Finally
If Not dr Is Nothing Then dr.Close()
If Not xlr Is Nothing Then xlr.Flush()
If Not fs Is Nothing Then fs.Close()

End Try

End Sub

You’ll notice after setting up the call to the stored procedure, the method uses the
shared field ProcPrefix to remove any naming convention that the procedure

might use to create a more generic statement and therefore file name. Although it can be
changed, by default ProcPrefix is set to “usp_”—a common naming convention for
user-defined SQL Server stored procedures.

The remainder of the method simply executes the stored procedure and traverses the
results while using the methods of the XmlTextWriter to write out the statement file.

A client could then call one of the overloaded signatures like so:

DataFactory.CreateSqlFile(connect, “usp_GetSchedule”, _
new DirectoryInfo(“C:\\ComputeBooks”),true);

504 Day 18

LISTING 18.9 continued

ANALYSIS

24 3869 ch18 5/20/02 1:26 PM Page 504

Building a Data Factory 505

18

This would result in the file GetSchedule.config being created in the ComputeBooks
directory.

One of the most interesting aspects of these shared methods, however, is that the
CreateSqlFiles method operates asynchronously so that the statement files can be cre-
ated on a separate thread. This is accomplished using an asynchronous delegate declared
at the class level like so:

Private Delegate Sub WriteSqlFiles(ByVal connect As String, _
ByVal cachedir As DirectoryInfo, _
ByVal defaultSourceColumn As Boolean)

The CreateSqlFiles method can then use the delegate to execute the _createSqlFiles
method on a background thread like so:

Public Shared Sub CreateSqlFiles(ByVal connect As String, _
ByVal cacheDir As DirectoryInfo)
‘ Create files for each of the stored procs in
‘ the database on a separate thread

Dim async As New AsyncCallback(AddressOf _createSqlCallback)
Dim createFiles As New WriteSqlFiles(AddressOf _createSqlFiles)
createFiles.BeginInvoke(connect, cacheDir, False, async, Nothing)

‘ Now this thread is free
End Sub

Here, the _createSqlCallback method will be called when the _createSqlFiles
method completes on the background thread. This _createSqlCallback method simply
calls the EndInvoke delegate and raises the SqlFilesCreated event.

For more information on using asynchronous delegates, see the
“Asynchronous Design Pattern Overview” topic in the online documentation
or my articles on .NET patterns on InformIT.com.

Note

Using ASP.NET Caching

Although not shown today, the DataFactory class can also be used to take advantage of
ASP.NET caching to enable the site to be dynamically updateable. If the DataFactory class were
used from an ASP.NET application, items associated with each statement could be added to the
System.Web.Caching.Cache object using its Add or Insert methods. When items are added to
the cache, they can be associated with a file dependency (CacheDependency object) so that
when the file changes, the item is automatically removed from the cache. When this happens,
your ASP.NET application can be notified using the CacheItemRemovedCallback delegate. It can

24 3869 ch18 5/20/02 1:26 PM Page 505

Using the DataFactory
Now that you’ve seen how the DataFactory class is implemented internally, a look at
several of the public methods it exposes will illustrate how the implementation is used.
First, consider the ExecuteScalar method, which exposes three signatures that include
the statement, parameters, and optionally an Integer passed in by reference to catch the
return value, and a transaction object to associate with the command. All three public
methods ultimately call the private _executeScalar method shown in Listing 18.10.

LISTING 18.10 Implementing the DataFactory. This private method is called by the pub-
lic ExecuteScalar methods.

Private Function _executeScalar(ByVal statement As String, _
ByVal parms As HybridDictionary, ByRef returnVal As Integer, _
ByVal transaction As IDbTransaction) As Object
‘ Return a single value using ExecuteScalar

Dim com As IDbCommand
Dim val As Object
Dim leaveOpen As Boolean = False

‘ Get the command
com = _getStatement(statement, parms, True)
If Not transaction Is Nothing Then
com.Transaction = transaction

End If

Try
If com.Connection.State = ConnectionState.Closed Then
com.Connection.Open()

Else
leaveOpen = True

End If
val = com.ExecuteScalar()
Dim p As IDataParameter
For Each p In com.Parameters
If p.Direction = ParameterDirection.ReturnValue Then
returnVal = CInt(p.Value)
Exit For

506 Day 18

then call the Remove method of the DataFactory instance to remove the item from the
DataFactory’s cache as well. In this way, an administrator can re-create statement files using
an administrative Web page that calls the shared methods discussed in this section. The
application will automatically use the new versions of the files the next time the statement
is executed.

24 3869 ch18 5/20/02 1:26 PM Page 506

Building a Data Factory 507

18

End If
Next
Return val

Catch e As Exception
_throwException(_

“Failed to execute ExecuteScalar method for statement “ & statement, e)
Finally
If Not leaveOpen Then com.Connection.Close()

End Try

End Function

As you can see in Listing 18.10, the method relies on the private _getStatement
method to return an IDbCommand object with fully populated parameters. The

command object is then associated with a transaction if one is passed to the method.
Because the connection object might already be open (for example, if a transaction is
active), the method then checks to see whether the connection needs to be opened. After
calling the ExecuteScalar method and capturing the returned value, the parameters are
traversed to catch the return value. Finally, the value returned from ExecuteScalar is
returned to the caller and the connection is closed if necessary.

In another example, the _getDataSet method shown in Listing 18.11 is called by the
public GetDataSet methods. Unlike the _executeScalar method, the retrieval of the
command object is wrapped into the private _setupDataAdapter method that dynamical-
ly creates the data adapter and populates its SelectCommand with the command object
returned in the statement. After the data adapter is created, the DataSet is filled and its
ExtendedProperties collection is populated with metadata that your data access classes
might be able to use.

LISTING 18.11 Returning a DataSet. This private method is used by the public
GetDataSet methods.

Private Function _getDataSet(ByVal statement As String, _
ByVal parms As HybridDictionary, _
ByVal transaction As IDbTransaction) As DataSet
‘ Returns a DataSet given the statement

Dim da As IDataAdapter
Dim ds As New DataSet()

da = _setupDataAdapter(statement, parms, transaction)

LISTING 18.10 continued

ANALYSIS

24 3869 ch18 5/20/02 1:26 PM Page 507

Try
‘ Fill and return
da.MissingMappingAction = MissingMappingAction.Passthrough
da.MissingSchemaAction = MissingSchemaAction.AddWithKey
da.Fill(ds)
ds.DataSetName = statement
ds.ExtendedProperties.Add(“Creator”, “DataFactory class”)
ds.ExtendedProperties.Add(“TimeCreated”, Now.ToShortTimeString)
ds.ExtendedProperties.Add(“Statement”, statement)
ds.ExtendedProperties.Add(“Parameters”, parms)
Return ds

Catch e As Exception
_throwException(“Could not fill DataSet”, e)

End Try

End Function

By using these public methods, the methods of a data access class such as the
_getTitles method shown yesterday in Listing 17.4 can be simplified as shown in
Listing 18.12.

LISTING 18.12 Using the DataFactory. This method uses the DataFactory to retrieve
titles.

Private Function _getTitles(ByVal author As String, ByVal title As String, _
ByVal isbn As String, ByVal lowPubDate As Date, _
ByVal catID As Guid) As DataSet

Dim parms As New HybridDictionary()

Try
If Not isbn Is Nothing AndAlso isbn.Length > 0 Then
parms.Add(“isbn”, isbn)

Else
If Not title Is Nothing AndAlso title.Length > 0 Then
parms.Add(“titles”, title)

End If
If Not author Is Nothing AndAlso author.Length > 0 Then
parms.Add(“author”, author)

End If
If lowPubDate.Equals(Nothing) Then
parms.Add(“lowPubDate”, lowPubDate)

End If
If Not catID.Equals(Guid.Empty) Then
parms.Add(“catID”, catID)

End If
End If

508 Day 18

LISTING 18.11 continued

24 3869 ch18 5/20/02 1:26 PM Page 508

Building a Data Factory 509

18

Return _df.GetDataSet(“GetTitles”, parms)
Catch e As DataFactoryException
Call MyBase.ThrowComputeBookException(“GetTitles Failed”, e)

End Try
End Function

Note that the _df variable is a class-level private variable that references an instance of
the DataFactory class created in the constructor of the Books class. The key differences
to note between Listing 18.12 and the original method in Listing 17.4 are as follows:

• When using the DataFactory, the method doesn’t need to create or call any
provider-specific objects. This is provider independence.

• When using the DataFactory, the method doesn’t need to know which stored pro-
cedure is executed to return the data nor the actual names of the parameters
exposed by the procedure. This is database independence.

• When using the DataFactory, the number of lines of code in the method was
reduced by 35%.

Measuring Performance
The obvious issue with using a data factory approach like the one presented today is the
cost of creating type objects for the provider dynamically and reading the statement files
from the file system. Keep in mind that the performance hit incurred when creating the
provider types happens only when the DataFactory is instantiated. Further, reading a
particular statement file should occur only once in the entire application, which will have
a negligible effect on performance.

In fact, in tests conducted with Microsoft Application Center Test (ACT) on a sample
ASP.NET application using the DataFactory, it was discovered that after the application
was running, the performance was actually slightly better using the DataFactory than
when not using it. Performance could further be enhanced by caching the provider-
specific type objects in a shared data structure as well. This would be especially effective
if the DataFactory used the ODBC or custom .NET Data Provider because the
DataFactory.config file wouldn’t need to be parsed.

Summary
By creating an internal data factory, you can not only reduce the amount of code you
have to write in your data access classes, but also allow them to be provider and database
independent, while maintaining performance and even increasing it with the use of

LISTING 18.12 continued

24 3869 ch18 5/20/02 1:26 PM Page 509

caching. You can use the approach discussed today as a template for building your own
data factory, or download the code from the Sams Web site.

Before you design your data access classes, you need to think about how they’ll be used.
Nowhere is this more important than in the implementation of XML Web Services.
Tomorrow, you’ll learn how ADO.NET can be used effectively in the XML Web Services
you design.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What are the benefits of creating a data factory class?

Using a data factory can have several benefits, including reducing the amount of
code you have to write in your data access classes, abstracting the provider used,
abstracting database-specific syntax, and caching command objects for reuse.

2. What method can you use to dynamically load assemblies and create objects based
on their type information?

In the System.Reflection namespace, the Assembly class exposes shared
LoadFrom, Load, and LoadWithPartialName methods to load an assembly into
memory, whereas the Activator class exposes a shared CreateInstance method
to create instances of a type at runtime.

3. How can database independence be achieved in a data factory?

To make the data factory database independent, you must not only abstract the
provider objects used but also the SQL syntax used to execute statements against
the data store. The DataFactory class shown today uses XML files, called state-
ment files, in which the database-specific SQL syntax remains.

Exercise
Write a simple method that uses the DataFactory to update the Description column of
a particular ISBN and then deletes the ISBN in the context of a single local transaction.

Answers for Day 18
Exercise Answer
One possible solution to the exercise in C# is as follows:

510 Day 18

24 3869 ch18 5/20/02 1:26 PM Page 510

Building a Data Factory 511

18

virtual void UpdTitles(string isbn, string desc)
{

// Create the DataFactory
DataFactory e = new DataFactory(_connect,”SqlClient”);

// Start a transaction
IDbTransaction trans = e.BeginTransaction(IsolationLevel.ReadCommitted);

// Setup the parameters
HybridDictionary parms = new HybridDictionary();
parms.Add(“isbn”, isbn);
parms.Add(“desc”, desc);

try
{

int retval = 0;
int rows = e.ExecuteNonQuery(“UpdateTitle”, parms,ref retval,trans);
Console.WriteLine(rows); //should be 1
parms.Remove(“desc”);
rows = e.ExecuteNonQuery(“DeleteTitle”, parms, ref retval, trans);
Console.WriteLine(rows); //should be 1
// success so commit the transaction
trans.Commit();

}
catch (DataFactoryException ex)
{

// Error so rollback
trans.Rollback();
Console.WriteLine(ex.Message);
Console.WriteLine(ex.InnerException.Message);

}
}

The statement files for UpdateTitle and DeleteTitle can then be written as follows:

<?xml version=”1.0” encoding=”utf-8” ?>
<DataFactory>

<Statement name=”UpdateTitle” type=”Text”>
<Sql>UPDATE Titles SET Description=@desc WHERE isbn = @isbn</Sql>
<Parameters>

<Param name=”isbn” SqlName=”@isbn” type=”string”
maxLength=”10” direction=”Input” />

<Param name=”desc” SqlName=”@desc” type=”string”
maxLength=”250” direction=”Input” />

</Parameters>
</Statement>

</DataFactory>

<?xml version=”1.0” encoding=”utf-8” ?>
<DataFactory>

<Statement name=”DeleteTitle” type=”Text”>

24 3869 ch18 5/20/02 1:26 PM Page 511

<Sql>DELETE FROM Titles WHERE ISBN=@isbn</Sql>
<Parameters>

<Param name=”isbn” SqlName=”@isbn” type=”string”
maxLength=”10” direction=”Input” />

<Param name=”returnVal” SqlName=”@RETURN_VALUE” type=”integer”
maxLength=”4” direction=”ReturnValue” />

</Parameters>
</Statement>

</DataFactory>

512 Day 18

24 3869 ch18 5/20/02 1:26 PM Page 512

DAY 19

WEEK 3

ADO.NET and XML Web
Services

As you learned on Day 1, “ADO.NET in Perspective,” one of the design goals of
ADO.NET was to efficiently support the multi-tier programming model that has
been widely adopted in the industry in the last several years. To that end, you’ve
learned how you can use the DataSet object to cache data returned from a data
store, and then pass it between tiers of a distributed application by taking advan-
tage of the serialization done behind the scenes by the common language run-
time. Although this works great when the tiers are located on a single machine
or a set of machines within a single data center, it also supports intranet and
Internet scenarios in which the tiers are distributed across an organization or
exist in entirely different organizations. In these cases, the glue that binds the
tiers is XML Web Services. As you’ll learn today, ADO.NET—because of its
support for XML—integrates nicely with an XML Web Services model.

Specifically, today you’ll learn

• How DataSet objects can be exposed through an XML Web Service

• How DataSet objects are consumed by an XML Web Service client

• How to update data through an XML Web Service using ADO.NET

25 3869 ch19 5/20/02 1:17 PM Page 513

Exposing Data Through a Web Service
To expose data retrieved using ADO.NET with an XML Web Service, you can rely on
the deep integration of Web services standards with the .NET Framework and VS .NET.
This integration, coupled with the XML integration already present in ADO.NET,
enables developers to expose ADO.NET through a Web service as simply as exposing it
through any data access class.

The remainder of this section will provide a short overview of XML Web Services tech-
nology, followed by the steps you need to implement to use Web services with
ADO.NET.

XML Web Services Technology
Simply put, an XML Web Service provides a programmatic interface to the Web
using standard XML grammars. The most notable of these interfaces are SOAP

(Simple Object Access Protocol), which is used to specify the message format, and
WSDL (Web Services Description Language, usually pronounced “wizz-dul”), which is
used to describe the Web service. Both of these are controlled by the World Wide Web
Consortium (W3C). For example, the .NET Framework supports the SOAP 1.1 specifica-
tion, which you can find at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

514 Day 19

For a more complete discussion of Web service protocols, see Chapter 11 of
my book Building Distributed Applications with Visual Basic .NET (published
by Sams) and the SOAP and WSDL specifications on the W3C Web site at
www.w3c.org.

Note

These standard protocols, along with HTTP, of course, provide a remote procedure
call–like (RPC) communication model that is message based. Further, the ubiquity of
HTTP and the wide adoption of XML and SOAP in the industry make the availability of
Web services to any device and platform a reality. In this way, Web services eliminate
many of the religious wars of the late 1990s over object technologies (such as
COM/DCOM versus CORBA versus RMI) by providing an industry standard way of
exposing functionality and consuming it. This approach means that a Web service is con-
ceptually similar to a middle-tier component that exposes its methods as a “black box.”
However, Web services don’t rely on proprietary component architectures—instead, they
use Internet standards that make them platform and language independent. These Web
services then become the building blocks for application development as developers
incorporate them into their applications to provide essential features.

NEW TERM

25 3869 ch19 5/20/02 1:17 PM Page 514

ADO.NET and XML Web Services 515

19

In the long run, the low bar for entry and reliance on industry standards will free
developers from having to use any specific language or toolset to create software that
interoperates. For example, in the past, developers on the Windows platform built COM
components and COM clients that could interoperate with each other using DCOM.
However, this interoperation rarely, if ever, went beyond the developer’s organization
because of the limitations of DCOM and the absence of COM on any but the Windows
platform. One of the key aspects of a Web service is that it abstracts the implementation
of the application logic from the means used to communicate with it so that consumers
of Web Services need only know where the service is located and the signatures of its
methods. In this way, you can think of a Web service as simply another interface, albeit a
programmatic one, to components you build with VB .NET.

In the short term, using a development tool that abstracts much of the heavy lifting
required to build Web services, such as VS .NET, enables developers to remain highly
productive and build Web services within their language of choice. With VS .NET,
Microsoft is betting that as developers begin to adopt the Web service model, it will
become the fundamental way in which devices (not just PCs, but also phones, PDAs, and
a host of other Internet-enabled hardware) communicate. In addition, it will become as
routine for applications to expose and consume Web services as it is today for applica-
tions to reuse components.

Building the Data Access Method
Because a Web service can be thought of as simply another interface to your data, you
should strive to adhere to the multi-tier architecture discussed previously this week. In
other words, you should create a data services tier that your Web services wrap to expose
their data rather than writing data access code directly in the Web service itself. Taking
this approach not only provides the layer of abstraction that makes maintenance and
extensibility simpler, but also allows the data services code to be reused in ASP.NET
pages as well.

For example, ComputeBooks might want to create a Web service that other public sites
can call to retrieve a list of the top-selling books on the ComputeBooks site. This rela-
tionship is mutually beneficial. For example, a site that provides technical information
for software developers is able to provide its users with information about what books
(and therefore technologies) are currently hot, whereas ComputeBooks sees increased
Web traffic resulting from the clickthroughs from the site using the Web service. Further,
it’s obvious that this information would also be useful to provide on ComputeBooks’ own
public site so that users browsing for books could see which books are popular. By
abstracting the code required to retrieve the top-selling books into a method of a data
access class (that returns a DataSet for example), it could be reused in both the Web ser-
vice and ASP.NET page.

25 3869 ch19 5/20/02 1:17 PM Page 515

As a result, ComputeBooks first creates or adds a method to an existing data access class
that queries the database to return the books. This class relies on a version of the
ComputeBooksDABase class we discussed on Day 17, “ADO.NET in the Data Services
Tier,” that also incorporates support for the DataFactory class you learned about yester-
day. Listing 19.1 shows the class definition and the TopSellers method.

LISTING 19.1 Exposing top sellers. This class and method exposes the top five best-
selling books for a specified time period.

Imports ComputeBooks.Data
Imports System.Collections.Specialized

Public Class WebData : Inherits ComputeBooksDABase

Public Sub New(ByVal connect As String, ByVal provider As String)
MyBase.New(connect, provider)

End Sub

Public Function TopSellers(ByVal daysOut As Short) As DataSet

Dim ds As New DataSet(“Catalog”)
Dim parms As New HybridDictionary()

parms.Add(“daysOut”, daysOut)

Try
ds = MyBase.Factory.GetDataSet(“Top5Sellers”, parms)
ds.Tables(0).TableName = “TopSellers”
ds.Namespace = “www.computebooks.com”
ds.Prefix = “cbks”
Return ds

Catch e As Exception
MyBase.ThrowComputeBookException(“TopSellers operation failed”, e)

End Try

End Function
End Class

In Listing 19.1, the WebData class includes a parameterized constructor that
allows clients to pass in both the connection string and the provider to use. The

base classes’ constructor uses this information to initialize the instance of the
DataFactory class that it uses internally.

You’ll also notice that because the ComputeBooksDABase class exposes the DataFactory
class as a protected property called Factory, it can be accessed in the TopSellers
method using the MyBase (base in C#) keyword. The GetDataSet method is then called

516 Day 19

ANALYSIS

25 3869 ch19 5/20/02 1:17 PM Page 516

ADO.NET and XML Web Services 517

19

and passed the statement name “Top5Sellers”. “Top5Sellers” encapsulates the stored
procedure usp_Top5Sellers, which takes as its only parameter the number of days in the
past to consider. For example, passing 30 into the TopSellers method, and thus into the
stored procedure, returns the top five best-selling books over the past 30 days.

You’ll also notice that the TableName property of the DataTable is populated to ensure
that the XML is returned with the proper element names, along with Namespace and
Prefix properties of the DataSet.

When the data services tier contains the method that the Web service will call,
ComputeBooks can create the Web service to expose the data.

Building the Web Service
Within VS .NET, Web services are exposed in an ASP.NET Web Application or Web
Service project as .asmx files. After opening or creating a project, you can click on the
File menu or the project in the Solution Explorer and choose the Add New Item menu.
This will invoke the Add New Item dialog from which you can choose Web Service to
add the .asmx file with its associated code file to the project.

The methods of the Web service must be placed into a class (typically inherited from
System.Web.Services.WebService) that is defined in the associated code file.

Although not required, by inheriting from WebService, the Web service class
has access to the HTTP context information that includes the Session and
Application state objects provided by ASP.NET.

Note

The default behavior is for VS .NET to create a code-behind file that has the
same name as the .asmx file with the appropriate language extension (.cs or .vb).

What makes this programming model really productive is the fact that the methods them-
selves are simply defined just as any other method in a class would be, with the excep-
tion that the method is marked with the WebMethod attribute from the
System.Web.Services namespace. This attribute indicates that this method should be
exposed through the Web service. In this way, the HTTP handler for the .asmx file does
all the work by encapsulating the code required to listen for requests, parsing them,
invoking the proper method, and sending results. The end result is that developers
needn’t work directly with SOAP or WSDL.

For example, ComputeBooks could create a Web service in C# called Catalog that expos-
es the GetTopSellers method. This is shown in Listing 19.2 (minus the Web services
designer-generated code).

NEW TERM

25 3869 ch19 5/20/02 1:17 PM Page 517

LISTING 19.2 Creating the Web service method. This listing shows the code for the Web
service that exposes the method used to return the top-selling books.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using ComputeBooks.Data;
using System.Configuration;

namespace ComputeBooks.Web
{

/// <summary>
/// ComputeBooks Catalog web service
/// </summary>
[WebService(Namespace=”www.computebooks.com/catalog”,
Description=”ComputeBook’s Catalog Web Service”,
Name=”ComputeBooksCatalog”)]
public class Catalog : System.Web.Services.WebService
{
public Catalog()
{
InitializeComponent();

}

[WebMethod(Description=”Retrieves the 5 top selling books”,
EnableSession=false)]

public DataSet GetTopSellers(short daysOut)
{

DataSet books;

// Read the configuration information
string connect =
ConfigurationSettings.AppSettings[“SqlConnect”].ToString();

string provider =
ConfigurationSettings.AppSettings[“Provider”].ToString();

// Instantiate the data access class and call the method
WebData data = new WebData(connect,provider);
books = data.TopSellers(daysOut);
return books;

}
}

}

518 Day 19

25 3869 ch19 5/20/02 1:17 PM Page 518

ADO.NET and XML Web Services 519

19

What you should notice in Listing 19.2 is that the entire Web service is encapsu-
lated in the Catalog class within the ComputeBooks.Web namespace. The only

method it exposes through the service (the only one with the WebMethod attribute) is
GetTopSellers. This method accepts the number of days in the past for which to base
the calculation and passes this value to the TopSellers method of the data access class
shown in Listing 19.1. However, before calling the method, the Web service is responsi-
ble for retrieving the connection string and .NET Data Provider to use. In this case, those
values are specified in the Web.config file within the appSettings element like so:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
<appSettings>
<add key=”SQLConnect” value=”data source=ssosa;
initial catalog=ComputeBooks;user id=user;pooling=true” />
<add key=”Provider” value=”SqlClient” />

</appSettings>
</configuration>

These values are then passed to the constructor of the WebData class and subsequently to
the DataFactory class before calling the TopSellers method. When the DataTable has
been retrieved, it is simply returned from the Web service.

You’ll also notice that the Description property is specified in both the WebMethod and
WebService attributes to include the description of the Web service and the method to
display to a user using the test harness page created by VS .NET. The WebService
attribute also includes an explicit namespace declaration that will apply to all XML ele-
ments that directly pertain the Web service. In addition, the WebMethod attribute includes
the EnableSession property that explicitly specifies that this method doesn’t require the
use of ASP.NET session state.

ANALYSIS

All Web service methods do automatically have access to the Application
object and therefore ASP.NET application state. However, to gain access to
session state, the method must have the EnableSession property set to true.

Note

After the Web service has been compiled, it can be navigated to and tested simply by
calling the Catalog.asmx file, as shown in Figure 19.1.

25 3869 ch19 5/20/02 1:17 PM Page 519

You’ll notice in Figure 19.1 that the test harness page shows the method, its description,
and the arguments it exposes. After entering 30 in the daysOut parameter and pressing
the Invoke button, the XML document in the foreground is produced. The interesting
aspect of this document is that it contains the XSD schema along with the DataSet seri-
alized to a DiffGram. In this way, the caller of the Web service automatically has the
information necessary to validate and use the XML.

520 Day 19

FIGURE 19.1
Testing a Web service.
This screenshot shows
the test harness page
dynamically created by
ASP.NET that can be
used to test the Web
service. The window in
the foreground is the
result of testing the
Web service using the
Invoke button.

Actually, SOAP defines two ways that a Web service method,
referred to as an operation, can be encoded in a request or

response. The example here assumes the employment of document-style
encoding (discussed in Section 5 of the SOAP specification) in which an XSD
schema in the WSDL document is used to describe both the request and
response. When using the document style, you can also specify how the
parameters are to be encoded by explicitly using the SoapDocumentService
attribute. Alternatively, you can use the SoapRpcMethod attribute on the Web
method to specify the RPC encoding style in which parameters and return
values are simply encoded using their names. However, if you use the RPC
style, the Web service can’t return objects such as the DataSet because no
XSD schema will be generated. If you try to do so, an exception will be
thrown.

Note NEW TERM

25 3869 ch19 5/20/02 1:17 PM Page 520

ADO.NET and XML Web Services 521

19

Consuming Data in a Web Service
After the Web service has been built and exposed on the Web server, a client will typical-
ly call it by building a SOAP message and sending it to the server. However, Web ser-
vices created by VS .NET by default also can be called using an HTTP-GET or POST. In
this way, clients that don’t support SOAP can still invoke the Web service. For example,
a client can issue the following HTTP-GET to call the GetTopSellers method of the
Catalog Web service:

GET /Catalog.asmx/GetTopSellers?daysOut=value HTTP/1.1
Host: www.computebooks.com

The result will be an XML document that includes the schema of the DataSet along with
the serialized DiffGram encoded as follows:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version=”1.0” encoding=”utf-8”?>
<DataSet xmlns=”www.computebooks.com/catalog”>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”>schema</schema>xml</DataSet>

However, clients that support SOAP can build a SOAP message and expect a SOAP mes-
sage in return, like those shown in Listing 19.3.

LISTING 19.3 Calling the Web service. This listing shows the SOAP request and response
messages that can be used with the Catalog Web service.

Request:
POST /Catalog.asmx HTTP/1.1
Host: www.computebooks.com
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: “www.computebooks.com/catalog/GetTopSellers”

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<GetTopSellers xmlns=”www.computebooks.com/catalog”>
<daysOut>short</daysOut>

</GetTopSellers>
</soap:Body>

</soap:Envelope>

Response:
HTTP/1.1 200 OK

25 3869 ch19 5/20/02 1:17 PM Page 521

Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>
<GetTopSellersResponse xmlns=”www.computebooks.com/catalog”>

<GetTopSellersResult>
<xsd:schema>schema</xsd:schema>xml</GetTopSellersResult>

</GetTopSellersResponse>
</soap:Body>

</soap:Envelope>

You’ll notice in Listing 19.3 that because document-style encoding is used in the
Web service, the response message includes the XSD schema of the DataSet as

well as the XML itself in the GetTopSellersResult element.

As a result, any client on any platform that can use HTTP, build the appropriate SOAP
request message, and parse the SOAP response is able to call the Web service and use
the data returned in the DataSet. From the ADO.NET perspective, the great thing about
this architecture is that you have to work with only one type of object, the DataSet, to
handle your data both internally in your data services tier and externally when you
expose your data through a Web service. This simplifies the programming model and
extends the reach of your applications beyond the Windows platform.

Using VS .NET
Although clients can certainly use HTTP-GET or POST or build the SOAP request
message themselves, for a client using VS .NET, support is built into IDE to allow both
discovery and referencing of Web services to take place. For example, assume that a fic-
tional company called Cold Rooster Consulting wants to incorporate the ComputeBooks
Catalog Web service into its Internet site to allow its customers to view the top-selling
books. If the site is built with VS .NET in any of the .NET languages, Cold Rooster can
do this by clicking on Add Web Reference from the context menu associated with the
project in the Solution Explorer window. The resulting dialog contains an address bar
that enables the developer to enter the URL of the Catalog Web service. By entering the
address of the .asmx file or the .asmx file appended with the query string ?WSDL, the ser-
vice will be located and the right Available References window populated, as shown in
Figure 19.2.

522 Day 19

LISTING 19.3 continued

ANALYSIS

25 3869 ch19 5/20/02 1:17 PM Page 522

ADO.NET and XML Web Services 523

19

If the developer doesn’t know the URL of the Web service or wants to search for
other Web services, he or she can click on the Microsoft UDDI link in the win-

dow on the left. The developer can then navigate to the UDDI registry to search for vari-
ous Web services using the HTML interface.

FIGURE 19.2
Referencing a Web ser-
vice. This dialog in VS
.NET enables the
developer to specify
the end point of the
Web service or search
for it using UDDI.

NEW TERM

What Is UDDI?

UDDI (Universal Description, Discovery and Integration) is an industry initiative with more
than 250 participating companies. Located at www.uddi.org, UDDI aims to integrate busi-
ness services over the Internet by promoting a common protocol to publish and connect
to Web services using directories. A Web service directory or registry allows businesses to
publish their Web services in a searchable database. The UDDI specification calls for four
types of information to be published in the registry, including business information, ser-
vice information, binding information, and specifications for services. Both Microsoft and
IBM host production UDDI directories that use the same protocols and are replicated, so
either can be used to find a Web service.

The Add Web References dialog includes an automatic link to the Microsoft UDDI direc-
tory. In addition, developers can download the UDDI SDK from the same site. Features of
the SDK include .NET classes that enable you to programmatically search the registry and
host a lightweight registry of your own for internal use. Windows .NET Server, which is
scheduled to ship in 2002, will contain a UDDI server that can be used behind the firewall
to create a directory just for your organization.

25 3869 ch19 5/20/02 1:18 PM Page 523

In either case, the developer can then click on the Add Reference button to add a Web
reference to the project.

524 Day 19

The promise of a global directory coupled with WSDL means that develop-
ment tools and custom code can be written to automatically find and use

Web services without human interaction. For example, UDDI could be used to automati-
cally locate an equivalent public Web service by searching for Web services that use the
same definition (referred to as a tModel in UDDI) if the preferred Web Service isn’t
responding. In addition, developers can use UDDI to query for the new end point of a
Web service if the call to a Web service fails because the provider of the service has
changed the URL.

NEW TERM

Web references and the ability to call Web services can be added to any type
of VS .NET project, including Windows Services, Windows Forms, console
applications, and even other Web Service projects.

Note

The result is a Web References folder in the Solution Explorer that contains a reference
to the Web service. By default, the reference is named according to the Web Server con-
tacted, although it can be changed by right-clicking on the reference and selecting
Rename. You might want to rename it if the Web service may be accessed dynamically
from other servers.

When the Web reference is added, VS .NET downloads the WSDL contract into the Web
References folder and reverse-engineers it to build a client proxy class that can be used
to invoke the Web service from within the application.

The proxy class will have the same name as the Web service—in this case,
ComputeBooksCatalog —and exist in a namespace of the same name as the Web refer-
ence. The client proxy class enables the developer to work with the Web service as if it
were any other managed class. In addition, and of particular interest to ADO.NET devel-
opers, if the Web service returns any strongly typed DataSet objects, the XSD schema
for those DataSets are downloaded, and typed DataSets (as we discussed on Day 6,
“Building Strongly Typed DataSet Classes”) are generated for each. This is possible
because the WSDL contract contains an import element with a location attribute that
references a URL, allowing VS .NET to retrieve the schema of the DataSet using the fol-
lowing query string:

http://server/webService.asmx?schema=DataSetName

25 3869 ch19 5/20/02 1:18 PM Page 524

ADO.NET and XML Web Services 525

19

In this way, developers can programmatically work with the XML returned as if it were a
typed DataSet rather than having to parse it using XML or having to use the generic
DataSet object. In the case of the Catalog Web service, the GetTopSellers method sim-
ply returns a generic DataSet object, so no additional schema can be downloaded
because the Web service doesn’t know ahead of time what the schema of the DataSet
will look like.

Obviously, developers using Web services sometimes will need to update the
reference if the publisher of the service changes it. By right-clicking on the
Web reference and selecting Update Web Reference, the WSDL again will be
downloaded and the client proxy class will be regenerated.

Note

The code for the client proxy class doesn’t appear in the Solution Explorer (except for in
the Class view, which in this case shows the ComputeBooksCatalog class). However, you
can view the class (and modify it if you’re careful) by clicking on Show All Files in the
Solution Explorer or looking in the project folder.

Although beyond the scope of this book, the client proxy class exposes methods for each
Web method exposed by the Web service (such as GetTopSellers). In addition, it is
derived from the SoapHttpClientProtocol class in the
System.Web.Services.Protocols namespace, which contains methods and properties
that enable finer-grained control of communication with the Web service such as Url,
Timeout, and Proxy.

In addition to the synchronous versions of the methods exposed by the Web
service, the client proxy class also exposes begin and end methods for each
method (for example, BeginGetTopSellers and EndGetTopSellers). These
methods can be used to call the Web service asynchronously using asynchro-
nous delegates. In this way, you can call the Web service on a separate
thread to enable the user to continue working. For more information on
asynchronous delegates, see the online documentation.

Note

Because VS .NET does so much work for the developer, actually calling the Web service
is trivial. All the developer needs to do is to create an instance of the proxy class and
then call the method, as would be done with any other component.

However, in ASP.NET, one of the particularly effective strategies you can use to
encapsulate the call to a Web service involves using a Web User Control.

NEW TERM

25 3869 ch19 5/20/02 1:18 PM Page 525

Simply put, a Web User Control is an ASP.NET page with an .ascx extension that can be
embedded in regular ASP.NET pages or other Web User controls. This architecture pro-
vides a great deal of flexibility because it enables developers to create controls that
abstract specific functionality to be included on multiple pages. Using controls also
enables developers to collaborate on a single Web site more easily by allowing individual
user controls to be separately developed and then associated on a single page. Web User
Controls can also be designed graphically in the VS .NET IDE in the same way as
ASP.NET pages.

A Web User Control is added to an ASP.NET site by right-clicking on the project in
the Solution Explorer and choosing Add Web User Control. In the code-behind file
for the control, the class that is created is derived from the UserControl class in
the System.Web.UI namespace. This class is ultimately derived from the
System.Web.UI.Control class from which the Page class is also derived. As a result, the
way that you code a Web User Control is basically the same as the way you code a regu-
lar ASP.NET page. For example, you can place code in the Load event of the control to
initialize any child controls contained on the control. Listing 19.4 shows the code for the
TopBooks Web User Control (minus the designer generated code) that Cold Rooster
Consulting might use to encapsulate the call to the ComputeBooks Catalog Web service.

LISTING 19.4 Using a Web User Control. This is the code for the TopBooks.ascx.cs file
that Cold Rooster Consulting uses to display the returned data from the Catalog Web
service.

namespace ColdRooster
{

using System;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using ColdRooster.computebooks;

/// <summary>
/// TopBooks User Control
/// </summary>
public abstract class TopBooks : System.Web.UI.UserControl
{
protected System.Web.UI.HtmlControls.HtmlGenericControl lblMessage;
protected System.Web.UI.WebControls.DataList dlBooks;

private void Page_Load(object sender, System.EventArgs e)
{

// Put user code to initialize the page here

526 Day 19

25 3869 ch19 5/20/02 1:18 PM Page 526

ADO.NET and XML Web Services 527

19

// Call the Catalog web service
ComputeBooksCatalog cat = new ComputeBooksCatalog();
cat.Timeout = 5000; //timeout to 5 seconds
DataSet ds = new DataSet();

try
{
ds = cat.GetTopSellers(30);

// bind to the DataList
dlBooks.DataSource = ds.Tables[0];
dlBooks.DataBind();

}
catch (Exception ex)
{
// cannot get the books, not a critical error
this.Visible = false;
logError(ex);

}
}

private void logError(Exception e)
{

// write this to a log for later inspection
}

}
}

The interesting aspect of Listing 19.4 is, of course, the call to the Catalog Web
service itself in the Page_Load method. You’ll notice that because a Web refer-

ence exists after the namespace is imported near the beginning of the page, the method
simply needs to instantiate a new ComputeBooksCatalog object before calling its
GetTopSellers method. However, before doing so, it uses the Timeout property of the
proxy class to timeout the call to the method if the response time exceeds five seconds.
In this way, the page will be assured to load relatively quickly even if the Web service
doesn’t respond. If it doesn’t, the control’s Visible property is set to false so that the
control doesn’t display at all and the exception is logged for later inspection.

After the DataSet object is returned from the GetTopSellers method, it’s bound to a
DataList control by setting the DataSource property to the first table in the collection
and calling the DataBind method.

When the DataBind method is called, the DataTable is bound to the items in the
DataList control as shown in Listing 19.5.

LISTING 19.4 continued

ANALYSIS

25 3869 ch19 5/20/02 1:18 PM Page 527

LISTING 19.5 Data binding in a Web User Control. This listing shows the entire text of
the TopBooks.ascx file that binds the results of the Web service to a DataList control.

<%@ Control Language=”c#” AutoEventWireup=”false” Codebehind=”TopBooks.ascx.cs”
Inherits=”ColdRooster.TopBooks”
TargetSchema=”http://schemas.microsoft.com/intellisense/ie5”%>

<%@ OutputCache Duration=”43200” VaryByParam=”none” %>
<LINK rel=”stylesheet” type=”text/css”
href=”http://www.coldrooster.com/customer.css”>

<b class=”bookList”>Most Populate Computer Books

<asp:DataList id=dlBooks runat=”server” CssClass=”bookList”>
<ItemTemplate >
<a href=’<%# DataBinder.Eval(Container.DataItem , “Url”) %>’
target=_blank>
<%# DataBinder.Eval(Container.DataItem , “Title”) %>

</ItemTemplate>
</asp:DataList>
Brought to you by ComputeBooks

You’ll notice in Listing 19.5 that the HTML contained in a Web User Control
needn’t contain the HTML and BODY tags that you would find in a typical ASP.NET

page. This is the case because the control will be embedded at runtime in the context of
an existing page. In this case, the control simply contains a SPAN element that primarily
includes a DataList ASP.NET Server Control.

As discussed on Day 16, “ADO.NET in the Presentation Services Tier,” DataList con-
trols can use data binding to bind to DataSet, DataReader, and DataView objects in
ADO.NET. In this case, the DataBinder object is used to bind the Url and Title

columns in the DataTable so that a simple list of hyperlinks is generated. Each link
enables the user to navigate directly to the ComputeBooks public site in a separate
browser window to view information about the book.

Perhaps the most interesting aspect of Listing 19.5, however, is the use of
ASP.NET page output caching. You’ll notice that near the top of the page the

OutputCache directive is specified and its Duration and VaryByParam attributes are set.
This directive instructs ASP.NET to cache the output of the user control for 12 hours
(43,200 seconds) and to do so regardless of any query string attached to the HTTP
request. This has the effect of caching the call to the Web service so that it is called only
twice per day regardless of the user. Obviously, this decreases the dependency on the
Web service and makes the page more responsive.

528 Day 19

ANALYSIS

NEW TERM

25 3869 ch19 5/20/02 1:18 PM Page 528

ADO.NET and XML Web Services 529

19

To use the TopBooks user control, a page simply needs to include a Register directive
that tells the page where to find the control and a tag that places the control into the
page. For example, the Cold Rooster Consulting home page would include the following
Register directive:

<%@ Register TagPrefix=”Cbks” TagName=”TopBooks” Src=”TopBooks.ascx”%>

Then, within the body of the page, the following tag could be inserted to place the con-
trol:

<cbks:TopBooks id=”TopBooks” runat=”server” />

The result is that when the page is processed, so, too, will the user control, and its output
will be streamed into the page at the appropriate position as shown in Figure 19.3.

FIGURE 19.3
Web service results.
This screen shot shows
the Cold Rooster
Consulting home page
with the TopBooks user
control showing the
results from the
Catalog Web service.

Although not an industry standard technique, there is an alternative and
simpler technique you can use to return DataSet data over the Web. Within
an ASP.NET page after populating a DataSet, you can set the content type of
the page to “text/xml” and then write the contents of the DataSet as XML
directly to the ASP.NET Response object using the WriteXml method. The
client can then simply call the ReadXml method of the DataSet object and
pass it the URL of the page that returns the DataSet as XML. This provides a
lightweight alternative to using SOAP, although because it doesn’t rely on
industry standards, it’s more appropriate for internal use.

Note

25 3869 ch19 5/20/02 1:18 PM Page 529

Updating Data Through a Web Service
From the ground already covered today, it should be fairly obvious that updating data
with a Web service is basically the reverse of the process just shown. To update data, the
Web service can expose a method that accepts a DataSet object as a parameter. When
invoked, this method can use the standard technique of passing the DataSet or a particu-
lar DataTable to the Update method of a data adapter and then checking for errors as we
discussed on Day 12, “Using Data Adapters.” More typically, the method of the Web ser-
vice will simply pass the DataSet to a method in the data services tier that will actually
perform the update.

Alternatively, of course, a method in a Web service or in the data services tier could sim-
ply accept more granular parameters and then populate parameter objects directly before
calling the ExecuteNonQuery method of the command object.

Summary
One of the primary design goals of ADO.NET was to make it effective for use in discon-
nected Web-based applications. Nowhere is this more evident or appropriate than in the
world of XML Web Services, where ADO.NET can be used to both return data through a
Web service using a DataSet object and easily consume the data when using VS .NET as
the client.

As we approach the end of the week and the end of this book, we’ll look at a few final
issues starting tomorrow by examining performance optimization and interoperating with
ADO.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. Why is SOAP important?

SOAP provides a standard XML grammar that a client and server can agree on to
exchange XML messages so that the client can invoke operations on the server. It
is both language and platform independent and has wide reach because of the ubiq-
uity of HTTP and XML.

2. How should you architect the methods of your Web service?

You can think of a Web service as simply an extension of the presentation services
tier, albeit a programmatic rather than a graphical one, so it should be designed to

530 Day 19

25 3869 ch19 5/20/02 1:18 PM Page 530

ADO.NET and XML Web Services 531

19

utilize your data services tier. In this way, you get the benefit of code reuse and
abstraction, which, combined with the simple programming model provided by
ASP.NET, makes implementing a Web service fairly simple.

3. How does VS .NET allow a Web service to be called?

When adding a Web reference to the ASP.NET project, VS .NET downloads the
WSDL document from the Web service and creates a proxy class in the project that
can be used to call the methods of the Web service as if they were exposed in any
other managed class. The proxy class also supports asynchronous execution of the
methods and can be used to dynamically change the end point of the Web service
through the Url property.

4. What techniques can you use for consuming a Web service in an ASP.NET applica-
tion?

One particularly effective technique for calling a Web service from an ASP.NET
page is to encapsulate the code to call it in a Web User Control. Using this
approach, the data from the Web service can be reused on several pages. More
importantly, you can take advantage of ASP.NET page output caching. By using
output caching, you can decrease the number of calls to the Web service because
the output from the first call can be cached. You can also set the duration the output
will be saved in the cache as well as whether the cache will contain multiple copies
for different browsers or query strings.

Exercise
Write a method that would extend the Catalog Web service by allowing a client to
retrieve all the details for a particular book.

Answers for Day 19
Exercise Answer
One possible solution to the exercise is as follows.

First, to provide the Web service with the appropriate methods, the data services tier
would need to be extended to support it. This means that the WebData class shown in
Listing 19.1 would need to include a method such as TitleInfo that gets the information
for a particular ISBN like so:

Public Function TitleInfo(ByVal isbn As String) As DataSet

Dim ds As New DataSet(“Titles”)
Dim dt As DataTable

25 3869 ch19 5/20/02 1:18 PM Page 531

Dim parms As New HybridDictionary()

parms.Add(“isbn”, isbn)

Try
ds = MyBase.Factory.GetDataSet(“GetTitles”, parms)
ds.Tables(0).TableName = “Title”
ds.Namespace = “www.computebooks.com”
ds.Prefix = “cbks”
Return ds

Catch e As Exception
MyBase.ThrowComputeBookException(“TitleInfo operation failed”, e)

End Try

End Function

Note that this method relies on the DataFactory class exposed through its base class and
a GetTitles.config file would need to exist on the Web server. Next, the Web service
would simply expose a GetBook method that would call the method in the WebData class
as follows:

[WebMethod(Description=”Retrieves all the information for a particular ISBN”,
EnableSession=false)]

public DataSet GetBook(string isbn)
{

DataSet books;

// Read the configuration information
string connect = ConfigurationSettings.AppSettings[“SqlConnect”].ToString();
string provider = ConfigurationSettings.AppSettings[“Provider”].ToString();

// Instantiate the data access class and call the method
WebData data = new WebData(connect,provider,
new DirectoryInfo(this.Server.MapPath(“bin”)));

books = data.TitleInfo(isbn);
return books;

}

532 Day 19

25 3869 ch19 5/20/02 1:18 PM Page 532

DAY 20

WEEK 3

Performance and
Interoperation

It almost goes without saying that even if you learn every aspect of the
ADO.NET object model and use your knowledge to develop reusable and
maintainable code, users won’t accept your application if it doesn’t perform
well. Further, there will be times when your ADO.NET code must interoperate
with ADO—for example when you need to call data access classes already in
production written in VB 6.0.

As a result, today’s short lesson will focus on getting the best performance pos-
sible out of your ADO.NET code and interoperating with ADO. To those ends,
today you’ll learn

• The top techniques you can use to increase performance of your
ADO.NET applications

• How to read ADO Recordset data using a DataSet

26 3869 ch20 5/20/02 1:24 PM Page 533

Performance and Scalability Optimizations
If your organization is like most others, the ADO.NET applications you’ll develop will
get their data from a relational database, such as SQL Server or Oracle. As a result, the
performance and scalability of your applications depends not only on the efficiency of
code you write, but also (and more importantly) on the techniques you employ to actual-
ly retrieve and maintain the data. This section details those techniques enumerated in
several categories, starting with those you can apply closest to the data and moving out-
ward to the managed code.

Query Techniques
This set of techniques can be applied to the actual statements executed against the data
store and can be used to increase the raw performance of an application.

Ask for the Appropriate Rows
Probably the most immediate way you can increase the performance of your applications
is to ask for only the data that’s absolutely required. Many applications spend a lot of
time querying for data that the user will never see, but that “needs” to be available in
case the user wants to scroll to it. Constantly retrieving hundreds or thousands of rows
not only puts undue strain on the database server that needs to fulfill the request, but also
consumes unnecessary network bandwidth and resources on the middle-tier component
or Web server that must, for example, populate the DataSet and store it in memory.
Generally speaking, most applications never need to query more than 50 rows at a time.

534 Day 20

The techniques we discussed on Day 3, “Working with DataSets,” for filter-
ing DataSet objects using a DataView and the Select and Find methods
should then be applied to these smaller and more appropriate result sets.

Note

As a result, you should employ WHERE clauses in almost all your SELECT statements and
return only enough rows to satisfy the immediate need of the user. You can then requery
the database if and only if the user requires more data. As we discussed on Day 16,
“ADO.NET in the Presentation Services Tier,” in ASP.NET applications, you can take
advantage of the custom paging behavior of the DataGrid control to execute statements
that return only the relevant data for the particular page.

A second point that should be stressed is that you should remember that applications typ-
ically perform better when they ask for summarized data directly from the database serv-
er rather than retrieving all the detail rows and then summarizing them on the middle-tier

26 3869 ch20 5/20/02 1:24 PM Page 534

Performance and Interoperation 535

20

server or client machine. Not only is the database server optimized for just these kinds of
operations, but retrieving summarized data also decreases both the network bandwidth
required and the resource requirements on the middle tier or client.

Ask for the Appropriate Columns
As a corollary to the previous technique, you should also ask for only the columns that
the application requires. In other words, use specific column lists in your SELECT state-
ments rather than simply using SELECT *. This not only makes your code easier to read
because it’s more explicit, but also ensures that the database server needn’t go to the
extra work of retrieving columns that will never be displayed or manipulated.

This technique is particularly important when your database server supports
BLOB or long text columns that might be stored in separate data structures from

the rest of the row. Asking for those columns when they’re not needed simply wastes
CPU cycles on the database server as the data is found and retrieved. Further, some data-
base servers such as SQL Server support covered queries that can greatly increase per-
formance. In a covered query, the database server needn’t access the actual rows in the
table on the disk if the query asks for only data found in the index the server is using to
satisfy the query. And so, coupled with the appropriate use of indexes, asking for only
those columns that are required can shorten the amount of time the database needs to ful-
fill the query.

Perform Joins on the Server
One of the things that relational database engines are particularly efficient at is joining
tables together based on foreign key relationships. This is the case because in a normal-
ized database, joins will often be required to display a complete logical record that is
stored in multiple tables.

However, as you learned on Day 4, “DataSet Internals,” in ADO.NET, you also have the
ability to retrieve multiple sets of data and place each of them in a DataTable within a
DataSet. Then you can use DataRelation objects to relate the tables in order to traverse
the relationships programmatically, or show the relationship graphically in controls such
as the Windows Forms DataGrid.

Although it’s possible to use DataSet objects in this way, you should do so only when
the data needs to be displayed in a master/detail relationship or is retrieved from multiple
data sources and combined in the same DataSet. For most applications, it will be more
efficient and simpler to join the related tables on the server using a JOIN or WHERE clause,
and then read the joined result set directly into a DataSet or through a data reader. This
is the case because the database server can use indexes on the server to join the related
rows quickly, multiple result sets needn’t be returned to the client, and only one result set
need be loaded or traversed.

NEW TERM

26 3869 ch20 5/20/02 1:24 PM Page 535

Database Techniques
This second set of techniques applies to higher-level design issues you can apply to the
database itself. These are in addition to the database design issues we discussed on Day
13, “Working with SQL Server.”

Make Sure That Indexes Are Employed
Many times during the development and testing phases of a project, developers and
testers will use small data sets for their application. Although this is convenient and often
necessary due to hardware limitations, it can mask performance problems that appear
only when the application is put into production. Chief among these problems is the time
it takes the database server to retrieve or update rows in larger tables.

For a database server to efficiently access data in large tables, it relies on sepa-
rate data structures (indexes) that are easily navigated and that typically point to

the actual data in the rows. Without an appropriate index for a particular query, the server
resorts to examining each row in the table. This is referred to as a table scan. Obviously,
in tables with hundreds of thousands or millions of rows, table scans will be extremely
slow, even on the best hardware available.

536 Day 20

Of course, if you’re going to update the data through a DataSet, the insert,
update, and delete commands for the data adapter, along with their
SourceColumn properties, need to be aware of which columns will be used to
update which tables.

Note

NEW TERM

As we discussed on Day 13, SQL Server allows you to create
both clustered and nonclustered indexes. The latter is a sepa-

rate data structure that points to the row data, whereas the former actually
organizes the entire table on the disk into one big index. Clustered indexes
are appropriate when you typically access a particular table in ranges (such
as when the BETWEEN clause is used) or when the results are typically ordered
using an ORDER BY clause.

Note NEW TERM

As a result, even if everything else in your application is as efficient as possible, not
using indexes will ruin its performance because the time your application spends waiting
for data far exceeds any other single task.

26 3869 ch20 5/20/02 1:24 PM Page 536

Performance and Interoperation 537

20

To make sure that your queries and statements use indexes, follow the suggestions we
discussed on Day 13. These included tips on determining which columns to index, along
with the tools provided by the database server, such as the Index Tuning Wizard and the
SET SHOWPLAN ON statement in SQL Server.

Use Stored Procedures
As outlined on Day 13, employing stored procedures or other constructs that encapsulate
SQL statements usually increases performance. This is because the procedures are pre-
compiled on the server, result in less network traffic, and make it easier to create the
appropriate indexes for your applications. Even if you don’t use stored procedures, using
standardized SQL statements and sp_executesql stored procedure in SQL Server also
increases performance by allowing SQL Server to reuse statements saved in its cache.

Favor Output Parameters over DataSet Objects
On Day 10, “Using Commands,” you learned how to catch both return values and output
parameters from stored procedures. Because output parameters can typically use any data
type supported by the database server, and also because you can have multiple output
parameters for a single stored procedure, they can be used to return a single value or a
related set of values to a client.

Although the code required to use output parameters is slightly more complex on both
the client and the server, using them instead of returning a single row result set in a
DataSet results in better performance. This is the case because the server needn’t create
a result set and the overhead of populating a DataSet object is eliminated. However, in
SQL Server, using output parameters performs almost identically to using the
ExecuteScalar method of the command object to retrieve a single value or to retrieve a
single row with a data reader. However, this might not be the case with all database
servers, so performing a few tests is warranted.

Remember that you can pass the SingleRow value of the CommandBehavior
enumeration to the ExecuteReader method of the command object. .NET
Data Providers can then use this information to optimize retrieval of the
data. The OleDb provider does this by using the IRow rather than the
IRowset interface to bind the data.

Tip

Managed Code Techniques
The final set of techniques applies to the managed code you write and can be used to
optimize performance on the middle-tier server.

26 3869 ch20 5/20/02 1:24 PM Page 537

Use Data Readers
As documented in the article “Performance Comparison: Data Access Techniques” pub-
lished on the MSDN Web site, data readers typically offer the highest throughput (mea-
sured in requests per second) and lowest response time. In fact, the more rows that are
returned, the greater the advantage (almost doubling the throughput) the data reader has.
Data readers also lessen the resource load on the middle-tier server because the values
aren’t stored in memory as with a DataSet. As a result, in applications in which the data
access code lives in the same application domain as the client code that uses it, you
should consider returning data readers through the data services tier to allow clients to
stream through data quickly.

538 Day 20

Keep in mind that if you return a data reader, you should pass the
CloseConnection value of the CommandBehavior enumeration to the
ExecuteReader method to allow the client to close the connection automati-
cally when the data reader is closed.

Tip

However, using data readers efficiently implies that you close them as quickly as possi-
ble in order to release connections back to the pool. This is because they tie up database
connections while they’re being processed.

Use Narrow Providers Where Possible
Because narrow providers like SqlClient can use native protocols to communicate with
their data stores, they’ll likely provide the fastest access to the data store. This can
increase both performance (because individual clients will experience better response
times) and scalability (applications will scale because resources such as connections are
released more quickly). In fact, much of the impetus for creating the ProviderFactory
and DataFactory classes on Days 17, “ADO.NET in the Data Services Tier,” and 18,
“Building a Data Factory,” resulted from the desire to use a single code base and employ
narrow providers rather than resort to using a broad provider such as OleDb.

Focusing only on the provider when writing managed code stands in sharp contrast to the
past, when the only way to achieve better performance was to use a lower-level language
and interfaces like C++ with the OLE DB COM interfaces instead of the combination of
VB 6.0 and ADO 2.x. Because all managed code, regardless of language, ultimately
compiles to intermediate language and is JIT compiled, there are no performance differ-
ences between the languages themselves. The interchangeable use of VB and C# in this
book attests to that fact.

26 3869 ch20 5/20/02 1:24 PM Page 538

Performance and Interoperation 539

20

Minimize the Number of Round Trips
One of the problems developers unknowingly and often ran into when using ADO 2.x
was that it was easy to incur extra round trips to the database server by inadvertently
opening server-side cursors. In fact, in many cases, the client code would execute a
stored procedure against the database server for each and every row returned to the
client. Obviously, this situation hurts both scalability and performance because the time
required to retrieve even small result sets is multiplied by the latency of the network and
connections are being used longer than is necessary.

Because ADO.NET doesn’t expose a server-side data access model, this particular prob-
lem is avoided. However, the same rule applies to the explicit code you write as well. In
other words, you should always strive to minimize the number of times you request data
from the data store because the time it takes to make a round trip to the data store is typi-
cally among the highest-cost operations your applications will perform. In addition, it
decreases scalability by using more resources on the database server. One way to avoid
incurring extra round trips is to take advantage of various caching techniques on the
middle-tier server or client machine. At the same time, this must be balanced against
consuming an undue amount of resources on the middle-tier by, for example, creating
large DataSet objects and storing them in session state. Usually, only careful testing will
reveal the proper balance for a particular application.

The need to minimize round trips is one of the reasons (along with the fact
that command builders don’t use stored procedures) I recommend you don’t
use command builders such as the OleDbCommandBuilder. When the Update
method of the data adapter is called, command builders must make a round
trip to the data store to discover the schema information of the base table
so that it can create the insert, update, and delete commands.

Note

Always Use Connection Pooling
One of the best ways to increase scalability (although not performance) of an application
is to make sure to take advantage of connection pooling. As we discussed on Day 10,
both the SqlClient and OleDb providers allow connections to be stored and retrieved
from a pool. This increases scalability because the expensive operation of constantly
creating new connection objects is avoided. Although dependent on the design of the
application, you would typically expect an application that used connection pooling to
consume only one database connection for every five or more concurrent users.

26 3869 ch20 5/20/02 1:24 PM Page 539

Keep in mind that for connection pooling to work, the connection string you use for your
application must be identical and that all connections must be made with the same secu-
rity credentials. Connection pooling is explicitly turned on for both SqlClient and OleDb,
although it can be disabled by setting the Pooling attribute to false in the SqlClient con-
nection string and the OLE_DB_SERVICES to –2 in the OleDb connection string.

Take Advantage of ASP.NET Caching
For ASP.NET applications, one of the most effective ways to increase the responsiveness
and scalability of an application is to take advantage of its caching engine. In an
ASP.NET application, you can take advantage of the cache using page and fragment
caching as well as manipulating the cache directly.

Both page and fragment caching can be implemented using the OutputCache page direc-
tive in a Web form or user control in order to cache the output for the entire page or
merely the portion rendered by the user control. This is the technique used in Listing
19.5, and, as you might imagine, is most useful when the page or control is built using an
expensive database query.

540 Day 20

To monitor the number of connections both in and out of the pools for
SqlClient, you can use the Performance Monitor utility found in the
Administrative Tools group and select the counters under the .NET CLR Data
performance object.

Tip

Although not used in Listing 19.5, the VaryByParam attribute of the directive
is particularly useful for page and user control content generated from data-
base queries because queries typically accept parameters. In addition, the
directive supports VaryByHeader and VaryByCustom attributes to support
caching for particular HTTP headers, browser types, and even custom infor-
mation you specify.

Note

If you need to have more granular control of the elements in the cache, you can manipu-
late the cache programmatically using the System.Web.Caching.Cache object exposed
through the Cache property of the HttpContext object. Using this property, you can add
objects—such as DataGrid controls and DataSet objects—to the cache. You even have
the capability through the Add method or overloads on the Insert method to age-out its
items, invoke a callback method when an item is removed, and create dependencies
between items.

26 3869 ch20 5/20/02 1:24 PM Page 540

Performance and Interoperation 541

20

For example, to add a DataGrid control called dgTitles to the cache and then pull it
from the cache if it is already populated, you could use the following snippet of C# code
in the Load event of the page:

if (this.Context.Cache[“dgTitles”] == null)
{

// populate the grid
this.Context.Cache.Insert(“dgTitles”,dgTitles,null);

}
else
{

dgTitles = this.Context.Cache[“dgTitles”];
}

Keep in mind that the ASP.NET cache is not tied to a particular user as is the
session object. As a result, you would need to append user-specific informa-
tion to the key name if you want to store user-specific data.

Note

Use Multithreading for Long Queries
Although ADO.NET doesn’t support multithreaded operations natively, it’s relatively
simple to add multithreading to an application that uses ADO.NET. This is particularly
effective for Windows Forms–based applications when you know that you’ll have long-
running queries that can be completed while the user performs some other useful work.

In the .NET Framework, there are two primary means of doing work on multiple threads:
using the Thread class and using asynchronous delegates.

Using the Thread Class

The Thread class can be found in the System.Threading namespace and enables you to
spawn and control threads explicitly. For example, if you want to execute a method
called GetTitles on a background thread, you could use the following code snippet:

Thread tTitles = new Thread(new ThreadStart(this.GetTitles));
tTitles.Name = “TitlesQuery”;
tTitles.Priority = ThreadPriority.BelowNormal;
tTitles.Start();
//Foreground thread is free

In this case, an instance of the ThreadStart delegate that points to the GetTitles
method is passed to the constructor of the Thread object tTitles. The object can then
have its properties, such as Name and Priority, set before invoking the Start method.

26 3869 ch20 5/20/02 1:24 PM Page 541

The Name property allows the thread’s name to show up in the Debug Location toolbar in
the VS .NET IDE when in debug mode, whereas the Priority property requests that the
operating system run the thread at one of five priorities set using the ThreadPriority
enumeration.

542 Day 20

In VB, you would use the AddressOf keyword to point to the GetTitles
method in the constructor of Thread so that you wouldn’t have to create the
ThreadStart delegate explicitly.

Note

After the Start method is invoked, the foreground thread is free to continue other work.
Because the thread can still be referenced with the tTitles variable, however, it can be
manipulated using its Suspend, Resume, Abort, Interrupt, and Join methods. The Join
method is particularly interesting because it blocks the foreground thread until the other
thread completes or a specified amount of time has elapsed. In this way, you can syn-
chronize the activities of the foreground and background threads.

Using Delegates

The second technique for doing work on multiple threads is built into the .NET
Framework and uses delegates to handle thread management and underlying infrastruc-
ture. This asynchronous delegate pattern is found throughout the .NET Framework.

The interesting aspect of this model is that it’s client driven. This means that clients
determine whether to call a method synchronously or asynchronously, either using meth-
ods provided by the server class (the class doing the work) or through an asynchronous
delegate. For example, classes in the .NET Framework—such as FileStream and the
proxy class generated by VS .NET for calling a Web service—provide Begin and End

methods in addition to the standard methods that provide the functionality. These meth-
ods can be used to start and finish an asynchronous call. In the case of FileStream, this
means that it supports both BeginRead and BeginWrite methods that can be used asyn-
chronously, in addition to Read and Write methods that are used synchronously. Typical
examples of where Begin and End methods already exist in the framework include net-
work IO, remoting, and messaging.

However, if the class you want to call doesn’t support Begin and End methods, you can
still call one of its methods asynchronously by simply creating and invoking a delegate.
This would be the case when you simply want to call a method like GetTitles of a data
access class asynchronously. To do so, you can use the BeginInvoke and EndInvoke

methods exposed by the delegate to call the method asynchronously.

26 3869 ch20 5/20/02 1:24 PM Page 542

Performance and Interoperation 543

20

Whether you’re using server classes that expose Begin and End methods or calling a
method asynchronously through a delegate, the pattern is basically the same.

First, the caller creates a delegate of type AsyncCallback that will point to the method
that will be called when the asynchronous operations finish. This provides notification
that the thread has completed its work. For example, if you want to call the GetTitles
method asynchronously, you could be notified using a method called
GetTitlesCallback like so:

AsyncCallback cb = new AsyncCallback(this.GetTitlesDone);

Next, the client code invokes the asynchronous operation and passes it the delegate either
through the Begin method exposed by the server class or the BeginInvoke method if
you’re working with a class that doesn’t expose them. If the data access class that con-
tains the GetTitles method doesn’t support the Begin and End methods, you would use
a delegate as shown in the following code snippet:

//declared at the class level
public delegate void GetTitlesAsync(string publisher);

//in a method
GetTitlesAsync dgetTitles = new GetTitlesAsync(this.GetTitles);
dgetTitles.BeginInvoke(“Sams”,cb,null);

Note that the delegate is declared at the class level of the client code and can specify
arguments passed to the method.

Passing an argument to the delegate points out a key difference between
using delegates and using threads explicitly. It’s more difficult to pass argu-
ments to an explicit thread because the ThreadStart delegate can only point
to methods that don’t take arguments. As a result, you’d have to resort to
using thread local storage (TLS) to pass the thread values—a topic beyond
the scope of this book. For more information, see Chapter 12 of my book
Building Distributed Applications with Visual Basic .NET, published by Sams.

Note

The delegate is then instantiated in the calling code and executed using the BeginInvoke
method of the delegate. Note that the arguments to the GetTitles method, in this case
“Sams,” are passed first. They are followed by the AsyncCallback object and a state
object that can be populated with any other state information you want to pass to the
method. At this point, the thread that called BeginInvoke will be free to perform other
operations as the execution of the GetTitles method continues on a separate thread
managed by the common language runtime.

26 3869 ch20 5/20/02 1:24 PM Page 543

Finally, when the operation completes, the GetTitlesDone method will be called through
the delegate, as shown in Listing 20.1.

LISTING 20.1 Using a callback. This method is called by the asynchronous delegate when
the operation completes.

public void GetTitlesDone(IAsyncResult ar)
{

// Extract the delegate from the AsyncResult.
AsyncResult result = (AsyncResult)ar;
GetTitlesAsync gt = (GetTitlesAsync)result.AsyncDelegate;

// End the operation
gt.EndInvoke(ar);

//Switch back to main thread before updating UI
MethodInvoker mi = new MethodInvoker(Form1.UpdateUI);

}

In Listing 20.1, you’ll notice that the GetTitlesDone method must accept one
parameter of type IAsyncResult. The IAsyncResult interface exposes several

methods that can be called to determine whether the operation completed asynchronous-
ly, to retrieve the state passed to the Begin method, and even to poll or wait for the com-
pletion of the operation. In this case, the ar object is cast to an AsyncResult object from
the System.Runtime.Remoting.Messaging namespace. The AsyncResult object then
exposes the delegate that originally started the operation in its AsyncDelegate property.
By casting to the GetTitlesAsync delegate, it can be retrieved and its EndInvoke method
called to signal the completion of the operation. If the GetTitles method returns a value
or used arguments passed by reference, they could be retrieved through the EndInvoke
method as well.

After the operation is complete, control can be returned to the foreground thread. In a
Windows Forms application, you might first want to update the user interface by calling
a custom method such as UpdateUI on the form. To do so, you can use the
MethodInvoker delegate of the Windows.Forms namespace as shown in Listing 20.1.

Although the pattern shown here is the one you’ll most often use with asynchronous
operations, the Begin methods can be called without the AsyncCallback delegate by
passing in a null value (Nothing in VB .NET). In this case, you’ll need to poll for the
completion of the operation using the IsCompleted method of the IAsyncResult inter-
face returned from the BeginInvoke method, simply call the EndInvoke method (which
will block the current thread until the operation completes), or use the WaitHandle
returned from the AsyncWaitHandle property of the IAsyncResult interface to wait for
completion. In the first and third cases, you’ll then need to explicitly call the End method.

544 Day 20

ANALYSIS

26 3869 ch20 5/20/02 1:24 PM Page 544

Performance and Interoperation 545

20

Interoperating with ADO
Interoperation with existing code is always important when you move to a new develop-
ment platform or language, and moving to ADO.NET is no exception. In fact, many
organizations will have an extensive set of COM components already developed and that
may be deployed using Microsoft Transaction Server (MTS) or Component Services
(COM+). In these cases, it certainly makes sense to reuse that existing code base, at least
initially, rather than rewriting it all in ADO.NET. In that way, you can concentrate on
implementing only the most cost-effective parts of your managed code.

To that end, ADO.NET supports integration with ADO Recordset objects through the
OleDbDataAdapter object.

Reading ADO Recordset Data
As we discussed on Day 1, the DataSet object can in many respects be thought of as
analogous to the disconnected Recordset object of ADO 2.x. As a result, it makes sense
that you should be able to read an ADO Recordset into a DataSet object using a data
adapter.

Although the SqlDataAdapter doesn’t support it, the OleDbDataAdapter includes two
overloaded signatures in its Fill method that accept ADO Recordset objects as the sec-
ond parameter. Using this method, you can pass a DataSet to be populated into the Fill
method along with a Recordset. The rules for filling the DataSet are the same as those
discussed on Day 12, “Using Data Adapters.”

However, the mechanism that makes accessing Recordset objects almost trivial
is the COM Interop functionality of the .NET Framework. Simply put, COM

Interop allows COM components to be called from managed code, and vice versa, by
creating wrappers through which the calls pass. These wrappers, referred to as the run-
time callable wrapper (RCW) for .NET to COM calls and the COM callable wrapper
(CCW) for COM to .NET calls, abstract the differences between COM and .NET includ-
ing reference counting versus garbage collection, COM types versus the Common Type
System, type libraries versus metadata, and so forth.

No matter which technique you use, you should be careful not to introduce
locking contention into your application. In other words, ideally, each
thread should access only objects and data private to it. If that can’t be
avoided, you can use the Monitor class in the System.Threading namespace
to provide synchronized access to objects.

Caution

NEW TERM

26 3869 ch20 5/20/02 1:24 PM Page 545

Before the component can be called by the runtime using the RCW, you must first import
it as a managed type using a metadata assembly. The easiest way to do this is to use the
Add References dialog in VS .NET. For example, assume that ComputeBooks has an
existing COM-based DLL written in VB 6.0 that exposes a GetTitles method that
returns a disconnected Recordset object. From inside a VS .NET project, you can right-
click on Add References and invoke the Add Reference dialog shown in Figure 20.1.

Notice that the COM tab is activated and shows the COM components registered
on the local machine. When the ComputeBooksData component is selected, a

managed type is created in an interop assembly (or metadata assembly) generated in
the obj directory of the project called Interop.component, where component in this case
is ComputeBooksData.dll.

546 Day 20

For a list of how the ADO.NET types map to the ADO types, see the “ADO
Type Mapping to a .NET Framework Type” topic in the online documenta-
tion.

Note

RCW Details

At runtime, the common language runtime creates one RCW for each COM object that
caches all references to the object from managed code. In this way, the RCW can manage
the lifetime of the COM object by dereferencing it at the appropriate time. As a result,
all calls to the COM object pass through the RCW, which is responsible for marshalling
data between the two and making sure that the appropriate interfaces are called on the
COM object. The RCW consumes the COM interfaces and therefore hides them from a
managed client. However, it retains all other custom interfaces implemented by the com-
ponent and adds them to the metadata. When it does so, it exposes all members of all
implemented interfaces as a part of the managed class. In this way, a client doesn’t have
to, but certainly may, cast to the appropriate interfaces before making a call to one of its
methods.

The RCW also is responsible for managing when the COM object’s reference count is
decremented. The default behavior is to simply wait until the RCW is garbage collected
and to call the COM object’s Release method at that time. Of course, when the reference
count reaches 0, the COM object deallocates itself.

For more information, see Chapter 9 of my book Building Distributed Applications with
Visual Basic .NET, published by Sams.

NEW TERM

26 3869 ch20 5/20/02 1:24 PM Page 546

Performance and Interoperation 547

20

In addition to adding a reference to the ComputeBooksData component, the Add
References dialog also automatically adds a reference to the primary interop

assembly (PIA) for ADO 2.7 called ADODB. The PIA is a strongly named metadata
assembly that is placed in the GAC and through which all clients will gain access to the
COM component. You can think of PIAs as the “authorized” way to gain access to a
COM component. Microsoft ships several PIAs (including the one for ADO) that are
installed with the .NET Framework.

FIGURE 20.1
Adding a reference.
This dialog enables
you to add a reference
to an existing COM
component.

You can alternatively import the COM component as a managed type using
the Type Library Importer (tlbimp.exe) command-line utility or programmati-
cally through the System.Runtime.InteropServices.TypeLibConverter class.

Note

NEW TERM

Behind the scenes, the CLSID key in the registry for the COM component can
be updated with an assembly value that points to the PIA. In this way, when
you select a registered COM component from the Add References dialog, VS
.NET will attempt to load the PIA if it exists and, if not, prompt you to cre-
ate the metadata assembly. You can create your own PIAs for COM compo-
nents in your organizations using this technique as well.

Tip

26 3869 ch20 5/20/02 1:24 PM Page 547

At this point, the COM component can be called as if it were implemented in managed
code. For example, the method in Listing 20.2 could be used to instantiate the COM
component. It calls its GetTitles method to bind the resulting data to a grid control.

LISTING 20.2 Reading Recordset data. This method calls a COM component to retrieve
an ADO Recordset and bind its results to a grid control using a DataSet object.

private void BindTitles(string publisher)
{

DataSet ds = new DataSet(“Titles”);
ComputeBooksData.QueryClass o = new ComputeBooksData.QueryClass();

OleDbDataAdapter da = new OleDbDataAdapter();
ADODB.Recordset rs = o.GetTitles(publisher);
da.Fill(ds,rs,”Table1”);

dgTitles.DataSource = ds;
rs.Close();

}

In Listing 20.2, you’ll notice that the interop assembly is referenced as
ComputeBooksData.QueryClass, where ComputeBooks is the name of the name-

space (translated from the name of the DLL) and QueryClass is the name of the class.
After instantiating the OleDbDataAdapter, the Recordset is retrieved into rs by calling
the GetTitles method and passing it the publisher name passed into the method.

After the Recordset has been retrieved, it’s copied into the DataSet using the overloaded
Fill method, with the third argument specifying the name of the DataTable to populate.
The DataSet is then bound to the DataGrid using the DataSource property.

548 Day 20

ANALYSIS

This operation is a one-way operation. In other words, when the Recordset
is retrieved, it is read-only, so you would then need to use the
OleDbDataAdapter or explicit commands to update the data that was
retrieved.

Note

Summary
Creating high-performance, scalable, and interoperable applications are key elements in
creating applications that are accepted by users and that work with code already written
and deployed.

26 3869 ch20 5/20/02 1:24 PM Page 548

Performance and Interoperation 549

20

By adhering to the query, database, and managed code techniques and using COM
Interop with ADO as you learned today, you can create applications that perform well,
are scalable, and that interoperate with your existing ADO components.

Tomorrow, on the final day, you’ll learn about some possible future directions that
ADO.NET might take in addition to summarizing some of the key information to take
away from your exploration of ADO.NET.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. What are two query techniques that you can use to maximize performance of your

applications?

Two rules you should always keep in mind are to ask for only the columns you will
work with and, more importantly, to ask for only the rows that will be displayed.
Not doing so results in extra work for the server as well as consumption of extra
resources on the client or middle-tier machine.

2. Why might you not want to use command builders exposed by .NET Data
Providers?

Although command builders are convenient from the perspective of generating
insert, update, and delete commands for a data adapter, they incur an extra round
trip to the database server. Although the round trip happens only once, command
builders also don’t use stored procedures, which not only provide better perfor-
mance but also abstract the database schema and can be secured.

3. What are two techniques for implementing multithreading in a .NET application?

The .NET Framework provides the classes of the System.Threading namespace in
addition to asynchronous delegates to create multithreaded applications.
Asynchronous delegates are used throughout the Framework and are more elegant
because they allow arguments to be passed into the thread and don’t force you to
manipulate threads directly.

4. Why might you need to use COM Interop?

COM Interop enables you to call COM components from managed code and man-
aged components from COM code. The former scenario is more frequent because
organizations typically have existing COM components deployed that encapsulate
well-tested business logic and data access code. Using COM Interop with the
OleDbDataAdapter enables you to retrieve ADO Recordset objects and use them
to populate DataSet objects.

26 3869 ch20 5/20/02 1:24 PM Page 549

Exercise
Create a console application that uses the asynchronous delegate pattern to call one of its
private methods on a separate thread.

Answers for Day 20
Exercise Answer
One possible solution to the exercise follows. By using breakpoints and noting the results
in the command window, you should be able to understand how the asynchronous dele-
gate pattern works.

using System;
using System.Threading;
using System.Runtime.Remoting.Messaging;

namespace AsyncTest
{

/// <summary>
/// Summary description for Class1.
/// </summary>
class Class1
{
/// <summary>
/// The main entry point for the application.
/// </summary>
private delegate int AsyncOp(string arg1);

[STAThread]
static void Main(string[] args)
{
// Show the current thread
Console.WriteLine(“Started on “ + Thread.CurrentThread.GetHashCode());

// Setup the callback
AsyncCallback cb = new AsyncCallback(AsyncMethodDone);

//Call the method asynchronously
AsyncOp d = new AsyncOp(AsyncMethod);
d.BeginInvoke(“some data”,cb,null);

Console.ReadLine();
}

static private int AsyncMethod(string arg1)
{
// do the operation here, like get ADO.NET data

550 Day 20

26 3869 ch20 5/20/02 1:24 PM Page 550

Performance and Interoperation 551

20

// perhaps returning the number of rows
return 5;

}

static private void AsyncMethodDone(IAsyncResult ar)
{
// Show the current thread
Console.WriteLine(“Ended on “ + Thread.CurrentThread.GetHashCode());

// Extract the delegate from the AsyncResult.
AsyncResult result = (AsyncResult)ar;
AsyncOp d = (AsyncOp)result.AsyncDelegate;

// End the operation and catch the return value
int i = d.EndInvoke(ar);

// Write out the return value
Console.WriteLine(“Resulting in “ + i);

}
}

}

26 3869 ch20 5/20/02 1:24 PM Page 551

26 3869 ch20 5/20/02 1:24 PM Page 552

DAY 21

WEEK 3

Futures and Wrap Up
Over the last 20 days, you’ve learned the ins and outs of ADO.NET and how it
can be used to create high-performance, scalable, and distributed applications.
However, that’s not the end of the story. As with all things, change is inevitable,
and in future releases of Microsoft products, including SQL Server and VS
.NET, you’ll see ADO.NET evolve so that it’s easier to use and more integrated
with other Microsoft products.

Today, in this final lesson, you’ll learn about two of the directions Microsoft is
taking with ADO.NET to extend its reach to the database server and to make it
easier to access data in an object-oriented way.

To those ends, today you’ll learn

• How ADO.NET will be extended in the next release of Microsoft SQL
Server codenamed Yukon

• How ADO.NET might be extended in the next release of VS .NET
through a technology called ObjectSpaces

27 3869 ch21 5/20/02 1:16 PM Page 553

Programming SQL Server .NET
As mentioned on Day 1, in its initial release, ADO.NET splits the two main pro-
gramming models encapsulated in the ADO Recordset object into two objects.

The DataSet is analogous, although more powerful, than a disconnected Recordset,
whereas the data reader is analogous to using a firehose cursor to provide forward-only,
read-only, connected access to data. However, the ADO Recordset was also used to
access data that remained on the database server through dynamic, server-side cursors.
Late last year, Microsoft revealed how server-side data access is to be restored—and
indeed greatly expanded—in ADO.NET when the next release of SQL Server code,
named Yukon, (and probably called SQL Server .NET) is released in 2003.

554 Day 21

To understand how server-side access will be implemented, the following sections dis-
cuss the benefits of allowing server-side access and a quick look at how it might be
implemented.

Hosting the Common Language Runtime
The extent to which ADO.NET and the server-side programming model will be integrat-
ed is made manifest by the fact that Yukon will actually host the common language run-
time in the database server process. This will allow code written in .NET assemblies to
be stored in and executed by the database server, which will provide the following
advantages:

• Use of Any .NET Language. Because the CLR will run in-process in Yukon, any
.NET language can be used to write stored procedures, functions, triggers, and
types. This frees developers from the restriction of only using Transact-SQL for
server-side logic. Although T-SQL is functional, it’s also obviously a fairly limited
programming language.

• Unified Programming Model. By allowing managed code to run on the server,
the programming model now used by ADO.NET developers can be extended to the
server. In fact, Yukon will implement a server-side .NET Data Provider that will
allow ADO.NET developers to leverage their current knowledge when writing
server-side code.

NEW TERM

Keep in mind that the details discussed here might change as the release of
Yukon approaches. This discussion is intended only to give you an idea of
what you might expect in the future.

Caution

27 3869 ch21 5/20/02 1:16 PM Page 554

Futures and Wrap Up 555

21

• Tool Leverage. Because the code running in Yukon is simply managed code, you’ll
be able to leverage the same tools that you use today to build, debug, and manage
ADO.NET applications. For example, VS .NET will be extended to create projects
for Yukon and the debugger will be enhanced to allow integrated debugging in
which you can step from client to server code across languages and across both
managed and T-SQL code.

• Performance. Because the server-side .NET Data Provider will be hosted in the
same process as the database engine, it won’t have to use tabular data stream
(TDS) to communicate with the server. Instead, it will have direct access to the
server’s data structures, offering it the highest performance possible. In addition,
the provider will be integrated with Yukon’s threading model, and Yukon will inte-
grate with the managed garbage collector so as to efficiently use server resources.
In fact, in preliminary tests, the compiled nature of managed code running on
Yukon indicated that it would be much faster for complex expressions than the
equivalent T-SQL expressions.

Accessing Data
As mentioned in the previous section, with Yukon, a server-side .NET Data Provider will
be shipped that implements the ADO.NET programming model for writing code that
lives on the server. That provider will likely contain the System.Data.SqlServer name-
space.

From within a VS .NET project, you can then reference the SqlServer namespace and
write functions, stored procedures, triggers, and types as methods exposed in a managed
class. Those methods will make heavy use of the existing System.Data.SqlTypes name-
space as the types for parameters passed to the methods and return values.

The types in the SqlTypes namespace have the major advantage of mapping
directly to SQL Server types, of course, but also handle NULL values as expect-
ed for SQL Server, which decreases the amount of code you need to write.

Note

For example, you could write a function to calculate the revenue generated for a particu-
lar book, as shown in Listing 21.1.

LISTING 21.1 Creating a function. This listing shows how you might create a function in
Yukon using managed code.

using System.Data.SqlServer;
using System.Data.SqlTypes;

27 3869 ch21 5/20/02 1:16 PM Page 555

public class Books {
public static SqlMoney RevByBook(string isbn)
{
SqlCommand cmd = SqlContext.GetCommand();
cmd.CommandText = “SELECT SUM(Quantity * UnitPrice) AS Revenue “ +
“FROM OrderDetails WHERE ISBN = @isbn”;

SqlParameter param = cmd.Parameters.Add(“@isbn”,
SqlDbType.NVarChar, 10);

param.Value = isbn;
SqlMoney amount = cmd.ExecuteScalar();
return amount;

}
}

As you can see from Listing 21.1, the Books class simply contains the RevByBook
method that accepts an ISBN and returns the amount of revenue generated using

the SqlMoney type from the SqlTypes namespace.

Because the SqlServer namespace implements the common ADO.NET provider pro-
gramming model, its SqlCommand object supports the CommandText and ExecuteScalar

methods and exposes a set of SqlParameter objects associated with the command. Note
that the command is generated using a static method of the SqlContext object that
exposes information about the current context in which the code is executing, such as the
connection information.

After the assembly is compiled, it can be saved in the database using a set of extensions
for T-SQL. For example, the CREATE ASSEMBLY statement can be used to load the assem-
bly into the server and register its contents like so:

CREATE ASSEMBLY CbksServer FROM ‘\\server1\sql\cbksserver.dll’
WITH PERMISSION_SET = SAFE
WITH AUTOREGISTER

In this case, the assembly is loaded into the server and referenced as CbksServer. The
PERMISSION SET attribute specifies which of the code access security (CAS) permission
sets to associate with the assembly. It is thought that assemblies will be able to be
assigned SAFE, EXTERNAL_ACCESS, or UNRESTRICTRED permission sets, where SAFE allows
only data access and computation, EXTERNAL_ACCESS allows calls to other managed code,
and UNRESTRICTRED allows unmanaged and other managed code to be called similarly to
extended stored procedures today. As you might expect, only a system administrator will
be able to place assemblies in the third category.

556 Day 21

LISTING 21.1 continued

ANALYSIS

27 3869 ch21 5/20/02 1:16 PM Page 556

Futures and Wrap Up 557

21

The AUTOREGISTER attribute can be used to automatically register specific methods in the
assembly as stored procedures, functions, triggers, or types using attributes in the
SqlServer namespace. If the attributes are not present, you must then use the extensions
to the T-SQL CREATE FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, and CREATE TYPE

statements. For example, the CREATE FUNCTION statement could then be written as fol-
lows:

CREATE FUNCTION RevByBook (@isbn nchar(10)) RETURNS money
EXTERNAL NAME ‘CbksServer:Books.RevByBook’
DETERMINISTIC
RETURNS NULL ON NULL INPUT

As you can see, the RevByBook function accepts the same ISBN and returns the money
SQL Server data type. The function is then mapped to the RevByBook method of the
Books class in the “CbksServer” assembly.

It’s important to remember that once the assembly has been created, as in
the previous snippet, the actual bits for the assembly are stored inside the
database server, so the path to the original assembly needn’t be saved. This
allows the server to fully manage the assembly, for example, so that it will
be a part of database backups and restores.

Note

There will be some restrictions on how the managed methods can be
defined in order to map to specific SQL Server objects. For example, func-
tions must be static and deterministic although stored procedures will be
able to contain data definition language (DDL) and return result sets directly
to clients.

Note

To assist in the development of managed code for the server, you’ll likely see two major
improvements when Yukon ships:

• SQL Server Work Bench. This management tool, which will ship with Yukon,
can be thought of as a code-management subset of VS .NET that makes deploy-
ment and versioning of assemblies and managing projects in the database easier.
For example, it will contain a way to deploy assemblies to multiple servers.

• Extensions to VS .NET. VS .NET will also be extended with new project types
that make it easier to create “server assemblies” that integrate T-SQL and managed
code. These templates will ensure that the projects fit the requirements for deploy-
ment in Yukon. For example, by making sure that the code is verifiable and can be
used with the predefined permission sets mentioned previously.

27 3869 ch21 5/20/02 1:16 PM Page 557

As a whole, this deep level of integration with Yukon will both enable you to leverage
your ADO.NET skills on the server side and make your applications more responsive and
maintainable.

Using ObjectSpaces
Also last fall, Microsoft revealed preliminary plans for tighter integration of
object orientation with ADO.NET through a technical preview referred to as the

Microsoft ObjectSpaces framework. This framework consists of a set of classes and
interfaces grouped in a namespace (Microsoft.ObjectSpaces) that provides an object-
oriented mapping layer to access data and might be shipped with a future release of VS
.NET. This framework builds on the classes of ADO.NET and those in the System.Xml
namespace to provide access to both XML data sources and relational data sources.
Figure 21.1 shows the high-level architecture of the ObjectSpaces framework.

558 Day 21

FIGURE 21.1
The Microsoft
ObjectSpaces architec-
ture adapted from the
SDK documentation.

SqlObjectSpace: IObjectSpace

XmlObjectSpace: IObjectSpace

DataSpace

ObjectSpace

DataSet

.NET Data Provider

Data StoreXML
File

NEW TERM

Note that ObjectSpaces provides three primary ways of abstracting data: through the
DataSpace, the XmlObjectSpace, or the SqlObjectSpace classes. All three of these class-
es are derived from ObjectSpace and all read and write their data to an underlying
DataSet that is eventually synchronized with a persistent store, such as an XML file or a
database using a .NET Data Provider.

Just as with the discussion of Yukon, the ObjectSpaces framework is highly
preliminary and should be used only as an idea of what you might see in a
future release of VS .NET.

Caution

27 3869 ch21 5/20/02 1:16 PM Page 558

Futures and Wrap Up 559

21

The primary difference between the DataSpace and both the XmlObjectSpace and the
SqlObjectSpace is that the DataSpace has no inherent persistent store and can simply be
created from any existing DataSet. The other two objects implement the IObjectSpace
interface, so they can be used polymorphically so that client code needn’t be concerned
with whether the data resides in XML or in a relational database. In all three cases, the
actual data always resides in a DataSet and is simply mapped into and out of the object
dynamically by the ObjectSpace object.

To get a feel for how ObjectSpaces work, the following sections will show a simple
example of providing object-oriented access to the ComputeBooks Customers table in
SQL Server 2000.

For a longer treatment of ObjectSpaces and how it compares architecturally
with Enterprise Java Beans (EJB), see my two-part series on the subject on
www.informit.com. Note that the example used here is the same as that dis-
cussed in the article.

Note

Creating the Persistent Class
The first task in exposing data using ObjectSpaces is to define the interface of
the entity or object you wish to expose. In the ObjectSpaces Framework, defining

the object is accomplished by creating a single persistent class. The persistent class is
actually an abstract class (defined with MustInherit in VB or abstract in C#) that
defines the properties, fields, methods, and events used by the client. Listing 21.2 shows
the persistent class for the Customer object written in VB.

LISTING 21.2 A persistent Customer class. This class is used as the base class to allow the
ObjectSpaces framework to represent a customer.

Namespace ComputeBooks.Data
Public MustInherit Class CustomerOS

Public MustOverride ReadOnly Property Id() As Integer
Public MustOverride Property FName() As String
Public MustOverride Property LName() As String
Public MustOverride Property Address() As String
Public MustOverride Property City() As String
Protected MustOverride Property _stateProv() As String
Public MustOverride Property PostalCode() As String
Public MustOverride Property EmailAddress() As String

<AliasAttribute(“_stateProv”)> _

NEW TERM

27 3869 ch21 5/20/02 1:16 PM Page 559

Public Property StateProv() As String
Get
Return _stateProv

End Get
Set(ByVal Value As String)
If Len(Trim(Value)) <> 2 Then
Throw New ArgumentException(“State must be 2 characters”)

Else
_stateProv = Trim(Value)

End If
End Set

End Property

Public ReadOnly Property Name() As String
Get
Return Trim(Me.FName) & “ “ & Trim(Me.LName)

End Get
End Property

Public Sub OnCreate() ‘can accept arguments
‘ called at object creation

End Sub

Public Sub OnMaterialize()
‘ called the first time an object is retrieved from the data store

End Sub

Public Sub OnDelete()
‘ called when the object is deleted from the ObjectSpace

End Sub

End Class
End Namespace

At runtime, the ObjectSpaces framework creates a derived class from the persis-
tent class and maps the data from the DataSet into and out of the members of the

class. In addition, you’ll notice that you can provide your own properties and methods,
such as Name in Listing 21.2, that can be calculated from other members or perform other
business functions.

Two of the interesting features of the persistent class are that you can insert business
logic into the Get and Set blocks of a property, and you can reference remote methods to
abstract business logic. The former feature is illustrated in the StateProv property that
aliases the abstract _stateProv property by including the AliasAttribute and includes
logic to validate the property as it is populated in the Set block. The latter feature is

560 Day 21

LISTING 21.2 continued

ANALYSIS

27 3869 ch21 5/20/02 1:16 PM Page 560

Futures and Wrap Up 561

21

beyond the scope of this book, but entails creating an abstract method in the persistent
class and then referencing the remote method in the XML mapping file discussed later.

Another interesting feature of the persistent class is that it supports the OnCreate,
OnMaterialize, and OnDelete methods called by the ObjectSpaces framework when the
object is created, populated from the data store, and removed, respectively. Although not
shown in Listing 21.2, the OnCreate method is particularly useful for passing arguments
to the class as it is instantiated and can be used, for example, to assign a client-generated
primary key value to the object.

Although not shown in Listing 21.2, the persistent class can also include attributes that
identify the primary key field and that link persistent classes in a parent-child relation-
ship. In that way, when the ObjectSpaces framework instantiates an object of type
Customer; for example, the client would be able to traverse the Orders for that customer
as well, assuming you created a persistent class for Orders.

Creating the Mapping Files
After the persistent class is complete, you can create an XML mapping file and source
file that define how columns in a database map to the properties of the persistent class
and the data store connection information for that class, respectively.

As an alternative to simply creating the mapping file by hand, the
ObjectSpaces framework will likely ship with a graphical tool that can be
accessed by right-clicking on the project in VS .NET and selecting the tem-
plate item under Add New Item.

Note

Listing 21.3 shows the simple mapping file for the Customer persistent class.

LISTING 21.3 XML mapping file. This file is used by the ObjectSpaces framework to map
database tables and columns to the persistent class.

<map xmlns=”http://www.microsoft.com/ObjectSpaces-v1”>
<type name=”Customer” dataSource=”Customers” source=”ComputeBooks”>
<uniqueKey name=”Id” mappedBy=”autoIncrement” dataSource=”CustomerId”/>
<property name=”FName” dataSource=”FName”/>
<property name=”LName” dataSource=”LName”/>
<property name=”Address” dataSource=”Address”/>
<property name=”City” dataSource=”City”/>
<property name=”_stateProv” dataSource=”StateProv”/>
<property name=”PostalCode” dataSource=”PostalCode”/>
<property name=”EmailAddress” dataSource=”EmailAddress”/>

</type>
</map>

27 3869 ch21 5/20/02 1:16 PM Page 561

You’ll notice from Listing 21.3 that the type element is used to reference the
persistent class in addition to specifying the name of the table (dataSource) and

the connection (source) to use to get to the table. Each property element maps a property
of the persistent class (name) to the name of a column in the table (dataSource). In addi-
tion, here the primary key is identified using the uniqueKey element and mapping it to
the CustomerId column in the table. The mappedBy attribute indicates that the column is
generated automatically by the data source for use with IDENTITY columns in SQL
Server and sequences in Oracle. Because the Id property is generated from the data In
addition to creating the mapping file, you also provide a connection file as shown here:

<sources xmlns=”http://www.microsoft.com/ObjectSpaces-v1”>
<source name=”ComputeBooks” adapter=”sql”
connection=”Data Source=ssosa; Integrated Security=SSPI;

Database=ComputeBooks”/>
</sources>

The connection file simply identifies the connection (source) referenced in the mapping
file in addition to the .NET Data Provider to use (sql or oledb) and the connection string
to pass to the database server. By putting the connection information in an XML file, you
can abstract it from the client code as well.

Querying the Customer
After the mapping and connection files are in place, the client can write code against the
persistent class using the XmlObjectSpace or SqlObjectSpace classes. For example, to
query a single customer, you could write the following code:

Dim os As New SqlObjectSpace(“connect.xml”, “map.xml”)
Dim myCustomer As Customer
Dim strName As String

myCustomer = CType(os.GetObject(GetType(Customer), “Id = 1”), Customer)
strName = myCustomer.Name

First, the SqlObjectSpace object is instantiated and passed the connection and
mapping files shown previously. SqlObjectSpace is used because the data exists

in a relational database. Next, the myCustomer object is populated using the GetObject
method of SqlObjectSpace inherited from the IObjectSpace interface. You’ll notice that
the string “Id = 1” is passed as the second argument. This syntax is referred to as
OPath, a derivative of XPath, which Microsoft developed specifically for the
ObjectSpaces framework. Behind the scenes, the ObjectSpaces framework uses the com-
bination of the OPath query and the mapping and connect files to connect to the database
and formulate a SELECT statement to retrieve the customer identified with the CustomerID
of 1. The result is then mapped into the myCustomer object, where the properties such as
Name are then available.

562 Day 21

ANALYSIS

NEW TERM

27 3869 ch21 5/20/02 1:16 PM Page 562

Futures and Wrap Up 563

21

In addition, through the GetObjects method of the IObjectSpace interface, you can
automatically query multiple objects like so:

For Each myCustomer In os.GetObjects(GetType(Customer), “City = ‘Richmond’”)
Console.WriteLine(vbCrLf & “Customer Id: “ & myCustomer.Id & _

vbCrLf & “Name: “ & myCustomer.Name & _
vbCrLf & “City: “ & myCustomer.City & _
vbCrLf & “PostalCode: “ & myCustomer.PostalCode & vbCrLf)

Next

Once again, the framework formulates the correct SELECT statement based on the OPath
query and configuration files.

Because both the XmlObjectSpace and SqlObjectSpace classes inherit the
IObjectSpace interface, you can also program against either one polymorphically by
simply referencing a variable of type IObjectSpace and using the CreateObjectSpace
method of the ObjectSpaceFactory class like so:

Dim os As IObjectSpace = ObjectSpaceFactory.CreateObjectSpace(“customer.xml”)

In this case, customer.xml is a file that specifies the ObjectSpace object to use and the
arguments to pass to its constructor as shown in the following code snippet. Here the
type attribute points to the SqlObjectSpace object that will be used, whereas the arg
elements point to the mapping files discussed previously.

<objectspace type=”Microsoft.ObjectSpaces.SqlObjectSpace”
xmlns=”http://www.microsoft.com/ObjectSpaces-v1”>
<arg>connect.xml</arg>
<arg>map.xml</arg>

</objectspace>

Updating the Customer
Of course, you can also create new rows in a database using ObjectSpaces. This is done
using the CreateObject method of the IObjectSpace interface. The code in Listing 21.4
creates a new customer and populates its properties before calling the Update method to
persist the object in the data store.

LISTING 21.4 Creating a new customer. This listing creates a new customer using the
CreateObject method and saves it using the UpdateAll method.

myCustomer = CType(os.CreateObject(GetType(Customer)), Customer)

With myCustomer
.FName = “Beth”
.LName = “Fox”
.Address = “21508 W44th”

27 3869 ch21 5/20/02 1:16 PM Page 563

.City = “Overland Park”

.StateProv = “MO”

.PostalCode = “33221”

.EmailAddress = “bethafox@foxden.com”
End With

Try
‘ Save Changes
os.Update(myCustomer)

Catch ex As UpdateException
‘ Handle error

End Try

Console.WriteLine(“New ID = “ & myCustomer.Id)

You’ll notice from Listing 21.4 that the Update method is passed the new cus-
tomer. The framework then proceeds to generate an INSERT or UPDATE SQL

statement as appropriate and execute it on the data source. If the update succeeds, the
framework automatically populates the new Id generated from the database.

If multiple customers are modified or added, the UpdateAll method can be used instead
and can accept different arguments specified in the UpdateBehavior enumeration. For
example, specifying the ThrowAtFirstError value will throw an exception as soon as the
first error is returned from the data source. The IObjectSpace interface also supports
Resync and ResyncAll methods that can be used to synchronize one or more objects
from the data store to the client.

564 Day 21

LISTING 21.4 continued

Although persistence managed by the ObjectSpaces Framework doesn’t
directly support stored procedures in the technical preview version, look for
it to do so at least with the SQL Server .NET Data Provider in future releases.

Note

ANALYSIS

The example shown today allows the ObjectSpaces Framework to handle the persistence
to the data source automatically. However, when the data is more complex or comes from
heterogeneous sources, you can opt to perform the persistence yourself.

This is accomplished by creating a class derived from the ObjectCustomizer abstract
class and implementing methods such as CreateRow, GetRow, GetRows, InsertRows,
UpdateRows, DeleteRows, GetChildRows, and GetParentRow. The class is then refer-
enced in the type element of the mapping file so that the framework can instantiate it and
call its methods when appropriate.

27 3869 ch21 5/20/02 1:16 PM Page 564

Futures and Wrap Up 565

21

Summary and Final Thoughts
Even though ADO.NET was very recently released, you can see that things will continue
to change as new server products such as SQL Server and subsequent versions of VS
.NET are released. In both cases, however, a solid foundation in ADO.NET will make it
easier to adjust to the changes because they incorporate many of same concepts and pro-
gramming elements.

Over the last 21 days, you’ve journeyed through the depths of ADO.NET and have come
to a fuller understanding of its goals, features, limitations, and promise for developing
applications using VS .NET and the .NET Framework. Along the way, I hope I’ve also
been able to share some ideas and techniques for applying ADO.NET in your applica-
tions.

I used the famous quote, “It is a capital mistake to theorize before one has data,” from
Sherlock Holmes in the Introduction. Now that you have the tools to obtain the data, you
can build great applications to help your users theorize on the data to solve their business
problems.

Workshop
This workshop will help reinforce the concepts covered in today’s lesson.

Quiz
1. How will Yukon affect ADO.NET development?

Yukon, the next release of SQL Server, will add extensions to ADO.NET that make
server-side data access available. For example, it is likely that a namespace called
System.Data.SqlServer will contain objects that enable you to open and manipu-
late server-side cursors. In addition, you’ll be able to write stored procedures using
managed code.

2. What are the benefits of hosting the common language runtime in SQL Server?

Hosting the common language runtime in SQL Server will allow managed code to
be used for server-side objects such as stored procedures, triggers, functions, and
types. This means that those objects can be written in any of the more than 25
.NET languages, both the programming model and the developer tools can be
leveraged, and performance can be increased.

3. What is the primary benefit of the ObjectSpaces Framework?

ObjectSpaces abstracts the .NET Data Provider and database syntax from the client
application while providing object-based access to the data. In that respect, it

27 3869 ch21 5/20/02 1:16 PM Page 565

combines some of the features we discussed in the DataFactory class on Day 18,
“Building a Data Factory,” with the approach of using custom classes we discussed
on Day 17, “ADO.NET in the Data Services Tier.”

4. How does ObjectSpaces accomplish its “objectification” of data?

ObjectSpaces relies on what is called a persistent class that is marked as
MustInherit (base in C#) and uses this class to create derived objects at runtime.
The provider and database independence are achieved through the use of mapping
files and the SqlObjectSpace and XmlObjectSpace classes.

Exercise
Your only exercise for today is to go out and create great ADO.NET applications.

566 Day 21

27 3869 ch21 5/20/02 1:16 PM Page 566

In Review
I hope that you’ve enjoyed the last three weeks and the time
you’ve spent with ADO.NET! The last week focused on the
design and implementation of multi-tier applications by
focusing on each of the tiers, ranging from a high-level
design view to the low-level implementation.

Among the key takeaways from this week should be that
ADO.NET can be used to create high-performance distributed
applications at least in part because of its ability to use data
binding in Windows Forms and Web Forms applications, the
ability to create an abstracted data services tier, and its ability
to be used from within XML Web Services. You should also
now understand the various techniques you can use and the
reasons you might want to abstract the .NET Data Provider
you intend to use in your applications.

Finally, this week should have reminded you that learning
ADO.NET is time well spent because ADO.NET will play a
big part in future directions on both the server and client side.

Now, you really should take a break, and it can even be a
long one.

WEEK 3 15

16

17

18

19

20

21

28 3869 WIR3 5/20/02 1:14 PM Page 567

28 3869 WIR3 5/20/02 1:14 PM Page 568

A

Abort method, threads, 542
abstract base classes

conditional tracing,
454-456

connection management,
453

creating, 450-454
custom exceptions,

456-457
exception handling, 454
tracing, 454

abstract factory patterns,
414

abstracted providers in data
services tier, 414

abstracting
data with ObjectSpaces

framework, 558-559
data providers, 470-476,

488-493
statements, 493-505

abstractions, stored
procedures, 247, 347

AcceptChanges method, 60
DataRow class, 88
DataSet class, 56
DataTable class, 83
rows, 114
table rows, 126

AcceptChangesDuringFill
property, data adapters,
195

accepting connection
strings, code, 228

AcceptRejectRule property,
102

Access, 8
accessing

data, 32, 44, 353-358, 363
Excel, 370
ODBC data sources,

362-370
XML (eXtensible Markup

Language) documents,
374

Symbols

* (asterisk), wildcard char-
acter, 64

[] (brackets), Assembly
class, 491

… (ellipsis) button, 35
() (parentheses), 64
% (percent sign), wildcard

character, 64
(pound sign), 64
; (semicolon), 219-220
‘ (single quotation mark),

64
<%# %> tags, data binding

expressions, 433
_ (underscore), prefixes, 463

INDEX

29 3869 index 5/20/02 1:19 PM Page 569

Active Data Services
(renamed), RDS (Remote
Data Services), 11

Active Directory Services
Interface (ADSI), 10

Active Server Pages (ASP),
10, 439

adapters. See also data
adapters

patterns, definition, 330
SqlDataAdapter, code to

populate TitlesDs
DataSet, 144-145

Add method, 49, 110, 161
DataRelationCollection

class, 101
DataSet class, populating,

59
rows, adding to tables, 112

Add New Item
command (File menu),

517
dialog box, 135, 517

Add Reference dialog box,
362, 546

Add value
(MissingSchemaAction
enumeration), 296

Add Web Reference
command (context menu),

522
dialog box, 522-523

Add Web User Control dia-
log box, 526

AddCriteria method, 67
Added value

DataRowState enumera-
tion, 111

DataViewRowState
enumeration, 117

adding
attributes to connection

strings, 220

DataGrid controls to
caches, 541

event handlers to
MergeFailed event, code,
71

parameters to collections,
49

rows 112, 141-142
AddNew method (DataView

class), 73
Address class, code, 476-479
AddressOf

keyword, 542
statement, 72

AddReviewsRow method,
142

AddWithKey value
(MissingSchemaAction
enumeration), 296-297

administrators, DBA (data-
base administrator), 332

ADO
database connections,

pooling, 230
infrastructure, 16
knowledge, leveraging in

ADO.NET design, 15
Pure Visual Basic, 11
Recordset objects,

545-548
ADO.NET (ADO+), 7-8,

31-34
architecture, 22
code

commands, creating,
47-49

data adapters,
configuring, 50

data connections,
46-47

design goals, 14-17
infrastructure, 16

MDAC (Microsoft Data
Access Components), 12

multi-tiered applications
(data services tier),
411-414

name origin, 15-16
in .NET, 17-25
ODBC (Open Database

Connectivity), 9
OLE DB, 10
previewing

data services
applications, 28

DataSets, creating,
35-36

presentation applica-
tions, 28

Server Explorer win-
dow, 28-30

two-tier applications,
definition, 28

user interfaces, 38-45
Recordset objects, 11
referencing, 57
SOAP (Simple Object

Access Protocol), 13
VS .NET, 27-28, 37-38
W3C (World Wide Web

Consortium), 12-13
Web improvements, 12-14
XML (eXtensible Markup

Language), 12-13
ADS (Active Data Services),

RDS (Remote Data
Services), 11

ADSI (Active Directory
Services Interface), 10

Advanced dialog box, sim-
ple binding, 420-421

Advanced Options button,
stored procedures, 32

570 Active Data Services

29 3869 index 5/20/02 1:19 PM Page 570

aggregate functions
COUNT, 97
Expression property, 97-98

Aggregate Functions
(expression syntax rule),
selecting data, 64

aggregation of data, 371
AL.exe (Assembly Linker)

command-line utility, 148,
453

aliasing components, 227
AllowDBNull property

(DataColumn class), 91-92
AllowDelete property

(DataView class), 73
AllowEdit property

(DataView class), 73
AllowNew property

(DataView class), 73
AndAlso operator, Finally

block, 249
any icon (XML Schema tab

of XML Schema Toolbox),
167

anyAttribute icon (XML
Schema tab of XML
Schema Toolbox), 167

AppDomains (Application
Domains)

DataSets, passing
between, 172

types, copying with .NET
Remoting, 149

Application Name attribute
(SqlClient provider), 220

application-centric or data-
centric (designing data
access classes), comparing,
461-462

application-specific stored
procedures, 462

ApplicationException class,
395

applications. See also multi-
tiered applications

ASP.NET, storing connec-
tion strings, 227-229

Building Distributed
Applications with Visual
Basic .NET, 41

business services, defini-
tion, 28

client, assemblies or bind-
ing policies, 147

ComputeBooksSimple, 28
data services, definition,

28
databases, summarized

data, 534
interoperability (ADO

Recordset objects), read-
ing data, 545-548

locking contention, 545
.NET architecture, 362
n-tiered, GetChanges

methods, 118
performance, optimizing,

407, 534-544
presentation, definition, 28
scalability, optimizing,

407, 534-544
scale-out, definition, 407
scale-up, definition, 407
two-tier, definition, 28
VC# .NET console appli-

cation project, strongly
typed DataSet classes,
134

Windows Forms applica-
tions, 418-431

ApplyDefaultSort property,
73-74

architectures
ADO.NET, 22
ComputeBooks, data

provider, 374

data readers, 271
Global XML Web Service

Architecture (SOAP), 13
multi-tiered applications,

404-410
.NET

applications, 362
Data Providers, 190-

194
ODBC, 362
Odbc data provider, 363
SQL Server clients, 330
WOSA (Windows Open

Systems Architecture), 9
Windows Forms data

binding, 419
arguments

event argument properties,
312

handling in stored
procedures, 144

OleDbCommand object,
263

passing to delegates or
threads, 543

arrays
declarations in C# or VB,

280
writing, code, 280-281

articles
“Asynchronous Design

Pattern Overview,” 505
“Data Access Application

Block,” 486
“Design Guidelines for

Class Library
Developers” (online
documentation), 461

“Object Role Modeling:
An Overview,” 335

.asmx file extension, 517
ASP (Active Server Pages),

10, 439

ASP 571

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 571

ASP.NET
applications, storing con-

nection strings, 227-229
caching, 505, 540-541
event-driven programming

model, 41
Global.asax file, 438
page output caching, 528
State service, storing

session data, 441
assemblies

base classes, compiling,
453

client applications, 147
definition, 19, 146
GAC (Global Assembly

Cache), 147
interop, 546
permissions, 201
PIA (primary interop

assembly), definition,
547

private assembly, 146
storing, 557
System.Data.dll, 19
version numbers, creating,

146
Assembly class, []

(brackets), 491
Assembly Linker (AL.exe)

command-line utility, 148,
453

asterisk (*), wildcard
character, 64

asynchronous delegates, 505
“Asynchronous Design

Pattern Overview,” 505
AsyncResult object, 544
AttachDBFileName

attribute (SqlClient
provider), 220

attribute icon (XML
Schema tab of XML
Schema Toolbox), 166

attributeGroup icon (XML
Schema tab of XML
Schema Toolbox), 166

attributes
adding to connection

strings, 220
Application Name

(SqlClient provider), 220
AttachDBFileName

(SqlClient provider), 220
AUTOREGISTER,

methods, 557
Connect Timeout

(SqlClient provider), 220
Connection Lifetime

(SqlClient provider), 230
Connection Reset

(SqlClient provider), 230
Current Language

(SqlClient provider), 220
Data Source (SqlClient

provider), 220
definition, 333
Enlist (SqlClient

provider), 221
Initial Catalog (SqlClient

provider), 221
Integrated Security

(SqlClient provider), 221
MappingType, Hidden

value, 162
Max Pool Size (SqlClient

provider), 230
Min Pool Size (SqlClient

provider), 231
Network Library

(SqlClient provider),
221-223

Packet Size (SqlClient
provider), 221

Password (SqlClient
provider), 221

PERMISSION SET, CAS
(code access security)
permission, 556

of permissions, declaring,
201

Persist Security Info
(SqlClient provider), 221

Pooling (SqlClient
provider), 231

Prefix, 162
for providers, determining,

223
Serializable, 149, 457
SoapDocumentService,

encoding parameters,
520

SoapRpcMethod, Web
method, 520

SqlClient provider,
220-222, 230-231

System.Xml.Serialization.
SerializableAttribute,
479

Use Procedure For Prepare
(SqlClient provider), 221

User ID (SqlClient
provider), 221

username, 232
VaryByParam, 540
WebMethod, 517
Workstation ID (SqlClient

provider), 221
authoring classes in multi-

ple languages, 148
Auto value (XmlReadMode

enumeration), 178-179
auto-incrementing columns,

94-96
AutoIncrement property

(DataColumn class), 91, 94

572 ASP.NET

29 3869 index 5/20/02 1:19 PM Page 572

AutoIncrementSeed proper-
ty (DataColumn class),
91, 94

AutoIncrementStep proper-
ty (DataColumn class),
91, 94

AUTOREGISTER
attribute, methods, 557

Available References win-
dow, 522-523

Avg function, 64

B

barrels, yellow barrel icon,
433

base classes
abstract, 450
BooleanSwitch class (con-

ditional tracing), 455
compiling, 453
conditional tracing,

454-456
connection management,

453
creating, 450-454
custom exceptions,
456-457
data access, code, 450-452
exceptions

handling, 454
throwing, 456

serviced component, code,
457-460

Trace class (conditional
tracing), 454

tracing, 454
BaseValidator controls,

442-443

begin and end methods,
exposing, 525

Begin method, 543
BeginEdit method, 88, 112
BeginGetTopSellers method,

525
BeginInvoke method, 542
BeginLoadData method,

83, 86
BeginTransaction method,

234-235
connection classes, 196
data factory class, 487

behaviors, SingleRow com-
mand, 252

binary data
code to read, 277-278
data type and varbinary

data type, comparing,
339

binding
complex, 425-427, 448
data, programmatic, code,

421
data binding expressions,

433-435
data readers to ListView

controls, 427-428
DataView objects, code

for controls, 447-448
events, code, 45
manual, 427-429
Mobile Control, 437
multi-record, 434-436
simple, 420-425, 448
single-value, 432-434

Binding object, 419, 424
binding policies, client

applications, 147. See also
data binding

BindingCollection object,
419

BindingContext object, 420
BindingManagerBaseMana

ger class, 419
bindings, data binding

expressions (<%# %>
tags), 433

bit data type and tinyint
data type, comparing, 338

blocks, Finally (AndAlso
operator), 249

books
Building Distributed

Applications with Visual
Basic .NET, 18, 41, 225,
461, 514

Design Patterns
Explained: A New
Perspective on Object-
Oriented Design, 411

Essential .NET Volume I,
18

Pure Visual Basic, 11
reviews, 94
Sams Teach Yourself XML

in 21 Days, Second
Edition, 12, 157

SQL Server, Books
Online, 302

Books class, 469, 556
Books Online (SQL Server),

302
BooleanSwitch class

base classes, conditional
tracing, 455

DataFactory class, 497
Box, Don, 18
boxes, Add Reference

(reading data), 546
brackets ([]), Assembly

class, 491
breaking connections, 217

breaking connections 573

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 573

bridge or broad providers
(generic providers), 190

browsers (Web), Internet
Explorer (MSIE), 11

buffering data in
MemoryStream object,
277

builders
command, 324, 539
Command Builder, 192

building
data access methods,

515-517
data factory class, 485
.NET Data Providers, 370

ComputeBooks
provider, 374-395

implementation,
371-373

strongly typed DataSet
classes, 131-132

Web services, 517-520
Building Distributed

Applications with Visual
Basic .NET, 18, 41, 150,
225, 461

BulkAmount column
(Caption properties), 93

BulkDiscount column
(Caption properties), 93

Bulkload (XML), definition,
357

business façade, 405
business services

applications, definition, 28
tier, 405

buttons
Advanced Options, stored

procedures, 32
ellipsis (…), 35

C

C#
array declarations, 280
data readers, opening, 274
populateBooks method,

code for row states,
111-112

this operator, 45
CacheFilePath property,

data factory class, 487
caches

data, disconnected
(DataSet objects), 110

DataGrid controls, adding
to, 541

GAC (Global Assembly
Cache), 19, 147, 405

statements, 498-502
caching

ASP.NET
DataFactory class, 505
managed code,

540-541
page output, 528

data factory class,
486-488, 499-500

read-only data, 437
statements, code, 499-500

Call-Level Interface (CLI),
9

calling
Catalog Web service,

code, 521-522
GetTitles method, 470,

543
GetTitlesDone method,

through delegates (code),
544

usp_GetTitles stored pro-
cedure, 349-350, 367,
494

WriteXmlChanges
method, 122

camel case, definition, 463
Cancel method, 202, 259
CancelCommand event, 44
CancelEdit method

DataRow class, 88
rows, 114

capitalization styles (.NET
Framework classes), 462

Caption properties
columns, 93
DataColumn class, 91

capturing changes in
DataView objects, 75-76

CAS (code access security)
permission, 556

cascading changes, foreign
key constraints, 102-103

case
definitions (camel, Pascal,

uppercase), 463
sensitivity

configuration files, 229
table names, 305

CaseSensitive property, 58
DataSet class, 55
DataTable class, 82

Catalog Web service
calling, code, 521-522
Cold Rooster Consulting

home page, Web service
results, 529

creating, code, 517-518
referencing, 522-523
Web User Control, code,

526-528
catalogs, product, 28, 46
Categories table

(ComputeBooks database),
36

574 bridge or broad providers

29 3869 index 5/20/02 1:19 PM Page 574

CatID column
(DefaultValue property),
94

CbksCommand
class, 380-385
object, 390

CbksConnection class, code,
375-379

CbksDataAdapter class,
code, 391-394

CbksException class, code,
395

CbksParameter
class, code, 386-389
object, 390

CbksParameterCollection
class, code, 386-389

CCW (COM callable
wrapper), 545

ChangeDatabase method,
connection classes, 196

char data type and varchar
data type, comparing, 339

characters, special (column
names), 64

check constraints, schemas,
343

checkers, type (strongly
typed DataSet classes), 134

child
classes, 138
collections, DataTable

object, 84
Parent and Child Relations

(expression syntax rule),
selecting data, 64

ChildRelations property
(DataTable class), 82

Class property (SqlError
object), 209

Class View (Solution
Explorer), 138

classes. See also data
factory class

abstract base, 450
Address, code, 476-479
ApplicationException, 395
Assembly, [] (brackets),

491
authoring in multiple lan-

guages, 148
base, 450-457
BindingManagerBaseMan

ager, 419
Books, 469, 556
BooleanSwitch, 455, 497
CbksCommand, 380-385
CbksConnection, code,

375-379
CbksDataAdapter, code,

391-394
CbksException, code, 395
CbksParameter, code,

386-389
CbksParameterCollection,

code, 386-389
client proxy, begin and

end methods, 525
collection, 432, 479-480
command

ComputeBooks data
provider, 380-385

.NET Data Providers,
201-204

ComputeBookDAExcep-
tion, 464

ComputeBooks.Data.Cbks
namespace, 375

ComputeBooksCatalog
proxy, 524

ComputeBooksDABase,
452, 516

ComputeBooksDAExcep-
tion, 456-457

ComputeBooksDAService
dBase, 460

connection, 216
ComputeBooks data

provider, 375-380
.NET Data Providers,

196-197
CurrencyManager, 419
custom exception, code,

456
Customer, code, 476-479
CustomersCollection, 480
data access

base, code, 450-452
code, 467-469
designing, 461-481

data adapter,
ComputeBooks data
provider, 390-395

DataBinder, Eval method,
433

DataColumn, 65, 91-99
DataFactory, 506-507, 516

ASP.NET caching, 505
BooleanSwitch class,

497
code, 488
configuring, code, 489
data providers,

abstracting, 488
df variable, 509
parameter objects, 501
titles, code to retrieve,

508-509
DataRelationCollection,

Add method, 101
DataRow, 87-88
DataSet, 54

AcceptChanges
method, 56

Aggregate Functions
(expression syntax
rule), 64

classes 575

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 575

CaseSensitive property,
55

Clear method, 56
Clone method, 56
collections, 55
Column Names

(expression syntax
rule), 64

common language run-
time inheritance, 131

Copy method, 56
data, selecting, 63-66
DataSetName property,

55
DefaultViewManager

property, 55
Detached rows, 118
DiffGrams, 123-125
EnforceConstraints

property, 55
events, 56
expression syntax

rules, 64
ExtendedProperties

collection, storing
time, 153

ExtendedProperties
property, 55

Functions (expression
syntax rule), 64

Generate DataSet
option, 137

GetChanges method,
56, 118-123

GetXml method, 56
GetXmlSchema

method, 56
HasChanges method,

56
HasErrors property, 55
IListSource interface,

419

InferXmlSchema
method, 56

Literal Values (expres-
sion syntax rule), 64

loading, 151-153
members, 55
Merge method, 56
MergeFailed event, 56
methods, 56
Namespace property,

55
.NET Framework, 55
Operators (expression

syntax rule), 64
Parent and Child

Relations (expression
syntax rule), 64

passing, 148-150
populating, 57-64
Prefix property, 55
properties, 55
ReadXML method, 56
ReadXMLSchema

method, 56
RejectChanges method,

56
Relations collection, 55
Reset method, 56, 127
returning, code,

507-508
saving, 151-153
strongly typed,

131-137, 142-153
structures, code to load

at runtime, 171-172
System.Component-

Model.MarshalBy-
ValueComponent
class, 54

Tables collection, 55
TitlesDS DataSet, 137
TitlesDs.cs file, classes

generated in source
code, 138

traversing, 60-63
Unchanged rows, 118
viewing, 137
Wildcard Characters

(expression syntax
rule), 64

WriteXml method, 56
WriteXmlSchema

method, 56
DataTable, 82-84, 91,

118-127
DataView, 65, 72-73
DataViewManager, object

hierarchy, 77
“Design Guidelines for

Class Library
Developers,” 461

exception, ComputeBooks
data provider, 395

ForeignKeyConstraint,
100-101

generating in TitlesDs.cs
file source code, 138

Hashtable, Synchronized
method, 498

HybridDictionary, 494
InitClass method, 139
initializing, 139
managed (SQLXML),

code, 357
members, manipulating,

380
MustInherit, 453
.NET

Data Providers, 191
Framework, capitaliza-

tion styles, 462
NotInheritable, 488
object construction,

225-227
parameters,

ComputeBooks data
provider, 385-390

576 classes

29 3869 index 5/20/02 1:19 PM Page 576

persistent
creating for

ObjectSpaces frame-
work, 559-561

Customer, code,
559-561

PropertyCollection, 103
PropertyManager, 419
ProviderFactory, 481

code, 474-475
data providers, code to

abstract, 471-473
ReviewsDataTable, 138,

142
ReviewsRow, 138-142
ReviewsRowChangeEvent,

138
serviced component base,

code, 457-460
ServicedComponent, 457
skeleton, XSD.exe

command-line utility,
479

SqlConnection, Close or
Open methods, 47

SqlObjectSpace, 563
StateBag, 442
stream (System.IO name-

space), 121
System.ComponentModel.

MarshalByValueComp-
onent (DataSet class), 54

System.Diagnostics name-
space, 454

System.Xml, stream class-
es, 121

Thread, managed code,
541-542

TitlesDataTable, 138, 142
TitlesDs, 138-139
TitlesRow, 138
TitlesRowChangeEvent,

138

Trace
base classes, condition-

al tracing, 454
Write method, 76
WriteLine method,

89-90
transaction

behavior, 240
IDbTransaction inter-

face, 192, 197
.NET Data Providers,

197
UniqueConstraint,

IsPrimaryKey property,
99

UserControl, 526
Web services, HTTP

(Hypertext Transfer
Protocol) context infor-
mation, 517

WebData, 516
XmlDataDocument, 21,

179-181
XmlDocument, 179
XmlObjectSpace, 563
XmlSerializer, 479
XmlTextReader, 121
XmlTextWriter, 121

clauses
Transact-SQL EXISTS

clause, 309
WHERE, 63-65

Clear method, 394
DataSet class, 56
DataTable class, 83

ClearErrors method
(DataRow class), 88

CLI (Call-Level Interface),
9

clients
applications, assemblies or

binding policies, 147

CbksCommand object,
390

CbksParameter object, 390
connection classes, 216
keys, generating, 95
proxy classes, exposing

with begin and end
methods, 525

SQL Server, architecture,
330

SqlClient, 190
SqlClient .NET Data

Provider, 330-332
sticky IP, 439

ClientValidationFunction
property, 445

Clone method, 67, 161
DataSet class, 56
DataTable class, 83

cloneObject method, 501
cloning DataSet objects,

67-69
Close method, 217

connection classes, 196
data readers, 205, 273
SqlConnection class, 47

CloseConnection
command, 286-288
value (command objects),

249
CLSID key (COM compo-

nents), 547
clustered indexes, definition,

351, 536
cmSave SqlCommand

object, 310
code

Address class, 476-479
ADO.NET

commands, creating,
47-49

data adapters, configur-
ing, 50

code 577

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 577

data connections,
46-47

Recordset objects,
reading data, 548

Aggregate Functions
(expression syntax rule),
selecting data, 64

application interoperability
(ADO Recordset
objects), reading data,
545-548

arrays, writing, 280-281
assembly, 19
binary data, reading,

277-278
Binding object, Format

event, 424
Catalog Web service

calling, 521-522
creating, 517-518

CbksCommand class,
380-383

CbksConnection class,
375-379

CbksDataAdapter class,
391-394

CbksException class, 395
CbksParameter class,

386-389
CbksParameterCollection

class, 386-389
collection classes, 479-480
Column Names (expres-

sion syntax rule), select-
ing data, 64

columns, 93, 274-275, 300
commands

creating, 47-48
implementing, 380-383
object parameters,

260-263

ComputeBooks top sellers,
exposing, 516

conforming to Services
Framework, 139

connections, 217-219,
227-228

column multiple values,
code to read, 279

custom exception classes,
456

Customer class, 476-479
data

adapters, 294-295,
391-394
binding in Web User

Controls, 527-528
formatting, 424
modifying, 309-310
providers, 471-473,

498-499
retrieving, 143,

305-306
selecting incrementally,

306
types, referencing, 492

data access
base class, 450-452
class, 467-469

data factory class files,
downloading, 486

data readers, 248, 273,
283-284, 427-428,
435-436

DataFactory class,
488-489, 506-509

DataGrid controls, adding
to caches, 541

DataSet class, 57-61,
151-152, 171-172,
507-508

DataSet objects, 67-69,
158-161, 180-182

DataTable
class, inspecting,

118-120
objects, loading, 85-86

DataView objects, binding
to controls, 447-448

debugging with SQL
Profiler or SqlClient
provider, 222

DeleteTitle method, delet-
ing Titles table rows,
257-258

DiffGrams (XML), creat-
ing, 124-125

disconnected updates,
implementing, 313-317

distributed transactions,
239-240

dsOrders extended proper-
ty (DataSet object), pop-
ulating, 104

error information, logging,
210-211

events, 42-45
Excel workbooks, creat-

ing, 367-369
exceptions, implementing,

395
ExecuteScalar method,

returning result sets,
251-252

ExecuteXmlReader
method, 253-254

expression syntax rules,
selecting data, 64

extended properties,
populating, 104

FOR XML statement
(XML output), 254

functions, creating,
555-556

578 code

29 3869 index 5/20/02 1:19 PM Page 578

Functions (expression syn-
tax rule), selecting data,
64

GetDataSet methods,
507-508

getTitles method
(DataFactory class),
508-509

GetTitlesDone method,
calling through dele-
gates, 544

GetTopSellers method,
517-518

imperative security,
200-201

InfoMessage event,
217-219

JIT (just-in-time), 18
ListChanged event, hook-

ing, 76
Literal Values (expression

syntax rule), selecting
data, 64

Load event, DataSets, 41
managed, 17-20, 538-544,

555-556
manifests, 19
MergeFailed event, adding

event handlers, 71
modules, 18-19
MSDataShape provider,

287
multi-record binding, data

readers to
DropDownList controls,
435-436

new customers, creating,
563-564

object-oriented, accessing
data, 44

objects, 225-226, 480-481
OPath, 562

Operators (expression syn-
tax rule), selecting data,
64

output parameters, 264
PageIndexChange event,

42
parameters, implementing,

386-389
Parent and Child Relations

(expression syntax rule),
selecting data, 64

PE (portable executable)
file, 18

persistent Customer class-
es, creating, 559-560

pessimistic concurrency,
configuring, 320-321

PositionChanged event,
CurrencyManager object
position notifications,
423

programmatic data bind-
ing, 421

ProviderFactory class,
474-475

public keys (strong
names), 19

result sets, retrieving,
284-285

ReviewsRow class, expos-
ing table columns as
properties, 140-141

rows, 68, 89, 111-117,
141-142

sales data (ComputeBooks
stores), 176

schemas, creating from
databases, 169-170

server-side cursors, 354
serviced component base

class, 457-460
session states, Load

events, 438-439

simple validation, events,
430

SQL Client data provider
types, 275-276

SQLXML managed class-
es, 357

StateChange event,
217-219

statement files, 494-497,
502-504

statements, caching or cre-
ating, 499-500

stored procedures (multi-
function), code, 308-309

tables, 50, 94, 127, 300
Titles table rows, deleting,

257-258
TitlesDs DataSet, populat-

ing, 144-145
TitlesDs.cs file source

code, classes generated,
138

TopBooks.ascx file, data
binding, 527-528

TopBooks.ascx.cs file,
Web User Controls,
526-527

TopSellers method, 516
transactions, 236-240
triggers, 344
Type objects (provider-

specific), creating,
489-491

Update stored procedure,
49

usp_GetTitles stored pro-
cedure, 348-350, 494

Validated events, simple
validation, 430

Validating events, simple
validation, 430

code 579

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 579

VB .NET, consuming data
in XML Web Services,
522-529

VB (Visual Basic),
ComputeBooks data
provider, 375

view states, Load events,
442

viewing, 37-38
Web User Control,

526-528
Wildcard Characters

(expression syntax rule),
selecting data, 64

WriteTitleXml function,
code to copy rows,
160-161

WriteXmlChanges
method, output, 122-123

XML (eXtensible Markup
Language)

DiffGrams, creating,
124-125

mapping files, persis-
tent Customer class-
es, 561

reformatted, 162-163
templates, 356
Views, mapping tables

to XSD schemas, 355
XmlReader, transforming,

255
XSD (XML Schema

Definition), 164-165,
174-175

XSL (XML Stylesheet
Language) stylesheet,
256-257

code access security (CAS)
permission, 556

Code Access Security
model, 198-200

code-behind files, definition,
517

Cold Rooster Consulting
home page, Web service
results, 529

collections
child (DataTable object),

84
classes, 432, 479-480
ConstraintCollection, 100
DataSet class, 55
ExtendedProperties, 153
parameters, adding, 49
PropertyCollection class,

103
Relations (DataSet class),

55
Tables (DataSet class), 55

Column Names (expression
syntax rule), selecting
data, 64

ColumnChanged event
(DataTable class), 84

ColumnChanging event
(DataTable class), 84

ColumnMapping property
class, 91, 162-163

ColumnName property
(DataColumn class), 91-92

columns
auto-incrementing, 94-96
BulkAmount, Caption

properties, 93
BulkDiscount, Caption

properties, 93
Caption properties, 93
CatID, DefaultValue prop-

erty, 94
data tables, 90-92
in DataSets, 177
duplicate names, 298
exposing as properties,

code, 140-141

expressions, 96-98
hiding in tables, 162
IDENTITY, 95, 336
ISBN, ReadOnly property,

93
keys, generating on clients

and servers, 95
many to many relation-

ships, 337
mappings, code to create,

300
MissingMappingAction.

Passthrough value, 148
MS Description property,

302
multiple values, retrieving,

279-281
names, 64, 301
populating in DataTables,

297
properties, 92-94
PubDate, Caption proper-

ties, 93
ReadOnly property, 95
requesting, 535
ReviewNo, 95
rows, errors, code to cre-

ate, 90
single values, retrieving,

274-278
strongly typed values,

code to retrieve, 274-275
timestamp, row version,

322
Title, Unique property, 93
Unique property, setting to

True, 92
Columns property

DataSet object, 90-92
DataTable class, 82

Columns tab (DataGrid
Properties dialog box), 39

580 code

29 3869 index 5/20/02 1:19 PM Page 580

COM (Component Object
Model), 545-547

COM callable wrapper
(CCW), 545

COM Interop functionality,
545

COM+ (Component
Services), 545

combining relational and
object-oriented para-
digms, 16

Command Builder, 192
command builders, 324, 539
command classes

ComputeBooks data
provider, 380-385

.NET Data Providers,
201-204

command-line utilities
AL.exe (Assembly

Linker), 148, 453
running, 138
XSD.exe

skeleton classes, 479
strongly typed DataSet

classes, 137
command objects

CloseConnection value,
249

CommandText property,
246

CommandType property,
246

constructors, 246
controlling, 259-260
data modification, 257-259
data readers, code to

execute, 248
data retrieval, 248-257
Default value, 249
ExecuteReader method

(CommandBehavior enu-
meration), 249

IDbCommand interface,
245

KeyInfo value, 249
.NET Data Providers, 192
OleDbCommand, 246,

260, 263
output parameters, code,

264
parameters, 260-265
ProviderFactory class, 481
SequentialAccess value,

249
SingleResult value, 249
SingleRow value, 249
stored procedures and

dynamic SQL, compar-
ing, 246-247

Command property (event
arguments), 312

CommandBehavior enu-
meration, 249, 537

commands
CancelCommand event, 44
CbksCommand class,

code, 380-383
CloseConnection

data readers, 288
GetLookups method,

286
code, 47-49
context menu, Add Web

Reference, 522
creating, 47-49, 366-367
EditCommand event, 44
File menu

Add New Item, 517
New Project, 28

implementing, code,
380-383

OdbcCommand object,
366

SelectCommand, 41, 170

SequentialAccess, 279
SingleRow, behavior, 252
Start Page menu, My

Profile, 28
update, configuring, 47-49
UpdateCommand event,

44
CommandText property, 48,

246
CommandTimeout proper-

ties, 202, 259
CommandType property,

202, 246
Commit method, transac-

tion classes, 197
committing rows to tables,

125-126
common language runtime,

13
Building Distributed

Applications with Visual
Basic .NET, 18

CTS (Common Type
System), 19-20

Essential .NET Volume I,
18

implementation inheri-
tance (strongly typed
DataSet classes), 132

inheritance (DataSet class-
es), 131

interface inheritance
(strongly typed DataSet
classes), 132

managed code, 17-20
.NET language versatility,

554
performance, 555
SQL Server .NET,

554-555
tool leverage, 555
unified programming

models, 554

common language runtime 581

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 581

Common Type System. See
CTS

CompareValidator control,
443

comparing
data readers and DataSets,

272-273
data types (SQL Server),

338-339
data-centric or application-

centric (designing data
access classes), 461-462

DataView objects and
relational databases, 72

ObjectSpaces framework
and EJB (Enterprise Java
Beans), 559

stored procedures and
dynamic SQL, 246-247

compiling base classes, 453
complex binding, 425-428
complexType icon (XML

Schema tab of XML
Schema Toolbox), 166

Component Services:
Building Distributed
Applications with Visual
Basic .NET, 461

Component Services
(COM+), 545

components
aliasing, 227
COM (Component Object

Model), CLSID key or
importing, 547

.NET Data Providers
Command Builder, 192
command classes,

201-204
command object, 192
connection classes,

196-197

connection object, 191
Data Adapter, mem-

bers, 195-196
data adapters, 191-195
data reader, 192,

204-207
errors, 193, 209-211
exceptions, 193,

209-211
parameters, 192,

207-209
permissions, 192,

198-201
service, definition, 10
serviced, 225-226,

238-241, 457-461
transaction classes, 192,

197
Compute method, 83, 98
ComputeBookDAException

class, 464
ComputeBooks

book reviews, 94
Catalog Web service,

517-529
customers for

ObjectSpaces framework
querying, 562-563
updating, 563-564

data provider
architecture, 374
command class,

380-385
connection class,

375-380
data adapter class,

390-395
exception class, 395
implementing, 374-375
parameters classes,

385-390
VB code, 375

database
Categories table, 36
connecting to, 29
DataView objects, 78
entity relationship

diagram, 333
stored procedures, 47
Titles table, 36

ERD, 333
product catalog, 28
Reviews table, dragging

and dropping, 136
sales data, code, 176
Titles table, dragging and

dropping, 136
top sellers, code to expose,

516
usp_GetTitles stored pro-

cedure, 144
ComputeBooks.Data name-

space, 137-139, 452, 469,
488

ComputeBooks.Data.Cbks
namespace, classes, 375

ComputeBooksCatalog
proxy class, 524

ComputeBooksDABase
class, 452, 516

ComputeBooksDAExcep-
tion class, 456-457

ComputeBooksDAServiced
Base class, 460

ComputeBooksSimple
application, 28

concurrency
Data Adapter

Configuration Wizard,
320

data stores, updating,
318-323

definition, 32
optimistic, 318
pessimistic, 318-321

582 Common Type System

29 3869 index 5/20/02 1:19 PM Page 582

conditional tracing, base
classes, 454-456

configuration files, case sen-
sitivity, 229

configuring
data adapters, 50
DataFactory class, code,

489
pessimistic concurrency,

code, 320-321
update command, 47-49

Conflict property, 72
conforming code to Services

Framework, 139
Connect Timeout attribute

(SqlClient provider), 220
Connection Lifetime

attribute (SqlClient
provider), 230

connection pooling, 229
Connection Lifetime

attribute (SqlClient
provider), 230

Connection Reset attribute
(SqlClient provider), 230

connections, monitoring,
540

disabling, 540
impersonation (trusted

connection threads), 232
managed code, 539-540
Max Pool Size attribute

(SqlClient provider), 230
Min Pool Size attribute

(SqlClient provider), 231
ODBC, data sources,

365-366
with OleDb provider,

233-234
Pooling attribute

(SqlClient provider), 231
session pooling, 233

with SqlClient provider,
230-233

Connection property, 49,
384

command classes, 202
data factory class, 487
transaction classes, 197

Connection Reset attribute
(SqlClient provider), 230

connections, 215
breaking, 217
CbksConnection class,

code, 375-379
ComputeBooks database,

29
connection classes,

196-197, 216, 375-380
data, code, 46-47
data readers, 270
to data sources, creating,

29-30
databases, 31, 230
DSN-less, 364-365
events, 217-219
management, base classes,

453
objects, 31, 191, 274
opening, 216-217,

364-365
opening and closing with

SqlDataAdapter, 233
pooling, 229-234
in pools, monitoring, 540
resetting, 217
session pooling, 233
strings, 219-229
system DSN, 364
trusted, threads, imperson-

ations, 232
user DSN, 364

ConnectionState enumera-
tion, values, 216

ConnectionString property,
196, 217, 365

ConnectionTimeout proper-
ty, connection classes, 196

consoles, VC# .NET console
application project
(strongly typed DataSet
classes), 134

ConstraintCollection, 100
constraints

check, schemas, 343
default, schemas, 342
DRI (declarative referen-

tial integrity), 341
enabling, 87
EndLoadData method, 87
foreign keys, 100-103,

341-342
primary keys (tables),

99-100
schemas, 341
table-level, definition, 343
tables, 99-103
unique (tables), 99

Constraints property, 82, 99
construction, object,

225-227
constructors

command object, 246
connection strings, accept-

ing, 229
data access classes,
464-466
definition, 464

consuming data in XML
Web Services, 521

data, updating through
Web services, 530

VB .NET, 522-529
ContainsKey method, 499
context menu commands,

Add Web Reference, 522

context menu commands 583

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 583

ContinueUpdateOnError
property, 195, 314-317

controlling command
objects, 259-260

controls
BaseValidator, 442-443
binding DataView objects,

code, 447-448
CompareValidator, 443
CustomValidator, 443
DataGrid, 40-45, 541
DropDownList, code to

bind data readers,
435-436

ListView, code to manual-
ly bind data readers,
427-428

RangeValidator, 443
RegularExpressionValidat

or, 443-444
RequiredFieldValidator,

443-444
templated, data binding

expressions, 435
TopBooks user, 529
validating, 429-431,

442-445
validation process, cus-

tomizing, 445
ValidationSummary,

443-444
Web User Control,

525-528
conventions, naming (data

access classes), 462-464
CONVERT function, 64
ConvertEventArgs object,

424
Copy method, 67-68

DataSet class, 56
DataTable class, 83

copying
DataSet objects, 67-69
from DataSets, code,

160-161
rows with WriteTitleXml

function, 160-161
types, .NET Remoting,

149
CopyTo method (DataView

class), 73
COUNT aggregate function,

97
Count

function, 64
property (DataView class),

73
counters, viewing

performances, 231
covered queries, definition,

535
CreateActivityReport

method, 367
CreateCommand method,

connection classes, 196
CreateDataAdapter method

(data factory class), 487
CreateInstance method, 501
CreateParameter method,

202, 260, 384
createProviderTypes

method, 488
createSqlCallback method,

505
CreateSqlFile method, 487,

502
CreateSqlFiles method, 487,

502, 505
creating

base classes, 450-456
Catalog Web service,

code, 517-518

column mappings, code,
300

commands, 47-48,
366-367

connections to data
sources, 29-30

data adapters, 31-35
data factory class,

486-493, 506-509
DataSet objects, 35-36
DataView objects, 73
DiffGrams (XML),

123-125
dvsOrder object, 78
dvsOrderDet object, 78
Excel workbooks, code,

367-369
functions, code, 555-556
new customers, code,

563-564
persistence classes for

ObjectSpaces frame-
work, 559-561

rows with NewRow
method, 112

schemas from databases,
code, 169-170

statements, 493-505
strongly typed DataSet

classes, 134-142
table mappings, code, 300
Type objects (provider-

specific) code, 489-491
user interfaces, 38-45
version numbers for

assemblies, 146
Windows Forms applica-

tions, 418
XML (eXtensible Markup

Language), 163-179,
561-562

XSD (XML Schema
Definition), 134

584 ContinueUpdateOnError property

29 3869 index 5/20/02 1:19 PM Page 584

.cs file extension, 517
CTS (Common Type

System)
managed code, 19-20
types, 92-93, 363

CurrencyManager
class, 419
object, position notifica-

tions, code, 423
Current

property, 105
value (DataRowVersion

enumeration), 113
version, rows, 115-116

Current Language attribute
(SqlClient provider), 220

CurrentPageIndex property,
42

CurrentRows value
(DataViewRowState enu-
meration), 117

cursors, server-side, access-
ing data, 353-355

custom exceptions, base
classes, 456-457

custom listeners, 455
custom objects

exposing in data services
tier, 412

returning for data access
classes, 476-481

Customer class, code,
476-479

customers
Address class, code,

476-479
collection classes, code,

479-480
Customer class, code,

476-479
new, code to create,

563-564

persistent Customer class-
es, code for XML map-
ping file, 561

querying for ObjectSpaces
framework, 562-563

updating for ObjectSpaces
framework, 563-564

Customers and Orders
tables, mapping to XSD
schemas, code, 355

CustomersCollection class,
480

customizing
validating controls

process, 445
windows, 28

CustomValidator control,
443

D

daCategories object, 35
DAO (Data Access Objects),

8
data

abstracting with
ObjectSpaces frame-
work, 558-559

accessing, 32, 44, 555-558
methods, building,

515-517
techniques for databas-

es (SQL Server),
353-358

of ADO Recordset objects,
reading, 545-548

aggregation, 371
binary, code to read,

277-278
binding, code, 527-528

buffering in
MemoryStream object,
277

caches, disconnected
(DataSet objects), 110

changing, 109
connections, code, 46-47
consuming in XML Web

Services, 521-530
DataRowState enumera-

tion, values, 110-111
DataRowVersion enumera-

tion, values, 113
DataSet class

creating, 35-36
GetChanges method,

118-123
returning over WWW

(World Wide Web),
529

DataTable class,
GetChanges method,
118-123

DataView object, 116-118
DataViewRowState enu-

meration, values, 116
deleting, 394
DiffGrams, 123-125
displaying simple and

complex binding, 448
exposing through XML

Web Services, 514-520
formatting, code, 424
internal data factory, 414
locking, 235
managing in VS .NET

Professional edition, 30
manipulation, data readers,

272
mapping to object models,

133
modification statements,

288-289

data 585

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 585

modifying, 257-259,
309-310

Odbc provider, 363
read-only, caching, 437
retrieving, 41-42

ExecuteReader method,
248-250

ExecuteScalar method,
251-252

ExecuteXmlReader
method, 252-257

Fill method, 294-296
incrementally, code,

305-306
metadata, adding for

SQL Server, 301-304
result sets, retrieving,

304-307
without strong typing,

276
from tables, code, 143

rows, 110-116
sales (ComputeBooks

stores), code, 176
selecting, 63-66, 306
sources, data readers, 271
summarized for applica-

tions, 534
tables, 82-92
TDS (Tabular Data

Stream), 330-332
updating

data readers, 271
through DataSets, 536
through Web services,

530
writing as XML

(eXtensible Markup
Language), 158-163

“Data Access Application
Block,” 486

data access classes
base class, code, 450-452
code, 467-469
designing, 461-481

data access events
(Microsoft) timeline, 8

Data Access Objects (DAO),
8

data access technologies
ADO.NET, 7-13
MDAC (Microsoft Data

Access Components), 12
ODBC (Open Database

Connectivity), 9
OLE DB, 10
Recordset objects, 11
Web improvements, 12-14

Data Adapter component,
members, 195-196

Data Adapter Configuration
Wizard, 31-34, 320

data adapters, 31-35, 47-50,
110

CbksDataAdapter class,
code, 391-394

classes, 390-395
code, 294-295
column mappings, code to

create, 300
command builders, meth-

ods or properties, 324
concurrency, optimistic or

pessimistic, 318
data, 294-296, 301-310
data stores, updating,

307-310
command builders, 324
concurrency, 318-323
disconnected updates,

code to implement,
313-317

events, 311-313

isolation, 316-317
pessimistic concurren-

cy, code, 319-321
rows, refreshing, 323
RowUpdated event,

311-313
RowUpdating event,

311-313
DataSets, GetChanges and

Update methods, 314
Fill method, 294-299, 385
implementing, code,

391-394
interfaces, 390
MissingMappingAction

enumeration values, 299
MissingSchemaAction

enumeration values,
296

property, 296-297
NET Data Providers,

191-196
OleDbDataAdapter, 171,

294
properties, extended (code

to retrieve), 303
schema generation,

296-301
SelectCommand, 170
SET

NO_BROWSETABLE
ON statement, 170

SqlDataAdapter, 171, 233,
294

stored procedures (multi-
function), code, 308-309

tables, 297-301, 312, 323
transactions, 235

data binding
expressions, 433-435
programmatic code, 421
Web Forms presentation

services tier, 431-437

586 data

29 3869 index 5/20/02 1:19 PM Page 586

Windows Forms presenta-
tion services tier,
418-429

data-centric or application-
centric (designing data
access classes), comparing,
461-462

Data Connections node
(Server Explorer window),
29-30

Data Definition Language
(DDL) statements, 33

data factory class
BeginTransaction method,

487
building, 485
CacheFilePath property,

487
caching, 486-488
code files, downloading,

486
Connection property, 487
CreateDataAdapter

method, 487
CreateSqlFile method, 487
CreateSqlFiles method,

487
creating, 486
data providers, abstracting,

488-493
data types, 491-493
database independence,

486
DataFactory class,

488-489, 506-509
DataSet class, code to

return, 507-508
definition, 486
events, 487
ExecuteDataReader

method, 487
ExecuteNonQuery

method, 487

ExecuteScalar method,
487

ExecuteSqlXmlReader
method, 487

GetDataSet method, 487
GetDataTable method, 487
GetProviders method, 487
GetXsltResults method,

487
methods, 487
properties, 487
Provider property, 487
public members, 487
RemoveStatement method,

487
SqlFilesCreated event, 487
statements, abstracting,

493-505
SyncDataSet method, 487
Type objects (provider-

specific), code to create,
489-491

UseCache property, 487
Data Link Properties dialog

box, 29
data providers

abstracted, definition, 414
abstracting, 470-476,

488-493
architecture, 190-194
attributes for, determining,

223
building, 370-371
classes, 191
Command Builder, 192
command

classes, 201-204
object, 192

components, 191-194
ComputeBooks

architecture, 374
command class,

380-385

connection class,
375-380

data adapter class,
390-395

exception class, 395
implementing, 374-375
parameters classes,

385-390
VB code, 375

connection
classes, 196-197
object, 191

Data Adapter component,
members, 195-196

data adapters, 191-195
data aggregation, 371
data, definition, 10
data reader, 192, 204-207
data types, 491-493
definition, 10
downloading and

installing, 362
drivers, supporting, 363
errors, 193, 209-211
exceptions, 193, 209-211
full providers, 373
generic, 190
generic versus specific,

23-24
IDataAdapter interface,

373
IDataParameter interface,

373
IDataParameterCollection

interface, 373
IDataReader interface, 373
IDbCommand interface,

374
IDbConnection interface,

374
IDbDataAdapter interface,

374

data providers 587

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 587

IDbDataAdapterParameter
interface, 374

IDbTransaction interface,
374

implementing, 371-373
interfaces, 191
lightweight providers, 373
MSDataShape, code, 287
narrow, managed code,

538
.NET, command object,

245
objects, 191
Odbc, 363, 367-370
ODBC .NET Provider,

downloading, 23
OleDb, 223-224, 233-234,

238-239
OleDbError object, 210
parameters, 192, 207-209
permissions, 192, 198-201
proprietary data stores,

371
setting, code, 498-499
specific, 190, 330
SQL Server, 190
SQL Server OLE DB, 29
SqlClient, 190

Application Name
attribute, 220

AttachDBFileName
attribute, 220

attributes, 220-221,
230-231

code, debugging, 222
Connect Timeout

attribute, 220
Connection Lifetime

attribute, 230
connection objects,

exceptions, 274
connection pooling,

230-233

Connection Reset
attribute, 230

connection strings,
specifying, 220-223

Current Language
attribute, 220

Data Source attribute,
220

Enlist attribute, 221
InfoMessage events,

289
Initial Catalog

attribute, 221
Integrated Security

attribute, 221
Max Pool Size

attribute, 230
Min Pool Size

attribute, 231
NET Data Provider, 24,

330-332
Network Library

attribute, 221-223
Packet Size attribute,

221
Password attribute, 221
performance counters,

viewing, 231
Persist Security Info

attribute, 221
Pooling attribute, 231
SQL Profiler, 222
transaction objects, 234
transactions, 235-238
types, code, 275-276
Use Procedure For

Prepare attribute, 221
User ID attribute, 221
Workstation ID

attribute, 221
SqlError object, 209
targeted, 330

TDS (Tabular Data
Stream) protocol, 190

transaction classes, 192,
196-197

Type objects (provider-
specific), code to create,
489-491

data readers, 192, 204-207,
269, 282

architecture, 271
arrays, code to write,

280-281
binary data, code to read,

277-278
binding to DropDownList

controls, code, 435-436
Close method, 273
CloseConnection com-

mand, 288
connection objects,

exceptions, 274
connections, 270
data, 271-276, 288-289
and DataSets, comparing,

272-273
DbType enumeration val-

ues, definitions, 275
ExecuteReader method,

274
executing, code, 248
exposing in data services

tier, 412
managed code, 538
manually binding to

ListView controls, code,
427-428

MoveNext method, 274
MSDataShape provider,

287
.NET Remoting, 270
objects, code to populate,

480-481

588 data providers

29 3869 index 5/20/02 1:19 PM Page 588

opening, code, 273
performance, 272
polymorphism, code,

283-284
result sets, returning,

284-289
returning, 538
schema retrieval,

GetSchema Table
method, 282-283

strong-typing, 271
traversing, 273-281

data services applications,
definition, 28

data services tier, 405-406,
449

abstract base classes, 450
abstracted providers, 414
base classes, 450-457
custom objects, exposing,

412
data access classes,

designing, 461-481
data readers, exposing,

412
DataSet objects, exposing,

412
direct approach, 413
external view, 411-413
internal data factory, 414
internal view, 413-414
methods, exposing, 413
serviced components, han-

dling, 457-461
XML Web Services, data,

exposing, 515-517
Data Source attribute

(SqlClient provider), 220
data sources

connections, creating,
29-30

IBindingList interface, 419

IEditableObject interface,
419

IList interface, 418
IListSource interface, 419
ODBC, accessing,

362-370
SQL Server OLE DB

provider, 29
data stores

connections, 216-217
data, locking, 235
OleDb .NET Data

Provider, transactions,
239

updating, 307-310
command builders, 324
concurrency, 318-323
disconnected updates,

code to implement,
313-317

events, 311-313
isolation, 316-317
pessimistic concurren-

cy, code, 319-321
rows, refreshing, 323
RowUpdated event,

311-313
RowUpdating event,

311-313
data types

binary and varbinary, com-
paring, 339

char and varchar, compar-
ing, 339

comparing, 338-339
data factory class, 491-493
datetime and smalldate-

time, comparing, 338
decimal and numeric,

comparing, 338
float and real, comparing,

338

Integer, mapping, 97
money and smallmoney,

comparing, 338
nchar and nvarchar, com-

paring, 339
referencing, code, 492
schemas, 337-340
System.Data.SqlTypes

namespace, 339
text and ntext, comparing,

339
timestamp

rowversion synonym,
322

and uniqueidentifier,
comparing, 339

tinyint and bit, comparing,
338

UDTs (user-defined data
types), 340

varbinary and image, com-
paring, 339

varchar and nvarchar,
comparing, 339

database administrator
(DBA), 332

Database property, connec-
tion classes, 196

databases. See also
ComputeBooks

changing with DataSet
object, 110

connections, 31, 230
data, 110-125, 534
data access techniques,

353
data adapters, 110
DBA (database adminis-

trator), 332
designing, 332
ER (entity-relationship)

modeling, 333

databases 589

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 589

ERD (entity relationship
diagram) modeling, 333

independence for data fac-
tory class, 486

indexes
design, 351-352
performance optimiza-

tion, 536-537
ODBC (Open Database

Connectivity), 9
output parameters, favor-

ing over DataSets, 537
queries, 535, 540
RDS (Remote Data

Services), 11
references, 31
relational, 8, 72, 331
round-tripping, definition,

334
schemas, 169-170,

335-346
security, 352-353
server-side cursors,

353-355
servers, 539, 557
SQL Server, inspecting, 30
SQLXML, 355-358
stored procedures,

346-351, 537
UDA (Universal Data

Access) strategy, 10
XML Schema, creating

dynamically, 169-171
DataBind

events, 434
method, 41

DataBinder class, Eval
method, 433

DataBinding events, 434
DataBindings dialog box,

432-433
DataColumn class, 65, 91-99

DataColumnMapping
object, 50

DataFactory class, 506-509,
516, 488-489

DataGrid object
controls, 40-45, 541
relationships, navigating,

427
DataGrid Properties dialog

box, 38-39
DataGridPageChanged

object, 42
DataRelation object, foreign

keys, 101-102
DataRelationCollection

class, Add method, 101
DataRow

class, 87-88
object, properties, 110-115

DataRowChangeEventArgs
object, 90

DataRowCollection object,
Find method, 66

DataRowState enumeration,
values, 110-111

DataRowVersion enumera-
tion, values, 113

DataSet classes
AcceptChanges method,

56
Aggregate Functions

(expression syntax rule),
64

CaseSensitive property, 55
Clear method, 56
Clone method, 56
collections, 55
Column Names (expres-

sion syntax rule), 64
common language run-

time, inheritance, 131
Copy method, 56

data, selecting, 63-66
DataSetName property, 55
DefaultViewManager

property, 55
Detached rows, 118
DiffGrams, 123-125
EnforceConstraints prop-

erty, 55
events, 56
expression syntax rules, 64
ExtendedProperties, 55,

153
Functions (expression syn-

tax rule), 64
Generate DataSet option,

137
GetChanges method, 56,

118-123
GetXml method, 56
GetXmlSchema method,

56
HasChanges method, 56
HasErrors property, 55
IListSource interface, 419
InferXmlSchema method,

56
Literal Values (expression

syntax rule), 64
loading, 151-153
members, 55
Merge method, 56
MergeFailed event, 56
methods, 56
Namespace property, 55
.NET Framework, 55
Operators (expression syn-

tax rule), 64
Parent and Child Relations

(expression syntax rule),
64

passing, 148-150
populating, 57-66

590 databases

29 3869 index 5/20/02 1:19 PM Page 590

Prefix property, 55
properties, 55
ReadXML method, 56
ReadXMLSchema

method, 56
RejectChanges method, 56
Relations collection, 55
Reset method, 56, 127
returning, code, 507-508
saving, 151-153
strongly typed, 131-137,

142-153
structures, code to load at

runtime, 171-172
System.ComponentModel.

MarshalByValueCompon
ent class, 54

Tables collection, 55
TitlesDS DataSet, 137
TitlesDs.cs file, source

code, classes generated,
138

traversing, 60-63
Unchanged rows, 118
viewing, 137
Wildcard Characters

(expression syntax rule),
64

WriteXml method, 56
WriteXmlSchema method,

56
DataSet objects, 53, 81

AppDomains, passing
between, 172

cloning, 67-69
columns, 92-98 177
Columns property, 90-92
consuming in XML Web

Services, 521
copying, 67-69, 160-161
creating, 35-36
data, 110-116

adapters, code,
294-295

returning over WWW
(World Wide Web),
529

updating, 536
writing as XML

(eXtensible Markup
Language), 158-161

XML (eXtensible
Markup Language)
formats, 161-163

and data readers, compar-
ing, 272-273

and data tables, editing
relationships, 36

databases, changing, 110
DataTable objects, 82-87
DataView object, 116-118
DiffGram, XML

(eXtensible Markup
Language), 160

dsOrders extended proper-
ty, code to populate, 104

exposing, 412, 514
GetChanges method, 314
Load event, code, 41
manipulating, 66, 180-181
merge errors, handling,

70-72
merging, 69-70
output parameters, favor-

ing over DataSets, 537
properties, extended,

103-105
remoted, .NET Remoting,

150
row versions, tracking,

114-115
Rows property, 87-90
schemas, 169-170,

175-176

tables, 99-103, 305, 310
Tables property, 82-87
TitlesDs DataSet, code to

populate, 144-145
transforming, code, 182
Update method, 314
Web services, 524
WriteTitleXml function,

code to copy rows,
160-161

WriteXml method, creat-
ing DiffGrams, 123

writing as XML
(eXtensible Markup
Language), code,
158-159

XML (eXtensible Markup
Language), 157-158,
162-163, 179-183

XmlDataDocument class,
181

XmlReadMode enumera-
tion, ReadXml method,
178-179

XSD (XML Schema
Definition), 173-175

DataSet property
(DataTable class), 82

DataSetIndex property, 44
DataSetName property

(DataSet class), 55
DataTable classes

AcceptChanges method,
83

BeginLoadData method,
83

CaseSensitive property, 82
ChildRelations property,

82
Clear method, 83
Clone method, 83
ColumnChanged event, 84

DataTable classes 591

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 591

ColumnChanging event,
84

Columns property, 82
columns, 91, 297
Compute method, 83
Constraints property, 82
Copy method, 83
DataSet property, 82
DefaultView property, 82
DiffGrams, 123-125
DisplayExpression proper-

ty, 82
EndLoadData method, 83
ExtendedProperties

property, 82
GetChanges method, 83,

118-123
HasErrors property, 82
IListSource interface, 419
ImportRow method, 83
inspecting, 118-121
LoadDataRow method, 83
MinimumCapacity

property, 82
Namespace property, 83
NewRow method, 83
ParentRelations property,

83
Prefix property, 83
PrimaryKey property, 83
RejectChanges method, 83
Reset method, 84, 127
RowChanged event, 84
RowChanging event, 84
RowDeleted event, 84
RowDeleting event, 84
Rows property, 83
rows, 125-127
schemas, generating with

MissingSchemaAction
property, 296

Select method, 84
TableName property, 83

DataTable objects, 72
child collections, 84
columns, 90-92
events, 84
loading, code, 85-86
members, 82
methods, 83-84
properties, 82-83
rows, 87-90

DataTableCollection object,
Add method, 59

DataType property, 91-93
DataView class, 65, 72-73
DataView objects, 117-118

binding to controls, code,
447-448

changes, capturing, 75-76
creating, 73
data displays, simple and

complex binding, 448
DataTable objects, 72
filtering, 74
and relational databases,

comparing, 72
rows, finding, 75
RowStateFilter property,

113, 116
sorting, 74
views, managing, 77-78

DataViewManager
class, object hierarchy, 77
property (DataView class),

73
DataViewRowState enumer-

ation, values, 116
DataViewSetting object, 77
datetime data type and

smalldatetime data type,
comparing, 338

DBA (database administra-
tor), 332

DbType
enumeration values,

definitions, 275
property, parameters, 207

DDL (Data Definition
Language) statements, 33

debugging code
with SQL Profiler, 45, 222
with SqlClient provider,

222
decimal data type and

numeric data type, com-
paring, 338

declarations
of arrays in C# or VB, 280
msdata namespace, 174

declarative referential
integrity (DRI), definition,
341

default constraints,
schemas, 342

default objects, SQL Server
support, 343

Default value
command objects, 249
DataRowVersion

enumeration, 113
Default version, rows, 115
DefaultValue property, 91,

94
DefaultView property, 73,

82
DefaultViewManager prop-

erty, 55, 78
defining

strongly typed DataSet
classes, 132-133

tables, code, 94
definitions

abstracted providers, 414
adapter patterns, 330
AppDomains (Application

Domains), 149

592 DataTable classes

29 3869 index 5/20/02 1:19 PM Page 592

assembly, 19, 146
attributes, 333
business services applica-

tions, 28
camel case, 463
cardinality, 333
clustered indexes, 351,

536
code-behind files, 517
complex binding, 425
concurrency, 32
constructors, 464
covered queries, 535
data binding expression,

433
data factory class, 486
data providers, 10
data services applications,

28
DbType enumeration

values, 275
DRI (declarative referen-

tial integrity), 341
entity, 333
ER (entity-relationship)

modeling, 333
ERD (entity relationship

diagram) modeling, 333
functions, 347
identifiers, 333
initializer list, 465
interface inheritance, 23
listeners, 454
managed code, 18
manifests, 19
many to many

relationships, 337
modules, 18-19
multi-record binding, 434
NLB (Network Load

Balancing), 407
nonclustered indexes, 351,

536

normalization, 335
ORM (Object Role

Modeling), 334
Pascal case, 463
PIA (primary interop

assembly), 547
polymorphism, 23
presentation applications,

28
public keys (strong

names), 19
reference types, 19
relationships, 333
remotable types, 149
round-tripping databases,

334
scale-out, 407
scale-up, 407
schemas, 335
server affinity, 408
server cursors, 354
service components, 10
simple binding, 420
single-value binding, 432
statement, 493
table scans, 536
table-level constraints, 343
3NF (Third Normal

Form), 335
two-tier applications, 28
UDDI (Universal

Description, Discovery
and Integration), 523

UDTs (user-defined data
types), 340

uppercase, 463
value types, 19
views, 347
Web User Control, 525
XML Bulkload, 357
XML UpdateGram, 356
XML Views, 355

delegates, 219
arguments, passing to, 543
asynchronous, 505
GetTitlesDone method,

calling through (code),
544

managed code, 542-544
MergeFailedEventHandler,

72
.NET, 72

Delete method, 110
DataRow class, 88
DataView class, 73

DeleteCommand property,
50, 195

Deleted value
DataRowState enumera-

tion, 111
DataViewRowState

enumeration, 117
DeletedRowInaccessible-

Exception, throwing, 113
DeleteRule property, 102
DeleteTitle method, code to

delete Titles table rows,
257-258

deleting
data, 394
rows, 113, 257-258

Depth property, data
reader, 205

design goals of ADO.NET,
14-17

“Design Guidelines for
Class Library
Developers,” 461

Design Patterns Explained:
A New Perspective on
Object-Oriented Design,
411

design patterns, object ori-
ented, 411

design patterns, object oriented 593

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 593

DesignerAttribute type, 31
designers

.NET Framework, VS
.NET, 31

objects, dragging and
dropping, 31

XML Schema Designer,
165, 168

designing
data access classes

constructors, 464-466
custom objects, return-

ing, 476-481
data providers,

abstracting, 470-476
data-centric or

application-centric,
comparing, 461-462

design issues, 461
naming conventions,

462-464
overloaded methods,

466-470
private methods,

466-470
databases (SQL Server),

332
index design, 351-352
schema design, 333-

346
security, 352-353
stored procedure layer

design, 346-351
indexes, 351-352

designs, stored procedure
layers, 346-351

Detached rows (DataSet
class), 118

detached rows, 113
Detached value

(DataRowState enumera-
tion), 111

developers (SQL Server
2000), stored procedures,
34

df variable, 509
diagrams, entity relation-

ships, 333
dialog boxes

Add New Item, 135, 517
Add Reference, 362
Add Web References,

522-523
Add Web User Control,

526
Advanced, simple binding,

420-421
Data Link Properties, 29
DataBindings, 432-433
DataGrid Properties,

38-39
Edit Relation, 36
New Project, 28, 418
Property Builder, 42
Show All Files, 525
Table Mappings, 35

dictionaries
(HybridDictionary class),
494

DiffGrams
creating, 123-124
table changes, 123-125
value (XmlReadMode

enumeration), 178-179
XML (eXtensible Markup

Language), 124-125, 160
direct approach in data

services tier, 413
Direction property

parameter objects,
263-265

parameters, 207
directives, VaryByParam

attribute, 540

disabling
connection pooling, 540
validation, 445

disconnections
data caches (DataSet

objects), 110
Recordset objects, 11
updates, code to imple-

ment, 313-317
disks, persisting to DataSet

serialization, 151-153
DisplayExpression property

(DataTable class), 82
displaying data, simple and

complex binding, 448
distributed transactions,

238-240
distributing logical tiers,

407-408
dlls, System.Data.dll, 19
Document Object Model

(DOM), 179
documents

DOM (Document Object
Model), 179

schemas, inferring from
inference rules, 175-176

XML (eXtensible Markup
Language), 175-179, 374

XSD (XML Schema
Definition), code,
164-165

DOM (Document Object
Model), 179

domains
AppDomains (Application

Domains), definition,
149

.NET Remoting, data
readers, 270

downloading
data factory class code

files, 486

594 DesignerAttribute type

29 3869 index 5/20/02 1:19 PM Page 594

MDAC (Microsoft Data
Access Components)
SDK, 12

MMIT (Microsoft Mobile
Internet Toolkit), 405

ODBC .NET Data
Provider, 362

ODBC .NET Provider, 23
dragging and dropping

objects, 31
Title table, 136

DRI (declarative referential
integrity), definition, 341

Driver Manager (ODBC),
connection pooling, 365

drivers, 363
DropDownList controls,

code to bind data readers,
435-436

dropping, dragging and
dropping

objects, 31
Title table, 136

DSN
DSN-less, opening con-

nections, opening,
364-365

system, opening connec-
tions, 364

user, opening connections,
364

dsOrders extended property
(DataSet object), populat-
ing, code, 104

dvsOrder object, creating,
78

dvsOrderDet object, creat-
ing, 78

dynamic SQL and stored
procedures, comparing,
246-247

dynamically creating XML
(eXtensible Markup
Language) schema, 168

databases, filling from,
169-171

documents, loading from,
175-179

schemas, loading from,
171-175

XSD (XML Schema
Definition), 169

E

Edit Relation dialog box, 36
EditCommand event, 44
editing

data tables in DataSets
relationships, 36

events, 42-45
permissions, 199

EditItemIndex property,
44-45

EJB (Enterprise Java
Beans) and ObjectSpaces
framework, comparing,
559

element icon (XML Schema
tab of XML Schema
Toolbox), 166

elements, Reviews, viewing
in XML Schema Designer,
168

ellipsis (…) button, 35
encoding, parameters

(SoapDocumentService
attribute), 520

End method, 543
EndEdit method, 112

DataRow class, 88
rows, 114

EndGetTopSellers method,
525

EndInvoke method, 542
EndLoadData method

constraints, 87
DataTable class, 83

EnforceConstraints proper-
ty (DataSet class), 55

Enlist attribute (SqlClient
provider), 221

Enterprise Java Beans
(EJB) and ObjectSpaces
framework, comparing,
559

entity (cardinality, defini-
tion, relationships), 333

Entry property, 105
enumerations

CommandBehavior, 249,
537

ConnectionState, values,
216

DataRowState, values,
110-111

DataRowVersion, values,
113

DataViewRowState, val-
ues, 116

mappings, viewing CTS
(Common Type System)
types, 363

MissingMappingAction,
values, 299

MissingSchemaAction,
values, 296-297

UpdateRowSource, values,
323

values, DbType (defini-
tions), 275

XmlReadMode, values
and method, 178-179

ER (entity-relationship)
modeling, definition, 333

ER (entity-relationship) modeling, definition 595

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 595

ERD (entity relationship
diagram) modeling, 333

Error value
MissingMappingAction

enumeration, 299
MissingSchemaAction

enumeration, 296-297
ErrorMessage property, 445
errors, 193

information, logging code,
210-211

merges, handling, 70-72
programming, reducing in

ADO.NET design, 16-17
RAISERROR statement,

345
SqlError object, proper-

ties, 209
table rows, code, 90, 127

Errors property (event
arguments), 312

Essential .NET Volume I, 18
Eval method, 433
event-driven programming

models (ASP.NET), 41
events

argument properties, 312
binding, code, 45
CancelCommand, 44
ColumnChanged

(DataTable class), 84
ColumnChanging

(DataTable class), 84
data factory class, 487
data stores, updating,

311-313
DataBind, 434
DataBinding, 434
DataSet class,

MergeFailed, 56
DataTable class or object,

84

DataView class,
ListChanged, 73

delegates, 219
EditCommand, 44
editing, 42-45
firing, 429
Format, 424-425
formatCurrency, firing,

425
handling, 90, 216-219
InfoMessage, 217-219,

289
ListChanged, 73-76
Load, 41, 438-439, 442
MergeFailed, 56, 71-72
PageIndexChanged, 42, 45
Parse, regular expressions,

425
PositionChanged, code for

CurrencyManager object
position notifications,
423

RowChanged (DataTable
class), 84

RowChanging (DataTable
class), 84

RowDeleted (DataTable
class), 84

RowDeleting (DataTable
class), 84

RowUpdated, updating
data stores, 311-313

RowUpdating, updating
data stores, 311-313

SqlFilesCreated, data fac-
tory class, 487

StateChange, code,
217-219

UpdateCommand, 44
Validated, code for simple

validations, 430
Validating, 430-431

Excel
accessing, 370
workbook, code to create,

367-369
exceptions, 193, 209-211

CbksException class, code,
395

connection objects, 274
custom, base classes,

456-457
custom exception classes,

code, 456
DeletedRowInaccessible-

Exception, throwing, 113
exception class,

ComputeBooks data
provider, 395

handling, base classes, 454
implementing, code, 395
InvalidOperation-

Exception, 279
RowNotInTableException,

throwing, 113
throwing, 97, 456

ExecuteDataReader method
(data factory class), 487

ExecuteNonQuery method,
257, 380, 385

command classes, 202
data factory class, 487

ExecuteReader method
command classes, 202
CommandBehavior

enumeration, 249
data readers, 274
data retrieval, 248-250
SingleRow value

(CommandBehavior enu-
meration), passing to,
537

ExecuteScalar method
code, 251
command classes, 202

596 ERD (entity relationship diagram) modeling

29 3869 index 5/20/02 1:19 PM Page 596

data factory class, 487
data requests, appropriate,

251
data retrieval, 251-252
DataFactory class, code to

implement, 506-507
result sets, code to return,

251-252
ExecuteSqlXmlReader

method (data factory
class), 487

ExecuteXmlReader method
code, 253-254
data retrieval, 252-257
XmlReader transforma-

tion, code, 255
XSL stylesheet, code,

256-257
explicit transactions

BeginTransaction method,
235

rolling back, 345
explorers. See Solution

Explorer
exposing

begin and end methods,
525

ComputeBooks top sellers,
code, 516

custom objects in data ser-
vices tier, 412

data readers in data ser-
vices tier, 412

data through XML Web
Services, 514-520

DataSet objects in data
services tier, 412

methods in data services
tier, 413

TitlesDs classes, proper-
ties, 139

Expression property
aggregate functions, 97-98
DataColumn class, 65, 91,

96-98
exceptions, throwing, 97
table relationships,

navigating, 97
expressions

columns, 96-98
data binding, 433-435
properties, yellow barrel

icon, 433
regular, 425, 431
syntax rules, selecting

data, 64
Extended Properties

property, 103-105,
303-304

DataColumn class, 91
DataSet class, 55
DataTable class, 82

collection, storing time,
153

extensibility of multi-tiered
applications, 410

eXtensible Markup
Language. See XML

eXtensible Stylesheet
Language Transformation
(XSLT), 13

extensions of files
.asmx, 517
.cs, 517
.vb, 517
.xsd, opening, 163

external view, data services
tier, 411-413

ExtractLookups method,
286

F

façades, business, 405
facet icon (XML Schema

tab of XML Schema
Toolbox), 167

factories. See also data
factory class

abstract factory patterns,
414

internal data, 414, 485
provider, 414, 474

FieldCount property, data
reader, 205

File menu commands
Add New Item, 517
New Project, 28

files
.asmx extension, 517
code-behind, definition,

517
configuration, case sensi-

tivity, 229
.cs extension, 517
data factory class, down-

loading, 486
Global.asax, 438
PE (portable executable),

18
Show All Files icon, 137
statements, 494-497,

502-505
System.Data.dll, 19
TitlesDs, Generate

DataSet option, 137
TitlesDs.cs, source code,

classes generated, 138
TopBooks.ascx, code for

data binding, 527-528
TopBooks.ascx.cs, code

for Web User Controls,
526-527

files 597

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 597

.vb extension, 517
XML mapping, 561-562
.xsd extension, opening,

163
XSD.exe (XML

Schemas/DataTypes util-
ity), strongly typed
DataSet classes, 137

Fill method
columns, duplicate names,

298
data adapters, 195, 385
data, retrieving, 294-296
DataSet class, populating,

59-60
protected signatures, 294
rules, 295-296
SelectCommand, 41
table mapping names,

passing, 299
FillError method, data

adapters, 196
FillSchema method,

169-171, 195, 394
filtering

DataView objects, 74
rows, code, 68

Finally block, AndAlso
operator, 249

Find method, 142
data, selecting, 63
DataRowCollection object,

66
DataView class, 73
rows, finding, 75

FindByReviewID method,
142

finding rows, 75, 142
FindRows method, 73-75
firing events, 425, 429

FK_OrderID (foreign key
constraint), 102

flash reports, 237
float data type and real data

type, comparing, 338
fn_listextendedproperty

function, 303
folders, Web References,

524
FOR XML statement, 13

modes, 253
XML output, code, 254

foreign keys
constraints, 100-103,

341-342
DataRelation object,

101-102
ForeignKeyConstraint class,

100-101
Format event

data formatting, code, 424
firing, 425

formatCurrency event,
firing, 425

formats
DataGrid control, 40
XML (eXtensible Markup

Language), writing data
as XML, 161-163

formatting
data, code, 424
grids, 39
simple binding, 424-425

forms
Mobile Forms, 437
3NF (Third Normal

Form), database
schemas, 335-336

Windows Forms applica-
tions, 418-431

Fragment value
(XmlReadMode enumera-
tion), 178-179

frameworks
.NET Framework, 31, 55
ObjectSpaces framework,

558-564
Services Framework, code

for conforming to, 139
full providers, 373
FullTrust permission set,

199
functionality of .NET Data

Providers components, 194
functions

aggregate, 97-98
Avg, 64
CONVERT, 64
Count, 64
creating, code, 555-556
definition, 347
fn_listextendedproperty,

303
IIF, 64
ISNULL, 64
LEN, 64
Max, 64
Min, 64
StDev, 64
stored procedures, 347
SUBSTRING, 64
Sum, 64
Var, 64
WriteTitleXml, code to

copy rows, 160-161
Functions (expression syn-

tax rule), selecting data, 64
future releases, Yukon (SQL

Server .NET), 554
FxCop (Microsoft) Web site,

461

598 files

29 3869 index 5/20/02 1:19 PM Page 598

G

GAC (Global Assembly
Cache), 19, 147, 362, 405

General tab (DataGrid
Properties dialog box), 38

Generate DataSet option,
137

generating
classes in TitlesDs.cs file

source code, 138
keys on clients and

servers, 95
schemas, 296-301

generic providers, 190
generic and specific

providers, comparing,
23-24

GetBoolean method, data
reader, 205

GetByte method, 205
GetBytes method, 205, 277
GetChanges method, 44,

113, 122-123, 160
DataSet class, 56, 314
DataTable class, 83,

118-121
n-tiered applications, 118
rows, code to filter, 68

GetChar method, 205
GetChars method, 205, 277
GetChildRows method, 88,

102
GetColumnError method,

88
GetColumnProperties

method, 303
GetColumnsInError

method, 88-90
GetData method, 385

GetDataSet method, 487,
507-508

GetDataTable method, 487
GetDataTypeName method,

205
GetDateTime method, 205
GetDecimal method, 205
GetDouble method, 205
GetElementsByTagName

method, 181
GetEnumerator method,

105
GetError method, table

rows, 127
GetFieldType method, 205
GetFillParameters method,

195
GetFloat method, 205
GetGuid method, 205
GetInt16 method, 205
GetInt32 method, 205
GetInt64 method, 205
GetLookups method,

CloseConnection
command, 286

GetName method, 205
GetOrdinal method, 205,

277
GetParentRow method, 88
GetParentRows method, 88
GetProviders method, 487
GetRevenue method, 413
GetReviewsRows method,

161
GetRowFromElement

method, 181
GetRows method, 206
GetSchemaTable method

data reader, 206
schema, retrieving,

282-283

GetStatement method, 501
IDbCommand object,

returning, 507
statements, pulling or

creating, 495
GetString method, 205
GetTimespan method, 205
GetTitles method, 469,

508-509
AddressOf keyword, 542
calling, 470, 543
threads, 541

GetTitlesDone method, code
to call through delegates,
544

GetTopSellers method, code,
517-518

GetValue method
data reader, 206
data, retrieving, 276

GetValues method, 481
data reader, 206
table columns, code to

read multiple values, 279
GetXml method, 56,

158-160
GetXmlSchema method

(DataSet class), 56
GetXsltResults method

(data factory class), 487
Global Assembly Cache
(GAC), 19, 147, 362, 405
Global XML Web Service

Architecture (SOAP), 13
Global.asax file, 438
goals, strongly typed

DataSet classes, 133-134
grids, formatting, 39
group icon (XML Schema

tab of XML Schema
Toolbox), 166

group icon (XML Schema tab of XML Schema Toolbox) 599

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 599

H

Halprin, Terry, 335
HandleMergeErrors

method, 72
handling

events, 90, 216-219
exceptions, base classes,

454
serviced components,

457-461
HasChanges method, 56, 68,

112-113
HasErrors property

DataRow class, 87
DataSet class, 55
DataTable class, 82

Hashtable class,
Synchronized method, 498

HasVersion method, 88, 116
help. See resources
Hidden value

(MappingType attribute),
162

hiding table columns, 162
hierarchies of objects in

DataViewManager class,
77

home pages of Cold Rooster
Consulting, Web service
results, 529

hooking ListChanged event,
code, 76

HTTP (Hypertext Transfer
Protocol) context informa-
tion, Web services, 517

HttpContext object, 438
Hungarian notation, 463
HybridDictionary class, 494
Hypertext Transfer Protocol

(HTTP) context informa-
tion, Web services, 517

I

IBindingList interface, 419
ICloneable interface, 464
icons

Show All Files, 137
yellow barrel, 433
on XML Schema tab

(XML Schema Toolbox),
166-167

IDataAdapter interface, 373
IDataParameter interface,

207, 373
IDataParameterCollection

interface, 373
IDataReader interface, 204,

371-373
IDbCommand

interface, 201, 245, 371,
374

object, returning, 507
IDbConnection interface,

196-197, 374
IDbDataAdapter interface,

374, 390-391
IDbDataAdapterParameter

interface, 374
IDbDataParameter inter-

face, 207
IDbTransaction interface,

192, 197, 234, 374
identifiers

definitions, 333, 463
Hungarian notation, 463

IDENTITY column, 95, 336
IDictionaryEnumerator

interface, 105
IEditableObject interface,

419
IEnumerable interface, col-

lection of objects, 432

Ignore value
MissingMappingAction

enumeration, 299
MissingSchemaAction

enumeration, 296-297
IgnoreSchema value

(XmlReadMode enumera-
tion), 178

IIF function, 64
IList interface, 418
IListSource interface, 419
image data type and

varbinary data type, com-
paring, 339

imperative security, code,
200-201

impersonations (trusted
connection threads), 232

implementations
alternatives, 372-373
approaches, 373
decisions, 371-372
inheritance, strongly typed

DataSet classes, 132
implementing

commands, code, 380-383
ComputeBooks data

provider, 374-375
data adapters, code,

391-394
DataFactory class, code,

506-507
exceptions, code, 395
IDbDataAdapter interface,

390-391
parameters, code, 386-389

implicit transactions, 235,
345

importing
COM components, 547
XSD schema into VS

.NET, 135

600 Halprin, Terry

29 3869 index 5/20/02 1:19 PM Page 600

ImportRow method, 83, 110
incrementally retrieving

data, code, 305-306
incrementally selecting data,

code, 306
independence of databases

for data factory class, 486
Index Tuning Wizard, 537
indexes

clustered, definition, 351,
536

designing, 351-352
nonclustered, 351, 536
performance optimization,

536-537
inference rules, inferring

schemas from documents,
175-176

InferSchema value
(XmlReadMode enumera-
tion), 178

InferXmlSchema method,
56, 175, 178

InfoMessage events
code, 217-219
SqlClient provider, 289

InformIT Web site, compar-
ing ObjectSpaces frame-
work and EJB (Enterprise
Java Beans), 559

“InformIT.com:
Asynchronous Design
Pattern Overview,” 505

infrastructures, ADO or
ADO.NET, 16

inheritance
common language run-

time, DataSet classes,
131

implementation, strongly
typed DataSet classes,
132

interfaces, 23, 132

InitClass method, initializ-
ing classes, 139

Initial Catalog attribute
(SqlClient provider), 221

InitializeComponent
method, 45-46, 50

initializer list, definition,
465

initializing
classes, 139
variables, 139

initiatives, My Services, 13
InitVars method, initializing

variables, 139
input parameters of com-

mand objects, 260-263
InsertCommand property,

50, 195
inserting rows into tables,

95
inspecting DataTable class,

118-121
installing ODBC .NET Data

Provider, 362
INSTEAD OF triggers, 344
Integer data type, mapping,

97
Integrated Security

attribute (SqlClient
provider), 221

integrating XML
(eXtensible Markup
Language) standards into
ADO.NET, 15

interface-based program-
ming, 23

interfaces
ADSI (Active Directory

Services Interface), 10
CLI (Call-Level Interface),

9
data adapters, 390

IBindingList, 419
ICloneable, 464
IDataAdapter, 373
IDataParameter, 207, 373
IDataParameterCollection,

373
IDataReader, 204, 371-373
IDataRecord, 204
IDbCommand, 201, 245,

371, 374
IDbConnection, 196-197,

374
IDbDataAdapter, 374,

390-391
IDbDataAdapterPara-

meter, 374
IDbDataParameter, 207
IDbTransaction, 192, 197,

234, 374
IDictionaryEnumerator,

105
IEditableObject, 419
IEnumerable, collection of

objects, 432
IList, 418
IListSource, 419
inheritance, 23, 132
.NET Data Providers, 191
OLE DB 2.5, 223
System.Collections.IList,

418
System.ComponentModel.

IComponent, 31
UI (user interface), 10,

38-45
internal data factory, 414,

485
internal view, data services

tier, 413-414
Internet Explorer (MSIE),

11
interop assemblies, 546-547

interop assemblies 601

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 601

interoperability of applica-
tions (ADO Recordset
objects), reading data,
545-548

Interrupt method, threads,
542

InvalidOperationException,
279

IP, sticky IP, 439
ISBN column, ReadOnly

property, 93
IsClosed property, data

reader, 205
IsDbNull method, 206, 340
IsNested property, 163, 167
ISNULL function, 64
IsNull method (DataRow

class), 88
IsNullable property,

parameters, 207
isolation, updating data

stores, 316-317
IsolationLevel property,

transaction classes, 197
IsPostBack property, 41
IsPrimaryKey property

(UniqueConstraint class),
99

Item property, 110
data reader, 205
DataRow class, 87
DataRow object, 113-115
DataView class, 73

ItemArray property, 87,
110, 161

J

Java, comparing EJB
(Enterprise Java Beans)
and ObjectSpaces frame-
work, 559

JIT (just-in-time), 18
Join method, threads, 542
joins, performing on

servers, 535

K

key icon (XML Schema tab
of XML Schema Toolbox),
167

KeyInfo value (command
objects), 249

keys
CLSID (COM

components), 547
foreign, 101-102
generating on clients and

servers, 95
primary, values, 103

keywords
AddressOf, 542
Overloads, 469

L

languages. See also common
language runtime; SQL;
XML

choosing, 25
classes, authoring, 148
MSIL (Microsoft

Intermediate Language),
PE (portable executable)
file, 18

.NET versatility (SQL
Server .NET), 554

WSDL (Web Services
Description Language),
13, 514

layers, designs for stored
procedures, 346-351

LEN function, 64
libraries, Net-Library, TDS

(Tabular Data Stream),
331

lightweight providers, 373
LineNumber property,

SqlError object, 209
lines, command, strongly

typed DataSet classes, 137
ListChanged event, 75

DataView class, 73
hooking, code, 76

ListChangedEventArgs
object, 75

ListChangedType property,
75-76

listeners
custom, 455
definition, 454

listings. See code
lists, initializer (definition),

465
ListView controls, code to

manually bind data read-
ers, 427-428

Literal Values (expression
syntax rule), selecting
data, 64

Load events
DataSet objects, code, 41
in session state, code,

438-439
in view state, code, 442

Load method, 181-183
LoadDataRow method, 83,

86, 110
LoadDs method, 152-153
loading

DataSet classes, 151-153,
171-172

602 interoperability of applications (ADO Recordset objects), reading data

29 3869 index 5/20/02 1:19 PM Page 602

DataTable objects, code,
85-86

XML with
XmlDataDocument
class, 181

local transactions, 238
locking

applications, 545
data, 235

logging error information,
code, 210-211

logical tiers, distributing,
407-408

M

managed classes
(SQLXML), code, 357

managed code
ASP.NET caching,

540-541
connection pooling,

539-540
data readers, 538
definition, 18
delegates, 542-544
functions, creating,

555-556
narrow providers, 538
query multithreading,

541-544
reviewing, 17-20
round trips to database

servers, minimizing, 539
Thread class, 541-542

managers
BindingManagerBaseMan

ager class, 419
CurrencyManager, 419,

423

.NET Framework
Configuration Manager,
GAC (Global Assembly
Cache), 19

ODBC Driver Manager,
connection pooling, 365

PropertyManager class,
419

managing
connections, base classes,

453
data in VS .NET

Professional edition, 30
views in DataView

objects, 77-78
manifests, definition, 19
manipulating

data, data readers, 272
DataSet objects, 66

manual binding, 427-429
many to many relationships,

definition, 337
mapping

columns, code to create,
300

CTS (Common Type
System) types enumera-
tion, viewing, 363

data to object models, 133
Integer data type, 97
rules (XSD to DataSets),

173-174
schemas (XML Views),

355
SqlTypes namespace

types, 555
Table Mappings dialog

box, 3
tables, 50, 297-301
XML files, 561-562

MappingType attribute,
Hidden value, 162

markup languages. See
XML

Max function, 64
Max Pool Size attribute

(SqlClient provider), 230
MaxLength property

(DataColumn class), 91-92
MCS (Microsoft Cluster

Service), 409
MDAC (Microsoft Data

Access Components) SDK,
downloading, 12

measuring performance,
DataFactory class, 509

members
of classes, manipulating,

380
command classes, 202
connection classes, 196
Data Adapter component,

195-196
data adapters, 194
data reader, 205
DataColumn

class, 91-92
object, 91

DataRow class, 87-88
DataSet class, 55
DataTable object, 82
DataView class, 72-73
parameters, 207
public, data factory class,

487
transaction classes, 197

MemoryStream
object, buffering data, 277
Position property, 256

merge errors, handling,
70-72

Merge method, 56, 69-70,
110

Merge method 603

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 603

MergeFailed event, 72
DataSet class, 56
event handlers, code to

add, 71
MergeFailedEventHandler

delegate, 72
merging DataSet objects,

69-72
Message property

OleDbError object, 210
SqlError object, 209

metadata
adding for SQL Server

(data retrieval), 301-304
interop assembly, 546-547

methods
Abort, threads, 542
AcceptChanges, 60, 126

DataRow class, 88
DataSet class, 56
DataTable class, 83
rows, 114
table rows, 126

Add, 49, 59, 101,
110-112, 161

AddCriteria, 67
AddNew, DataView class,

73
AddReviewsRow, 142
AUTOREGISTER

attribute, 557
Begin, 543
begin and end, exposing,

525
BeginEdit, 88, 112
BeginGetTopSellers, 525
BeginInvoke, 542
BeginLoadData, 83, 86
BeginTransaction,

196, 234-235, 487
Cancel, 20, 259
CancelEdit, 88, 114

ChangeDatabase, connec-
tion classes, 196

Clear, 56, 83, 394
ClearErrors, DataRow

class, 88
Clone, 56, 67, 83, 161
cloneObject, 501
Close, 217

connection classes, 196
data readers, 205, 273
SqlConnection class,

47
command builders, 324
Commit, transaction

classes, 197
Compute, 8, 98
ContainsKey, 499
Copy, 56, 67-68, 83
CopyTo, DataView class,

73
CreateActivityReport, 367
CreateCommand, connec-

tion classes, 196
CreateDataAdapter, data

factory class, 487
CreateInstance, 501
CreateParameter, 202,

260, 384
createProviderTypes, 488
createSqlCallback, 505
createSqlFile, 502
CreateSqlFile, data factory

class, 487
CreateSqlFiles, 487, 502,

505
data access, building,

515-517
data factory class, 487
DataBind, 41
DataRow class, 88
DataSet class, 56
DataTable class or object,

83-84

DataView class, 73
Delete, 73, 88, 110
DeleteTitle, code to delete

Titles table rows,
257-258

End, 543
EndEdit, 88, 112-114
EndGetTopSellers, 525
EndInvoke, 542
EndLoadData, 83, 87
Eval, 433
ExecuteDataReader, data

factory class, 487
ExecuteNonQuery, 202,

257, 380, 385, 487
ExecuteReader, 202,

248-250, 274 537
ExecuteScalar, 202,

251-252, 487, 506-507
ExecuteSqlXmlReader,

data factory class, 487
ExecuteXmlReader, data

retrieval, 252-257
exposing in data services

tier, 413
ExtractLookups, 286
Fill

columns, duplicate
names, 298

data adapters, 195, 385
data, retrieving,

294-296
DataSet class, populat-

ing, 57-60
protected signatures,

294
rules, 295-296
SelectCommand, 41
table mapping names,

passing, 299
FillError, data adapters,

196

604 MergeFailed event

29 3869 index 5/20/02 1:19 PM Page 604

FillSchema, 169-171, 195,
394

Find, 63, 66, 73-75, 142
FindByReviewID, 142
FindRows, 73-75
GetBoolean, data reader,

205
GetByte, data reader, 205
GetBytes, 205, 277
GetChanges, 44, 113,

122-123, 160
DataSet class, 56, 314
DataTable class, 83,

118-121
n-tiered applications,

118
rows, code to filter, 68

GetChar, data reader, 205
GetChars, 205, 277
GetChildRows, 88, 102
GetColumnError,

DataRow class, 88
GetColumnProperties, 303
GetColumnsInError, 88,

90
GetData, 385
GetDataSet, data factory

class, 487, 507
GetDataTable, data factory

class, 487
GetDataTypeName, data

reader, 205
GetDateTime, data reader,

205
GetDecimal, data reader,

205
GetDouble, data reader,

205
GetDataSet, code, 507-508
GetElementsByTagName,

181
GetEnumerator, 105

GetError, table rows, 127
GetFieldType, data reader,

205
GetFillParameters, data

adapters, 195
GetFloat, data reader, 205
GetGuid, data reader, 205
GetInt16, data reader, 205
GetInt32, data reader, 205
GetInt64, data reader, 205
GetLookups,

CloseConnection com-
mand, 286

GetName, data reader, 205
GetOrdinal, 205, 277
GetParentRow, DataRow

class, 88
GetParentRows, DataRow

class, 88
GetProviders, data factory

class, 487
GetRevenue, 413
GetReviewsRows, 161
GetRowFromElement, 181
GetRows, data reader, 206
GetSchemaTable, 206,

282-283
getStatement, 495, 501,

507
GetString, data reader, 205
GetTimespan, data reader,

205
GetTitles, 469-470,

508-509, 541-543
GetTitlesDone, calling

through delegates, code,
544

GetTopSellers, code,
517-518

GetValue, 206, 276
GetValues, 206, 279, 481
GetXml, 56, 158-160

GetXmlSchema, DataSet
class, 56

GetXsltResults, data facto-
ry class, 487

HandleMergeErrors, 72
HasChanges, 56, 68,

112-113
HasVersion, 88, 116
ImportRow, 83, 110
InferXmlSchema, 56, 175,

178
InitClass, initializing

classes, 139
InitializeComponent,

45-46, 50
InitVars, initializing vari-

ables, 139
Interrupt, threads, 542
IsDbNull, 206, 340
IsNull, DataRow class, 88
Join, threads, 542
Load, 181-183
LoadDataRow, 83, 86, 110
LoadDs, 152-153
Merge, 56, 69-70, 110
MoveNext, 105, 274
NewGuide, 87
NewReviewsRow, 142
NewRow, 59, 83, 112
NextResult, 206, 284
Open, 47, 196, 216-217
overloaded, data access

classes, 466-470
Page_Load, 527
populateBooks, row states,

code, 111-112
Prepare, 203, 260
PrintEvents, 219
private, data access

classes, 466-470
Read, data readers, 206,

273-274

methods 605

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 605

ReadBinaryData, code,
277-278

ReadXml, 56, 175,
178-179

ReadXmlSchema, 56,
171-172, 175

RejectChanges
DataRow class, 88
DataSet class, 56
DataTable class, 83
rows, 115
table rows, 126-127

RemoveStatement, data
factory class, 487

Reset, 56, 84, 105, 127
ResetCommandTimeout,

command classes, 203
Resume, threads, 542
RevByBook, 556
ReviewsDataTable class,

finding rows, 142
Rollback, transaction

classes, 197
RowUpdated, data

adapters, 196
RowUpdating, data

adapters, 196
SaveDs, 152-153
SaveMyData, 314, 317
SaveTitles, 262
Select, 63-65, 84
SelectNodes, 181
SetColumnError, DataRow

class, 88
SetParentRow, 88, 98
setupDataAdapter, 507
showOriginal, 117
Split, 86
SqlCommand object, 556
Start, threads, 541-542
StoresRowChanging, 90
Suspend, threads, 542

SyncDataSet, data factory
class, 487

Synchronized, Hashtable
class, 498

ThrowComputeBookExce
ption, 457

TitlesChanged, 76
TitlesDataTable class,

finding rows, 142
TopSellers, code, 516
TraceRowError, 89-90
Transform, 183
TransformDs, 182
Update, 44, 68, 195, 314
Web, SoapRpcMethod

attribute, 520
Web services, 519-520
Write, Trace class, 76
WriteLine, manipulating

row information, 89-90
WriteSqlSchema, 169-170
WriteXml, 105, 158-160

data readers, code for
polymorphism,
283-284

DataSet class, 56
DiffGrams (XML),

123-125
WriteXmlChanges, 118,

121-123
WriteXmlSchema,

DataSet class, 56
XmlDataDocument class,

181
Microsoft

Access, 8
Cluster Service (MCS),

409
Data Access Components

(MDAC) SDK, down-
loading, 12

data access timeline, 8

drivers, data provider
supported, 363

FxCop Web site, 461
Intermediate Language

(MSIL), PE (portable
executable) file, 18

MDAC (Data Access
Components) SDK,
downloading, 12

Mobile Internet Toolkit
(MMIT), 405

newsgroups, drivers, 363
ObjectSpaces framework,

558-564
ODBC .NET Provider,

downloading, 23
Transaction Server (MTS),

11, 545
Web site

MMIT (Microsoft
Mobile Internet
Toolkit), download-
ing, 405

“Object Role
Modeling: An
Overview,” 335

ODBC .NET Data
Provider, download-
ing, 362

XML tutorials and
FAQs, 157

Min function, 64
Min Pool Size attribute

(SqlClient provider), 231
MinimumCapacity proper-

ty, 82, 86
MissingMappingAction

enumeration, values, 299
property, data adapters,

195
MissingMappingAction.Pass

through value, 148

606 methods

29 3869 index 5/20/02 1:19 PM Page 606

MissingSchemaAction
enumeration, values,

296-297
property, 62, 70, 99, 195,

296-297
MMIT (Microsoft Mobile

Internet Toolkit), down-
loading, 405

Mobile Control binding, 437
Mobile Forms, 437
modeling databases, ER

(entity-relationship), 333
models

Code Access Security,
198-200

disconnected update,
updating data stores,
313-315

DOM (Document Object
Model), 179

event-driven programming
(ASP.NET), 41

object, mapping to data,
133

programming, multi-
tiered, 14-15

unified programming
(SQL Server .NET), 554

modes
FOR XML statement, 253
ReadCommitted, 237
ReadUncommitted, 237
XML AUTO (FOR XML

statement), 253
XML EXPLICIT (FOR

XML statement), 253
XML RAW (FOR XML

statement), 253
Modified value

(DataRowState enumera-
tion), 111

ModifiedCurrent value
(DataViewRowState
enumeration), 117

ModifiedOriginal value
(DataViewRowState
enumeration), 117

modules, definition, 18-19
modulus operators, 64
money data type and small-

money data type, compar-
ing, 338

monitoring connections in
pools, 540

MoveNext method, 105, 274
MS_Description property,

302
MSDASQL, 10
msdata namespace, 164-165,

174
MSDataShape provider,

code, 287
MSIE (Internet Explorer),

11
MSIL (Microsoft

Intermediate Language),
PE (portable executable)
file, 18

MTS (Microsoft
Transaction Server), 11,
545

multi-function stored proce-
dures, code, 308-309

multi-record binding,
434-436

multi-tiered applications,
403

abstract factory patterns,
414

abstracted providers, defi-
nition, 414

ADO.NET, 411
architecture, 404-406
benefits, 410
business services tier, 405
data services tier, 405-406,

411-414
extensibility, 410
internal data factory, 414
logical tiers, distributing,

407-408
maintainability, 410
NLB (Network Load

Balancing), 407-408
performance, 407
physical tiers, relation to,

407-409
presentation services tier,

404
provider factory, 414
rapid development, 410
reusability, 410
scalability, 407
scale-out, definition, 407
scale-up, definition, 407
server affinity, definition,

408
specialization, 410
Web services, 406

multi-tiered programming
models, 14-15

multiple layers. See tiers
multiple values of columns,

retrieving, 279-281
multithreading queries,

managed code, 541-544
MustInherit class, 453
My Profile command (Start

Page menu), 28
My Services initiative, 13

My Services initiative 607

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 607

N

n-tiered applications,
GetChanges methods, 118.
See also multi-tiered appli-
cations

Name property, threads, 542
names

of columns, 64, 298
strong (public keys), 19
of tables, 299-301, 305

Namespace property
DataColumn class, 91
DataSet class, 55
DataTable class, 83

namespaces
ComputeBooks.Data,

137-139, 452, 469, 488
ComputeBooks.Data.

Cbks, classes, 375
msdata, 164-165, 174
SqlServer, referencing,

555
SqlTypes, mapping, 555
System.Collections.

Specialized, 494
System.Data, 21-24
System.Data.Common, 21
System.Data.OleDb, 21
System.Data.SqlClient, 21
System.Data.SqlTypes, 21,

339
System.Diagnostics, 76,

454
System.Enterprise

Services, 457
System.IO, stream classes,

121
System.Windows.Forms,

418
System.Xml, 21, 121, 179,

255

naming
ADO.NET, 15-16
conventions, data access

classes, 462-464
schemas, 337-340
stored procedures with

Data Adapter
Configuration Wizard,
33

narrow providers, managed
code, 538

native providers (specific
providers), 190

NativeError property
(OleDbError object), 210

navigating
relationships with

DataGrid object, 427
table relationships with

Expression property, 97
user interfaces, 42

navigation, simple binding,
422-424

nchar data type and nvar-
char data type, compar-
ing, 339

Nested property, 162-163
.NET. See also VS .NET

ADO.NET, 17-24
applications, architecture,

362
Building Distributed

Applications with Visual
Basic .NET, 41

data provider, command
object, 245

delegates, 72
Framework

assembly, definition,
146

classes, capitalization
styles, 462

Configuration
Manager, GAC
(Global Assembly
Cache), 19

DataSet class, 55
language versatility (SQL

Server .NET), 554
ODBC .NET Provider,

downloading, 23
Remoting, 149-150, 270
SqlClient .NET Data

provider, 24
type, XSD type equivalent,

173
.NET Data Providers. See

data providers
Net-Library, TDS (Tabular

Data Stream), 331
Network Library attribute

(SqlClient provider),
221-223

Network Load Balancing
(NLB), 407-408, 439

new customers, code to cre-
ate, 563-564

New
MergeFailedEventHandler
(AddressOf
HandleMergeErrors)
statement, 72

New Project
command (File menu), 28
dialog box, 28, 418

NewGuid method, 87
NewIndex property, 75-76
NewPageIndex property, 42
NewReviewsRow method,

142
NewRow method, 59, 83,

112
newsgroups (Microsoft),

drivers, 363

608 n-tiered applications, GetChanges methods

29 3869 index 5/20/02 1:19 PM Page 608

NextResult method, 206,
284

NLB (Network Load
Balancing), 407-408, 439

nodes
adding to

XmlDataDocument
class, 181

Data Connections (Server
Explorer window), 29-30

nonclustered indexes, defini-
tion, 351, 536

None value
(DataViewRowState enu-
meration), 117

normalization, schemas,
335-337

NotInheritable classes, 488
ntext data type and text

data type, comparing, 339
Number property (SqlError

object), 209
numbers, version, creating

for assemblies, 146
numeric data type and deci-

mal data type, comparing,
338

nvarchar data type, com-
paring with nchar data
type and varchar data
type, 339

O

Object Role Modeling
(ORM), 334-335

“Object Role Modeling: An
Overview,” 335

object-oriented
design patterns, 411
function pointers. See del-

egates
and relational paradigms,

combining, 16
syntax, accessing data, 44

objects
ADO Recordset, 545-548
AsyncResult, 544
Binding, 419, 424
BindingCollection, 419
BindingContext, 420
CbksCommand, 390
CbksParameter, 390
cmSave SqlCommand,

310
COM, RCW (runtime

callable wrapper), 546
command, 192, 246-263
connection, 191, 274
construction, 225-227
ConvertEventArgs, 424
CTS (Common Type

System), managed code,
20

CurrencyManager, code
for position notifications,
423

custom, 412, 476-481
daCategories, 35
DAO (Data Access

Objects), 8
DataColumn, members, 91
DataColumnMapping, 50
DataGrid, navigating rela-

tionships, 427
DataGridPageChanged, 42
DataRelation, foreign

keys, 101-102
DataRow, 110-115

DataRowChangeEvent
Args, 90

DataRowCollection, Find
method, 66

DataSet, 81
cloning, 67-69
Columns property,

90-92
columns, 92-98
copying, 67-69
DataTable objects,

82-87
dsOrders extended

property, code to pop-
ulate, 104

exposing in data ser-
vices tier, 412

manipulating, 66
merge errors, handling,

70-72
merging, 69-70
properties, extended,

103-105
Rows property, 87-90
tables, 99-103
Tables property, 82-87

DataTable, 72, 82-92
DataTableCollection, Add

method, 59
DataView, 72-78, 113-118,

447-448
DataViewSetting, 77
default, SQL Server sup-

port, 343
DOM (Document Object

Model), 179
dragging and dropping, 31
dvsOrder, creating, 78
dvsOrderDet, creating, 78
hierarchies,

DataViewManager class,
77

objects 609

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 609

HttpContext, 438
IDbCommand, returning,

507
IEnumerable interface,

432
ListChangedEventArgs, 75
listeners, 454-455
MemoryStream, buffering

data, 277
models, mapping to data,

133
.NET Data Providers, 191
OdbcCommand, 366
OdbcConnection,

ConnectionString prop-
erty, 365

OdbcParameter, 366
OleDbCommand, 246,

260, 263
OleDbError, properties,

210
parameter, 263-265, 501
populating, code, 480-481
RDO (Remote Data

Objects), 9
rdoResultset, 9
Recordset, 11
Session, storage weak-

nesses in ASP, 439
SqlCommand, methods,

556
sqlConnection1, 31
SqlDataAdapter, setting

properties, 95
sqlDataAdapter1, 31
SqlError, properties, 209
sqlUpdateCommand1, 48
states, storing in Web

Forms presentation ser-
vices tier, 437-441

switch, 455
System.Web.Caching.

Cache, 540

transaction, OleDb or
SqlClient provider, 234

Type, 488-491
UniqueConstraint, 99

ObjectSpaces framework
customers, 562-564
data, abstracting, 558-559
and EJB (Enterprise Java

Beans), comparing, 559
OPath queries, 562
persistence classes, creat-

ing, 559-561
XML mapping files,

561-562
ODBC (Open Database

Connectivity), 9
adapter patterns, 330
architecture, 362
data sources, accessing,

362-370
Driver Manager, connec-

tion pooling, 365
drivers, 363
.NET Data Provider,

downloading and
installing, 362

.NET Provider, download-
ing, 23

WOSA (Windows Open
Systems Architecture), 9

Odbc data provider, 363,
367-370

OdbcCommand object, 366
OdbcConnection object,

ConnectionString
property, 365

OdbcParameter object, 366
OldIndex property, 75
OLE DB, 10

adapter patterns, 330
interfaces, 223
SQL Server OLE DB

provider, 29

OleDb provider
connections, 223-224,

233-234
OLE DB 2.5 interfaces,

223
transaction objects, 234
transactions, 238-239

OleDbCommand object,
246, 260, 263

OleDbDataAdapter, 171,
294

OleDbError object, proper-
ties, 210

online resources, SQL
Server Books Online, 302

Opath, ObjectSpaces frame-
work or syntax, 562

Open Database
Connectivity. See ODBC

Open method, 216-217
connection classes, 196
SqlConnection class, 47

opening
connections, 216-217,

364-365
Data Adapter

Configuration Wizard,
31

data readers, code, 273
.xsd files, 163

operations methods, 520.
See also XML Web
Services

operators
AndAlso, Finally block,

249
modulus, 64
this, 45

Operators (expression syn-
tax rule), selecting data, 64

optimistic concurrency, 318

610 objects

29 3869 index 5/20/02 1:19 PM Page 610

optimizing applications
(performance and
scalability)

databases, 536-537
managed code, 538-544
queries, 534-535

Option Strict statement,
strongly typed DataSet
classes, 134

Orders and Customers
tables, code to map to
XSD schemas, 355

Orders table, traversing
rows, 102

Ordinal property
(DataColumn class), 91

Original
value (DataRowVersion

enumeration), 113
version, rows, 115-116

OriginalRows value
(DataViewRowState
enumeration), 117

ORM (Object Role
Modeling), 334-335

output
ASP.NET pages, caching,

528
WriteXmlChanges

method, code, 122-123
XML (FOR XML state-

ment), code, 254
output parameters

code, 264
favoring over DataSets,

537
of command objects,

263-265
overloaded methods, data

access classes, 466-470
Overloads keyword, 469

P

Packet Size attribute
(SqlClient provider), 221

page output (ASP.NET)
caching, 528

PageIndexChanged event,
42, 45

Page_Load method, 527
Paging tab (DataGrid

Properties dialog box), 39
paradigms, combining rela-

tional and object-oriented,
16

parallel transactions, 238
ParameterName property,

parameters, 207
parameters, 192

adding to collections, 49
CbksParameter class,

code, 386-389
CbksParameterCollection

class, code, 386-389
classes (ComputeBooks

data provider), 385-390
of command objects,

260-265
DbType property, 207
Direction property, 207
encoding,

SoapDocumentService
attribute, 520

IDataParameter interface,
207

IDbDataParameter
interface, 207

implementing, code,
386-389

IsNullable property, 207
members, 207
objects, 263-265, 501

OdbcParameter object,
366

output, 263-265, 537
ParameterName property,

207
Precision property, 208
Scale property, 208
or Select method, when to

use, 65
Size property, 208
SourceColumn property,

208
SourceVersion property,

208
Value property, 208

Parameters property, 202,
384

Parent and Child Relations
(expression syntax rule),
selecting data, 64

parentheses (), 64
ParentRelations property

(DataTable class), 83
Parse event, regular

expressions, 425
parsing

connection strings, 220
statement files, 494-497

Pascal case, definition, 463
passing

arguments to delegates or
threads, 543

DataSets, 148-150, 172
SingleRow value

(CommandBehavior enu-
meration) to the
ExecuteReader method,
537

Passthrough value
(MissingMappingAction
enumeration), 299

Passthrough value (MissingMappingAction enumeration) 611

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 611

Password attribute
(SqlClient provider), 221

patterns
abstract factory, 414
adapter, definition, 330
object-oriented designs,

411
PE (portable executable)

file, 18
percent sign (%), wildcard

character, 64
performance

applications, 407, 534-544
counters, viewing, 231
data readers, 272
measuring, 509
SQL Server .NET, 555
stored procedures, 247,

347
Performance Monitor

utility, 540
performing joins on servers,

535
PERMISSION SET

attribute, CAS (code
access security) permis-
sion, 556

permissions
CAS (code access security

permission), 556
.NET Data Providers, 192,

198-201
Persist Security Info

attribute (SqlClient
provider), 221

persistence classes, 559-561
persisting to disks, DataSet

serialization, 151-153
pessimistic concurrency, 318

configuring, code,
320-321

data stores, code to
update, 319-320

physical tiers, relation to,
407-409

PIA (primary interop
assembly), definition, 547

pointers, object-oriented
functions. See delegates

policies, binding (client
applications), 147

polymorphism
data readers, code,

283-284
definition, 23

Pooling attribute (SqlClient
provider), 231

pooling, connection, 229-234
populateBooks method, row

states (code), 111-112
populating

columns in DataTables,
297

DataSet class, 57-66
dsOrders extended proper-

ty (DataSet object),
code, 104

objects, code, 480-481
strongly typed DataSet

classes, 142-146
TitlesDs DataSet, code,

144-145
portable executable (PE)

file, 18
Position property

(MemoryStream), 256
PositionChanged event,

code for
CurrencyManager object
position notifications, 423

pound sign (#), 64
Precision property, parame-

ters, 208
Prefix attribute, 162

Prefix property
DataColumn class, 91
DataSet class, 55
DataTable class, 83

prefixes, Hungarian nota-
tion or underscore (_), 463

Prepare method, 203, 260
presentation applications,

definition, 28
presentation services tier

(Web Forms applications),
404, 417

controls, validating,
429-431, 442-445

data binding, 418-427,
431-437

object states, storing,
437-442

previewing data adapters,
35

primary interop assembly
(PIA), 547

primary keys
SetDefault values, 103
SetNull values, 103
table constraints, 99-100

PrimaryKey property, 83,
99-100

PrintEvents method, 219
Priority property, threads,

542
private assembly, 146
private method, 466-470
private variables, initializ-

ing, 139
Procedure property

(SqlError object), 209
procedures. See stored pro-

cedures
product catalogs, 28, 46
Professional edition of VS

.NET, managing data, 30

612 Password attribute (SqlClient provider)

29 3869 index 5/20/02 1:19 PM Page 612

Profiler utility (SQL
Server), 45

programmatic data binding,
code, 421

programming
errors, reducing in

ADO.NET design, 16-17
event-driven models

(ASP.NET), 41
interface-based, 23
models, 14-15, 554
SQL Server .NET,

554-558
projects, VS .NET, referenc-

ing, 555
properties

AcceptChangesDuringFill,
data adapters, 195

AcceptRejectRule, 102
AllowDBNull

(DataColumn class),
91-92

AllowDelete (DataView
class), 73

AllowEdit (DataView
class), 73

AllowNew (DataView
class), 73

ApplyDefaultSort, 73-74
AutoIncrement

(DataColumn class), 91,
94

AutoIncrementSeed
(DataColumn class), 91,
94

AutoIncrementStep
(DataColumn class), 91,
94

CacheFilePath, data facto-
ry class, 487

Caption, 91-93
CaseSensitive, 55, 58, 82

ChildRelations (DataTable
class), 82

Class, SqlError object, 209
ClientValidationFunction,

445
ColumnMapping, 91,

162-163
ColumnName

(DataColumn class),
91-92

Columns, 82, 90-93
Command (event argu-

ments), 312
command builders, 324
CommandText, 48, 202,

246
CommandTimeout, 202,

259
CommandType, 202, 246
Conflict, 72
Connection, 49, 384

command classes, 202
data factory class, 487
transaction classes, 197

ConnectionString, 196,
217, 365

ConnectionTimeout, 196
Constraints, 82, 99
ContinueUpdateOnError,

195, 314-317
Count (DataView class),

73
Current, 105
CurrentPageIndex, 42
data factory class, 487
database, connection

classes, 196
DataColumn class, 91-99
DataRow class, 87
DataSet class, 55, 82
DataSetIndex, 44
DataSetName, 55

DataTable class or object,
82-83

DataType, 91-93
DataView class, 73
DataViewManager

(DataView class), 73
DbType, parameters, 207
DefaultValue, 91, 94
DefaultView, 73, 82
DefaultViewManager, 55,

78
DeleteCommand, 50, 195
DeleteRule, 102
Depth, data reader, 205
Direction, 207, 263-265
DisplayExpression

(DataTable class), 82
dsOrders extended proper-

ty (DataSet object), 104
EditItemIndex, 44-45
EnforceConstraints

(DataSet class), 55
Entry, 105
ErrorMessage, 445
Errors (event arguments),

312
event arguments, 312
Expression

aggregate functions,
97-98

DataColumn class, 65,
91, 96-98

exceptions, throwing,
97

table relationships,
navigating, 97

ExtendedProperties,
103-105, 303-304

DataColumn class, 91
DataSet class, 55
DataTable class, 82

FieldCount, data reader,
205

properties 613

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 613

HasErrors
DataRow class, 87
DataSet class, 55
DataTable class, 82

InsertCommand, 195
IsClosed, data reader, 205
IsNested, 163, 167
IsNullable, parameters,

207
IsolationLevel, transaction

classes, 197
IsPostBack, 41
IsPrimaryKey

(UniqueConstraint
class), 99

Item, 110
data reader, 205
DataRow class, 87
DataRow object,

113-115
DataView class, 73

ItemArray, 87, 110, 161
LineNumber (SqlError

object), 209
ListChangedType, 75-76
MaxLength (DataColumn

class), 91-92
Message, 209-210
MinimumCapacity, 82, 86
MissingMappingAction,

data adapters, 195
MissingSchemaAction, 62,

70, 99
data adapters, 195
schema generation,

296-297
MS_Description, 302
Name, threads, 542
Namespace

DataColumn class, 91
DataSet class, 55
DataTable class, 83

NativeError (OleDbError
object), 210

Nested, 162-163
NewIndex, 75-76
NewPageIndex, 42
Number (SqlError object),

209
OldIndex, 75
Ordinal (DataColumn

class), 91
ParameterName,

parameters, 207
Parameters, 202, 384
ParentRelations

(DataTable class), 83
Position (MemoryStream),

256
Precision, parameters, 208
Prefix

DataColumn class, 91
DataSet class, 55
DataTable class, 83

PrimaryKey, 83, 99-100
Priority, threads, 542
Procedure (SqlError

object), 209
Provider (data factory

class), 487
ReadOnly, 91-95
RecordsAffected, 205,

288-289, 312
Row (event arguments),

312
RowError (DataRow

class), 87
RowFilter, 65, 73-74
Rows

DataSet object, 87-90
DataTable class, 83

RowState
DataRow class, 87
DataRow object,

110-112

RowStateFilter, 74-76, 116
DataView class, 73
DataView object, 113

Scale, parameters, 208
SelectCommand, 50, 57,

195
Server (SqlError object),

209
Size, parameters, 208
Sort, 73-74
Source

OleDbError object, 210
SqlError object, 209

SourceColumn,
parameters, 208

SourceVersion, 208, 321
of SqlDataAdapter object,

setting, 95
SqlError object, 209
SQLState (OleDbError

object), 210
State

connection classes, 196
SqlError object, 209

StatementType (event
arguments), 312

Status (event arguments),
312

Table, 72-73, 87, 92
table columns, 92-94,

140-141
TableMappings, 57, 195,

312
TableName (DataTable

class), 83
Tables (DataSet object),

82-87
Text, 445
Transaction, command

classes, 202
Unique, 92-93, 99
UpdateCommand, 50, 195

614 properties

29 3869 index 5/20/02 1:19 PM Page 614

UpdatedRowSource, 202,
259

UpdateRule, 102
UseCache (data factory

class), 487
Value, parameters, 208
ViewState, 441
yellow barrel icon, 433

Properties window
simple binding, 420-421
yellow barrel icon, 433

Property Builder dialog
box, 42

PropertyCollection class,
103

PropertyManager class, 419
Proposed

value (DataRowVersion
enumeration), 113

version, rows, 115
proprietary data stores, 371
protected signatures, 294
protocols

HTTP (Hypertext Transfer
Protocol) context infor-
mation, Web services,
517

SOAP (Simple Object
Access Protocol), 13,
514

TDS (Tabular Data
Stream), 190

Web services, 514
WSDL (Web Services

Description Language),
XML Web Services, 514

provider factory, 414, 474
Provider property, data

factory class, 487
ProviderFactory class

code, 474-475
command objects, 481

data providers, code to
abstract, 471-473

providers. See data
providers

proxy classes
client, exposing begin and

end methods, 525
ComputeBooksCatalog,

524
PubDate column, Caption

properties, 93
public keys (strong names),

definition, 19
public members, data

factory class, 487
pulling statements, 495
Pure Visual Basic, 11

Q

queries
columns, requesting, 535
covered, definition, 535
to customers for

ObjectSpaces frame-
work, 562-563

delegates, 542-544
joins, performing on

servers, 535
multithreading, managed

code, 541-544
rows, requesting, 534-535
Thread class, 541-542
VaryByParam attribute,

540
quotation mark, single (‘),

64

R

RAISERROR statement,
345

RangeValidator control, 443
rapid development of multi-

tiered applications, 410
RCW (runtime callable

wrapper), 545-546
RDO (Remote Data

Objects), 9
rdoResultset object, 9
RDS (Remote Data

Services), 11
Read method, data readers

.NET Data Providers, 206
traversing, 273-274

read-only data, caching, 437
ReadBinaryData method,

code, 277-278
ReadCommitted mode, 237
readers, XmlReader, 255.

See also data readers
reading

ADO Recordset object
data, 545-548

binary data, code, 277-278
table column multiple

values, code, 279
ReadOnly property, 91-95
ReadSchema value

(XmlReadMode
enumeration), 178

ReadUncommitted mode,
237

ReadXml method, 175
DataSet class, 56
XmlReadMode

enumeration, 178-179
ReadXmlSchema method,

56, 171-172, 175

ReadXmlSchema method 615

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 615

real data type and float data
type, comparing, 338

RecordsAffected property,
288-289

data reader, 205
event arguments, 312

Recordset objects
data, reading, 545-548
disconnected, 11

reducing programming
errors in ADO.NET
design, 16-17

references
database, 31
types, definition, 19
updating, 525
Web References folder,

524
referencing

ADO.NET, 57
Catalog Web service,

522-523
data types, code, 492
remote servers, 346
SqlServer namespace, 555

reformatted XML
(eXtensible Markup
Language), code, 162-163

refreshing rows, 323
registries, CLSID key

(COM components), 547
regular expressions

Parse event, 425
Validating event, 431

RegularExpressionValidator
control, 443-444

RejectChanges method
DataRow class, 88
DataSet class, 56
DataTable class, 83
rows, 115
table rows, 126-127

Relation icon (XML Schema
tab of XML Schema
Toolbox), 167

relational and object-
oriented paradigms,
combining, 16

relational data access, 44
relational databases

Access, 8
and DataView objects,

comparing, 72
engines, TDS (Tabular

Data Stream), 331
Relations collection

(DataSet class), 55
relationships

data tables in DataSets,
editing, 36

many to many, 337
navigating with DataGrid

object, 427
of tables, navigating with

Expression property, 97
remotable types, definition,

149
Remote Data Objects

(RDO), 9
Remote Data Services

(RDS), 11
remote procedure calls

(RPCs), XML Web
Services, 514

remote servers, referencing,
346

remoted DataSets, 150
remotes (.NET Remoting),

copying types, 149
RemoveStatement method,

data factory class, 487
reports, flash, 237
RequiredFieldValidator

control, 443-444

Reset method, 105
DataSet class, 56
DataTable class, 84
table rows, 127

ResetCommandTimeout
method, command classes,
203

resetting connections, 217
resource pooling (session

pooling), 233
resources

“Asynchronous Design
Pattern Overview,” 505

Building Distributed
Applications with Visual
Basic .NET, 18, 41, 225,
461, 514

“Data Access Application
Block,” 486

“Design Guidelines for
Class Library
Developers,” 461

Design Patterns
Explained: A New
Perspective on Object-
Oriented Design, 411

Essential .NET Volume I,
18

“Object Role Modeling:
An Overview,” 335

Pure Visual Basic, 11
Sams Teach Yourself XML

in 21 Days, Second
Edition, 12, 157

SQL Server, Books
Online, 302

result sets
retrieving, 284-285,

304-307
returning, 251-252,

284-289

616 real data type and float data type, comparing

29 3869 index 5/20/02 1:19 PM Page 616

Resume method, threads,
542

retrieving
columns, 274-281
data, 41-42

ExecuteReader method,
248-250

ExecuteScalar method,
251-252

ExecuteXmlReader
method, 252-257

Fill method, 294-296
incrementally, code,

305-306
metadata, adding for

SQL Server, 301-304
result sets, retrieving,

304-307
without strong typing,

276
extended properties, code,

303
result sets, 284-285,

304-307
row changes, 118-123
schemas, GetSchemaTable

method, 282-283
return values

command object
parameters, 263-265

SQL Server, 265
returning

custom objects for data
access classes, 476-481

data readers, 538
DataSet class, 507-508,

529
IDbCommand object, 507
result sets, 251-252,

284-289
reusability of multi-tiered

applications, 410

RevByBook method, 556
ReviewNo column, 95
Reviews element, viewing in

XML Schema Designer,
168

reviews of books
(ComputeBooks), 94

Reviews table, retrieving
data, 143

ReviewsDataTable class,
138, 142

ReviewsRow class, 138
rows, code to add,

141-142
table columns, code to

expose as properties,
140-141

ReviewsRowChangeEvent
class, 138

roles, ORM (Object Role
Modeling), 334

Rollback method, transac-
tion classes, 197

ROLLBACK TRANSAC-
TION statement, 345

round trips to database
servers, minimizing, 539

round-tripping databases,
definition, 334

Row property (event
arguments), 312

row version, timestamp
columns, 322

RowChanged event
(DataTable class), 84

RowChanging event
(DataTable class), 84

RowDeleted event
(DataTable class), 84

RowDeleting event
(DataTable class), 84

RowError property
(DataRow class), 87

RowFilter property, 65,
73-74

RowNotInTableException,
throwing, 113

rows
AcceptChanges method,

126
Added value

DataRowState enumer-
ation, 111

DataViewRowState
enumeration, 117

adding, 112, 141-142
changes, retrieving,

118-123
committing to tables,

125-126
creating with NewRow

method, 112
Current

value (DataRowVersion
enumeration), 113

version, 115-116
CurrentRows value

(DataViewRowState
enumeration), 117

data, code to change, 114
data tables, 87-90
DataRowState enumera-

tion, values, 110-111
DataRowVersion enumera-

tion, values, 113
DataSet class, GetChanges

method, 118-123
DataTable class,

GetChanges method,
118-123

DataView object, 116-118
DataViewRowState enu-

meration, values, 116

rows 617

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 617

Default value
(DataRowVersion enu-
meration), 113

Default version, 115
deleted, 113
Deleted value

DataRowState enumer-
ation, 111

DataViewRowState
enumeration, 117

Detached
DataSet class, 118
value (DataRowState

enumeration), 111
detached, 113
DiffGrams, 123-125
errors, 90, 127
filtering, code, 68
finding, 75, 142
GetError method, 127
information, manipulating,

89-90
inserting into tables, 95
Modified value

(DataRowState
enumeration), 111

ModifiedCurrent value
(DataViewRowState
enumeration), 117

ModifiedOriginal value
(DataViewRowState
enumeration), 117

None value
(DataViewRowState
enumeration), 117

in Orders table, traversing,
102

Original
value (DataRowVersion

enumeration), 113
version, 115-116

OriginalRows value
(DataViewRowState
enumeration), 117

Proposed
value (DataRowVersion

enumeration), 113
version, 115

refreshing, 323
RejectChanges method,

126-127
requesting, 534-535
Reset method, 127
states, 110-113
Tables, Original version,

115
in Titles table, code to

delete, 257-258
Transact-SQL EXISTS

clause, 309
Unchanged (DataSet

class), 118
Unchanged value

DataRowState enumer-
ation, 111

DataViewRowState
enumeration, 117

updating, 312, 323
versions, 113-117
WriteTitleXml function,

code to copy, 160-161
Rows property

DataSet object, 87-90
DataTable class, 83

RowState property
DataRow class, 87
DataRow object, 110-112

RowStateFilter property,
74-76, 116

DataView class, 73
DataView object, 113

RowUpdated
event, updating data

stores, 311-313
method, data adapters, 196

RowUpdating
event, updating data

stores, 311-313
method, data adapters, 196

rowversion synonym for
timestamp data type, 322

RPCs (remote procedure
calls), XML Web Services,
514

rules
Aggregate Functions

(expression syntax rule),
selecting data, 64

Column Names (expres-
sion syntax rule),
selecting data, 64

expression syntax,
selecting data, 64

Fill method, 295-296
Functions (expression

syntax rule), selecting
data, 64

inference, schemas, infer-
ring from documents,
175-176

Literal Values (expression
syntax rule), selecting
data, 64

mapping XSD to
DataSets, 173-174

Operators (expression syn-
tax rule), selecting data,
64

Parent and Child Relations
(expression syntax rule),
selecting data, 64

schemas, 343

618 rows

29 3869 index 5/20/02 1:19 PM Page 618

Wildcard Characters
(expression syntax rule),
selecting data, 64

running
command-line utilities,

138
product catalogs, 46

runtime callable wrapper
(RCW), 545-546

runtimes (DataSet class),
loading structures,
171-172

S

sales data (ComputeBooks
stores), code, 176

Sams Publishing Web site,
data factory class, down-
loading code files, 486

Sams Teach Yourself XML in
21 Days, Second Edition,
12, 157

save points, 237
SaveDs method, 152-153
SaveMyData method, 314,

317
SaveTitles method, 262
saving DataSet classes,

151-153
scalability of applications,

optimizing, 534-544
Scale property, parameters,

208
scale-out, definition, 407
scale-up, definition, 407
scalability, applications, 407
schemas

check constraints, 343
constraints, 341-343

creating from databases,
code, 169-170

data types, 337-340
databases, 335-336
default constraints, 342
definition, 335
foreign key constraints,

341-342
generating, 296-301
inferring from documents,

inference rules, 175-176
mapping (XML Views),

355
naming, 337-340
normalizing, 335-337
retrieving,

GetSchemaTable
method, 282-283

rules, 343
SQL Server databases,

designing, 333-340
triggers, 344-346
UDT (user-defined data

types), 340
XML (eXtensible Markup

Language), 136, 164-179
XSD (XMl Schema

Definition), importing
into VS .NET, 135

SchemaType.Mapped, 170
scope of transactions, 235
SDKs, MDAC (Microsoft

Data Access Components),
downloading, 12

security
Code Access Security

model, 198-200
databases (SQL Server),

designing, 352-353
FullTrust permission set,

199

imperative, code, 200-201
permissions (imperative),

code, 200-201
stored procedures, 247,

347
Select method

data, selecting, 63
DataTable class, 84
or parameters, when to

use, 65
or WHERE clause, when

to use, 65
SELECT statements

data requests, appropriate,
251

WHERE clause, 63
SelectCommand, 41, 170,

305
SelectCommand property,

50, 57, 195
selecting data

in DataSet class, 63-66
incrementally, code, 306

semicolon (;), 219-220
SequentialAccess

command, 279
value (command objects),

249
Serializable attribute, 149,

457
serialization, strongly typed

DataSet classes
DataSets, passing,

148-150
disks, persisting to,

151-153
Server Explorer window,

28-30
Server property (SqlError

object), 209

Server property (SqlError object) 619

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 619

server-side
access, common language

runtime, 554-555
cursors, accessing data,

353-355
servers

cursors, definition, 354
databases, 539, 557
joins, performing, 535
keys, generating, 95
MTS (Microsoft

Transaction Server), 11,
545

remote, referencing, 346
server affinity, definition,

408
SQL Server, 190

Books Online, 302
databases, inspecting,

30
OLE DB provider, 29
Profiler utility, 45
ReadCommitted mode,

237
ReadUncommitted

mode, 237
return values,

specifying, 265
save points, 237
stored procedures, 34

service components, defini-
tion, 10

serviced components
base class, code, 457-460
connection strings, storing,

225-226
handling, 457-461
transactions, 238-241

ServicedComponent class,
457

services. See also XML Web
Services

COM+ (Component
Services), 545

Component Services:
Building Distributed
Applications with Visual
Basic .NET, 461

Services Framework, code,
conforming to, 139

Session object, storage
weaknesses in ASP, 439
session pooling, 233
session states

ASP.NET State service
storage, 441

Load events, code,
438-439

SQL Server storage,
440-441

turning off, 439
Web Forms applications,

438-440
SET NO_BROWSETABLE

ON statement, 170
SET SHOWPLAN ON

statement, 537
SetColumnError method

(DataRow class), 88
SetDefault values, primary

keys, 103
SetNull values, primary

keys, 103
SetParentRow method, 88,

98
setupDataAdapter method,

507
Shalloway, Design Patterns

Explained: A New
Perspective on Object-
Oriented Design, 411

sharing strongly typed
DataSet classes, 146-148

Shepherd, Dawn, 12
Shepherd, Devan, 157
Show All Files

dialog box, 525
icon, 137

showOriginal method, 117
signatures, protected, 294
simple binding, 420-425
Simple Object Access

Protocol. See SOAP
simple validation, Validating

and Validated events, 430
simpleType icon (XML

Schema tab of XML
Schema Toolbox), 166

simplification, stored
procedures, 347

single quotation mark (‘),
64

single values of columns,
retrieving, 274-278

single-value binding,
432-434

SingleResult value (com-
mand objects), 249

SingleRow command,
behavior, 252

SingleRow value
command objects, 249
CommandBehavior

enumeration, passing to
the ExecuteReader
method, 537

Size property, parameters,
208

skeleton classes, XSD.exe
command-line utility, 479

smalldatetime data type and
datetime data type,
comparing, 338

620 server-side

29 3869 index 5/20/02 1:19 PM Page 620

smallmoney data type and
money data type,
comparing, 338

SOAP (Simple Object
Access Protocol)

Catalog Web service, code
to call, 521-522

common language run-
time, 13

Global XML Web Service
Architecture, 13

SQL Server, 358
W3C (World Wide Web

Consortium) Web site,
514

Web service methods, 520
XML Web Services, 514

SoapDocumentService
attribute, encoding para-
meters, 520

SoapRpcMethod attribute,
Web method, 520

software
databases, round-tripping,

334
NLB (Network Load

Balancing), 408
Solution Explorer

Add New Item dialog box,
517

Add Web User Control
dialog box, 526

Class View, 138
Show All Files dialog box,

525
TitlesDs.xsd file, Generate

DataSet option, 137
Web References folder,

524
window, viewing DataSet

classes, 137

Solution ExplorerAdd Web
Reference command
(context menu), 522

Sort property, 73-74
sorting DataView objects,

74
source code, TitlesDs.cs file

(classes generated), 138
Source property, objects,

209-210
SourceColumn property,

parameters, 208
sources. See data sources
SourceVersion property,

208, 321
special characters, column

names, 64
specialization of multi-

tiered applications, 410
specific data providers, 190,

330
specific versus generic data

providers, 23-24
Split method, 86
sp_executesql stored proce-

dure in SQL Server, 537
SQL (Structured Query

Language), 9
DDL (Data Definition

Language) statements,
33

dynamic and stored proce-
dures, comparing,
246-247

Profiler, debugging code,
222

statements, standardized in
SQL Server, 537

Transact-SQL EXISTS
clause, 309

SQL Server, 190, 329
adapter patterns, 330
binary and varbinary data

types, comparing, 339
Books Online, 302
char and varchar data

types, comparing, 339
client architecture, 330
common language

runtime, 554-555
data

accessing, 555-558
providers, 330
types, 338-339

“Data Access Application
Block,” 486

databases
data access techniques,

353
designing, 332
IDENTITY columns,

336
index design, 351-352
inspecting, 30
schemas, 333-346
security, 352-353
server-side cursors,

353-355
SQLXML, 355-358
stored procedure layer

design, 346-351
3NF (Third Normal

Form), 335-336
datetime and smalldate-

time data types, compar-
ing, 338

decimal and numeric data
types, comparing, 338

float and real data types,
comparing, 338

functions, code to create,
555-556

SQL Server 621

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 621

INSTEAD OF triggers,
344

metadata, adding for data
retrieval, 301-304

money and smallmoney
data types, comparing,
338

nchar and nvarchar data
types, comparing, 339

objects, default, 343
ODBC, adapter patterns,

330
OLE DB, 29, 330
Profiler utility, 45
programming, 554
ReadCommitted mode,

237
ReadUncommitted mode,

237
return values, specifying,

265
save points, 237
session data, storing,

440-441
SOAP (Simple Object

Access Protocol), 358
sp_executesql stored

procedure, 537
specific data providers,

330
SQL Server Work Bench,

557
SqlClient .NET Data

Provider, 330-332
standardized SQL state-

ments, 537
stored procedures, 34
targeted data providers,

330
text and ntext data types,

comparing, 339

timestamp and uniquei-
dentifier data types,
comparing, 339

tinyint and bit data types,
comparing, 338

varbinary and image data
types, comparing, 339

varchar and nvarchar data
types, comparing, 339

VS .NET extensions, 557
Work Bench, 557

SqlClient, 24, 190
Application Name

attribute, 220
AttachDBFileName

attribute, 220
attributes, connections,

220-221, 230-231
code, debugging, 222
Connect Timeout attribute,

220
Connection Lifetime

attribute, 230
Connection Reset

attribute, 230
connections

objects, exceptions,
274

pooling, 230-233, 540
strings, specifying,

220-223
Current Language

attribute, 220
data provider types, code,

275-276
Data Source attribute, 220
Enlist attribute, 221
InfoMessage events, 289
Initial Catalog attribute,

221
Integrated Security

attribute, 221

Max Pool Size attribute,
230

Min Pool Size attribute,
231

Net-Library, 331
Network Library attribute,

221-223
Packet Size attribute, 221
Password attribute, 221
performance counters,

viewing, 231
Persist Security Info

attribute, 221
Pooling attribute, 231
relational database

engines, 331
SQL Profiler, 222
TDS (Tabular Data

Stream), 330-332
transaction objects, 234
transactions, 235-238
Use Procedure For Prepare

attribute, 221
User ID attribute, 221
Workstation ID attribute,

221
SqlCommand object,

methods, 556
SqlConnection class, Close

or Open method, 47
sqlConnection1 object, 31
SqlDataAdapter, 171

connections, opening and
closing, 233

Fill method, protected sig-
natures, 294

TitlesDs DataSet, code to
populate, 144-145

SqlDataAdapter object,
setting properties, 95

sqlDataAdapter1 objects, 31
SqlError object, properties,

209

622 SQL Server

29 3869 index 5/20/02 1:19 PM Page 622

SqlFilesCreated event, data
factory class, 487

SqlObjectSpace class, 563
SqlServer namespace,

referencing, 555
SQLState property,

OleDbError object, 210
SqlTypes namespace,

mapping types, 555
sqlUpdateCommand1

object, 48
SQLXML

data, accessing, 355-358
managed classes, code,

357
standardized SQL state-

ments in SQL Server, 537
standards, XML (eXtensible

Markup Language), inte-
grating into ADO.NET, 15

Stare Page menu com-
mands, My Profile, 28

Start method, threads,
541-542

State property
connection classes, 196
SqlError object, 209

StateBag class, 442
StateChange event, code,

217-219
statements

abstracting, 493-505
AddressOf, 72
caches, 498-502
creating, 495, 499-500
data modification, 288-289
data providers, code to set,

498-499
DDL (Data Definition

Language), 33
definition, 493
files, 494-497, 502-505

FOR XML, 13, 253-254
getStatement method, 495
New MergeFailedEvent-

Handler(AddressOf
HandleMergeErrors), 72

Option Strict, strongly
typed DataSet classes,
134

pulling, 495
RAISERROR, 345
returning, 495
ROLLBACK TRANSAC-

TION, 345
SELECT, 63, 251
SET

NO_BROWSETABLE
ON, 170

SET SHOWPLAN ON,
537

SQL Server, Profiler
utility, 45

using
ComputeBooks.Data;,
145

StatementType property
(event arguments), 312

states
of objects, 437-442
of rows, 110-113
session, 439-441
view, 441-442

Status property (event
arguments), 312

StDev function, 64
sticky IP, 439
storage, Session object,

weaknesses in ASP, 439
stored procedures

abstractions, 247, 347
Advanced Options button,

32

application-specific, 462
arguments, handling, 144
ComputeBooks, 47
data requests, appropriate,

251
and dynamic SQL, com-

paring, 246-247
functions, 347
layer design, 346-351
multi-function, code,

308-309
naming with Data Adapter

Configuration Wizard,
33

performance, 247, 347,
537

security, 247, 347
simplification, 347
sp_executesql in SQL

Server, 537
SQL Server 2000, 34
Update, code, 49
usp_ActivityReport, 369
usp_DeleteTitle stored,

258
usp_GetTitles, 144,

348-350, 367, 470, 494
usp_GetTitlesLookups, 60
usp_GetTitlesReview,

code to populate
TitlesDs DataSet,
144-145

usp_GetTitlesReviews,
code to retrieve data
from tables, 143

views, 347
stores. See data stores
StoresRowChanging

method, 90
storing

assemblies, 557
connection strings, 224,

227

storing 623

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 623

object states in Web Forms
presentation services tier,
437-442

time with
ExtendedProperties
collection, 153

strategies, UDA (Universal
Data Access), 10

stream classes, System.IO
namespace, 121

strings
connection, 219-227
Literal Values (expression

syntax rule), selecting
data, 64

strong names (public keys),
definition, 19

strongly typed
data readers, 271
DataSet classes, 131-135,

142-153
values of columns, code to

retrieve, 274-275
Structured Query

Language. See SQL
structures

DataSet class, code to load
at runtime, 171-172

tables, 82-92
styles, capitalization (.NET

Framework classes), 462
stylesheets

XSL (XML Stylesheet
Language), 256-257

XSLT (eXtensible
Stylesheet Language
Transformation), 13

SUBSTRING function, 64
Sum function, 64
summarized data for appli-

cations, 534

Suspend method, threads,
542

switch objects, 455
switches, BooleanSwitch

class (DataFactory class),
497

SyncDataSet method (data
factory class), 487

Synchronized method
(Hashtable class), 498

synonyms, rowversion for
timestamp data type, 322

syntax. See code
system DSN, opening con-

nections, 364
System.Collections.IList

interface, 418
System.Collections.Special-

ized namespace, 494
System.ComponentModel.I

Component interface, 31
System.ComponentModel.

MarshalByValue-
Component class (DataSet
class), 54

System.Data namespaces,
21-24, 54

System.Data.Common
namespace, 21

System.Data.dll, 19
System.Data.OleDb

namespace, 21
System.Data.SqlClient

namespace, 21, 339
System.Diagnostics

namespace, 76, 454
System.EnterpriseServices

namespace, 457
System.IO namespace,

stream classes, 121
System.Object, CTS

(Common Type System),
managed code, 20

System.Web.Caching.Cache
object, 540

System.Windows.Forms
namespace, 418

System.Xml classes, stream
classes, 121

System.Xml namespace, 255
XmlDataDocument class,

21, 179
XmlTextReader class, 121
XmlTextWriter class, 121

System.Xml.Serialization.
SerializableAttribute
attribute, 479

T

Table Mappings dialog box,
35

Table property, 72
DataColumn class, 92
DataRow class, 87
DataView class, 73

table-level constraints,
definition, 343

TableMapping property, 57,
195, 312

TableName property
(DataTable class), 83

tables. See also DataTable
objects

Categories,
ComputeBooks database,
36

columns, 91
auto-incrementing,

94-96
BulkAmount, Caption

properties, 93
BulkDiscount, Caption

properties, 93

624 storing

29 3869 index 5/20/02 1:19 PM Page 624

Caption properties, 93
CatID, DefaultValue

property, 94
in DataSets, 177
duplicate names, 298
exposing as properties,

code, 140-141
expressions, 96-98
hiding, 162
IDENTITY, 95
ISBN, ReadOnly

property, 93
keys, generating on

clients and servers,
95

mappings, code to
create, 300

MissingMappingAction
.Passthrough value,
148

MS Description prop-
erty, 302

multiple values,
279-281

names, 301
properties, 92-94
PubDate, Caption

properties, 93
requesting, 535
ReviewNo, 95
row errors, code to

create, 90
single values,

retrieving, 274-278
strongly typed values,

code to retrieve,
274-275

Title, Unique property,
93

Unique property, set-
ting to True, 92

constraints, 99-103

Customers and Orders,
code for mapping to
XSD schemas, 355

data, 36, 143
defining, code, 94
Detached rows (DataSet

class), 118
foreign keys, 101-103
IDENTITY columns, 336
many to many relation-

ships, 337
mappings, 50, 297-301,

355
names, case sensitivity,

305
Orders, traversing rows,

102
relationships, navigating

with Expression proper-
ty, 97

Reviews, code to retrieve
data, 143

rows, 87-90
AcceptChanges

method, 126
Added value

(DataRowState
enumeration), 111

Added value
(DataViewRowState
enumeration), 117

adding, 112, 141-142
Both value

(UpdateRowSource
enumeration), 323

changes, retrieving,
118-123

code to copy with
WriteTitleXml func-
tion, 160-161

code to filter, 68
committing to tables,

125-126

creating with NewRow
method, 112

Current value
(DataRowVersion
enumeration), 113

Current version,
115-116

CurrentRows value
(DataViewRowState
enumeration), 117

data, code to change,
114

DataRowState enumer-
ation, values,
110-111

DataRowVersion enu-
meration, values, 113

DataSet class,
GetChanges method,
118-123

DataTable class,
GetChanges method,
118-123

DataView object,
116-118

DataViewRowState
enumeration, values,
116

Default value
(DataRowVersion
enumeration), 113

Default version, 115
deleted, 113
Deleted value

(DataRowState enu-
meration), 111

Deleted value
(DataViewRowState
enumeration), 117

detached, 113
Detached value

(DataRowState enu-
meration), 111

tables 625

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 625

DiffGrams, 123-125
errors, code, 90, 127
GetError method, 127
information, manipu-

lating, 89-90
inserting, 95
Modified value

(DataRowState
enumeration), 111

ModifiedCurrent value
(DataViewRowState
enumeration), 117

ModifiedOriginal value
(DataViewRowState
enumeration), 117

None value
(DataViewRowState
enumeration), 117

None value
(UpdateRowSource
enumeration), 323

Original value
(DataRowVersion
enumeration), 113

Original version, 116
OriginalRows value

(DataViewRowState
enumeration), 117

OutputParameters
value
(UpdateRowSource
enumeration), 323

Proposed value
(DataRowVersion
enumeration), 113

Proposed version, 115
refreshing, 323
RejectChanges method,

126-127
requesting, 534-535
Reset method, 127
states, 110-113

Transact-SQL EXISTS
clause, 309

Unchanged value
(DataRowState enu-
meration), 111

Unchanged value
(DataViewRowState
enumeration), 117

UpdateRowSource
enumeration, values,
323

updating, 312
versions, 113-117

scans, definition, 536
structure, 82-87
Titles

ComputeBooks data-
base, 36

data, code to retrieve,
143

dragging and dropping,
136

rows, code to delete,
257-258

updating in DataSets, 310
Tables

collection (DataSet class),
55

property (DataSet object),
82-87

Tabular Data Stream (TDS),
190, 330-332

tags, <%# %>, data binding
expressions, 433

targeted data providers
(specific data providers),
190

TDS (Tabular Data Stream),
190, 330-332

technologies
data access, 7-14
XML Web Services,

exposing data, 514-515

templated controls, data
binding expressions, 435

templates, XML (eXtensible
Markup Language), code,
356

testing Web services,
519-520

text data type and ntext
data type, comparing, 339

Text property, 445
The SelectNodes method,

181
3NF (Third Normal Form),

335-336
this operator, 45
Thread class, managed

code, 541-542
thread local storage (TLS),

543
threads

Abort method, 542
applications, locking

contention, 545
arguments, passing to, 543
GetTitles method, 541
Interrupt method, 542
Join method, 542
Name property, 542
Priority property, 542
Resume method, 542
Start method, 541-542
Suspend method, 542
trusted connections,

impersonation, 232
ThrowComputeBookExcept

ion method, 457
throwing

DeletedRowInaccessible-
Exception, 113

exceptions, 97, 456
RowNotInTableException,

113

626 tables

29 3869 index 5/20/02 1:19 PM Page 626

tiers. See also data services
tier; multi-tiered applica-
tions; presentation
services tier

business services, 28, 405
logical, distributing,

407-408
physical, relation to,

407-409
two-tier applications, 28

time, storing with
ExtendedProperties collec-
tion, 153

timelines, data access
events, 8

timestamp
columns, row version, 322
data type, 322, 339

tinyint data type and bit
data type, comparing, 338

Title column, Unique
property, 93

titles, getTitles method
(DataFactory class), code,
508-509

Titles table
ComputeBooks database,

36
data, code to retrieve, 143
dragging and dropping,

136
rows, code to delete,

257-258
TitlesChanged method, 76
TitlesDataTable class, 138,

142
TitlesDs

class, 138-139
DataSet, 137, 144-145

TitlesDs.cs file, 138
TitlesDs.xsd file, Generate

DataSet option, 137

TitlesRow class, 138
TitlesRowChangeEvent

class, 138
TLS (thread local storage),

543
tModel (UDDI), 524
tool leverage (SQL Server

.NET), 555
toolboxes, XML Schema

Toolbox icons, 166-167
tools

databases, round-tripping,
334

Microsoft FxCop Web
site, 461

MMIT (Microsoft Mobile
Internet Toolkit), down-
loading, 405

SQL Server Work Bench,
557

top sellers (ComputeBooks),
code to expose, 516

TopBooks user control, 529
TopBooks.ascx file, code for

data binding, 527-528
TopBooks.ascx.cs file (Web

User Controls), code,
526-527

TopSellers method, code,
516

Trace class, 76
base classes, conditional

tracing, 454
Write method, 76
WriteLine method, manip-

ulating row information,
89-90

TraceRowError method,
89-90

tracing
base classes, 454
conditional, 454-456

tracking row versions with
DataSet object, 114-115

Transact-SQL EXISTS
clause, 309

Transaction property, com-
mand classes, 202

transactions, 215
BeginTransaction method,

234
classes, 192, 197, 240
code, 236
data adapters, 235
data, locking, 235
distributed, 238-240
explicit, 235
IDbTransaction interface,

234
implicit, 235
local, 238
objects, OleDb or

SqlClient provider, 234
OleDb provider, 238-239
parallel, 238
RAISERROR statement,

345
ROLLBACK TRANSAC-

TION statement, 345
rolling back, 345
scope, 235
serviced components,

238-241
SqlClient provider,

235-238
Transform method, 183
TransformDs method, 182
transforming

DataSets, code, 182
XmlReader, code, 255

traversing
data readers, 273-281
DataSet class, 60-63

triggers, 344-346

triggers 627

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 627

Trott, Design Patterns
Explained: A New
Perspective on Object-
Oriented Design, 411

trusted connections, threads
(impersonation), 232

turning off session state, 439
two-tier applications,

definition, 28
type checkers, strongly

typed DataSet classes, 134
Type objects, 489-491
types. See also data types

copying (.NET Remoting),
149

CTS (Common Type
System), 92-93

DesignerAttribute, 31
.NET, XSD type equiva-

lent, 173
reference, definition, 19
remotable, definition, 149
strongly typed DataSet

classes
Add New Item dialog

box, 135
building, 131-132
creating, 134-142
defining, 132-133
goals, 133-134
implementation inheri-

tance, 132
interface inheritance,

132
Option Strict state-

ment, 134
populating, 134,

142-146
purpose, 133-134
serialization, 148-153
sharing, 146-148
type checkers, 134

VC# .NET console
application project,
134

versioning, 146-148
XML

Schemas/DataTypes
utility (XSD.exe),
137

value, definition, 19
XSD, .NET type equiva-

lent, 173
typing (strongly), data

readers, 271

U

UDA (Universal Data
Access) strategy, 10

UDDI (Universal
Description, Discovery and
Integration), 523-524

UDTs (user-defined data
types), 340

UIs (user interfaces), 10,
38-45

Unchanged rows (DataSet
class), 118

Unchanged value
DataRowState enumera-

tion, 111
DataViewRowState

enumeration, 117
underscore (_), prefixes, 463
unified programming mod-

els (SQL Server .NET),
554

unique constraints (tables),
99

Unique property, 92-93, 99
UniqueConstraint class or

object, 99

uniqueidentifier data type
and timestamp data type,
comparing, 339

Universal Data Access
(UDA), 10

Universal Description,
Discovery and Integration
(UDDI), 523-524

update command,
configuring, 47-49

Update method, 44, 68
data adapters, 195
DataSets, 314

Update stored procedure,
code, 49

UpdateCommand
event, 44
property, 50, 195

UpdatedRowSource
property, 202, 259

UpdateGram (XML),
definition, 356

UpdateRowSource
enumeration, values, 323

UpdateRule property, 102
updating

customers for
ObjectSpaces frame-
work, 563-564

data
data readers, 271
through DataSets, 536
through Web services,

530
data stores, 307-310

command builders, 324
concurrency, 318-323
disconnected updates,

313-317
events, 311-313
isolation, 316-317
pessimistic concurren-

cy, code, 319-321

628 Trott

29 3869 index 5/20/02 1:19 PM Page 628

rows, refreshing, 323
RowUpdated event,

311-313
RowUpdating event,

311-313
references, 525
rows, 312, 323
tables in DataSets, 310

uppercase, definition, 463
Use Procedure For Prepare

attribute (SqlClient
provider), 221

UseCache property, data
factory class, 487

user controls
content, VaryByParam

attribute, 540
TopBooks, 529

user DSN, opening connec-
tions, 364

User ID attribute (SqlClient
provider), 221

user interfaces (UIs), 10,
38-45

user-defined data types
(UDTs), 340

UserControl class, 526
username attribute, 232
using ComputeBooks.Data;

statement, 145
usp_ActivityReport stored

procedure, 369
usp_DeleteTitle stored pro-

cedure, 258
usp_GetTitles stored proce-

dure, 144, 470
calling, 349-350, 367, 494
code, 348-349

usp_GetTitlesLookups
stored procedure, 60

usp_GetTitlesReview stored
procedure (TitlesDs
DataSet), code to populate,
144-145

usp_GetTitlesReviews
stored procedure, tables
(code to retrieve data), 143

utilities
AL.exe (Assembly

Linker), 453
command-line, 138, 148
Performance Monitor, 540
Profiler (SQL Server), 45
Xml Schemas/DataTypes

(XSD.exe), strongly
typed DataSet classes,
137

XSD.exe command-line,
skeleton classes, 479

V

Validated events, code for
simple validations, 430

validating controls
validation process,

customizing, 445
in Web Forms presentation

services tier, 442-445
in Windows Forms presen-

tation services tier,
429-431

Validating event
regular expressions, 431
simple validations, code,

430
validations

disabling, 445
simple (Validating and

Validated events), code,
430

ValidationSummary control,
443-444

Value property, parameters,
208

values
Add

(MissingSchemaAction
enumeration), 296

AddWithKey
(MissingSchemaAction
enumeration), 296-297

Auto (XmlReadMode enu-
meration), 178-179

Both (UpdateRowSource
enumeration), 323

CloseConnection
(command objects), 249

ConnectionState
enumeration, 216

DataRowState
enumeration, 110-111

DataRowVersion
enumeration, 113

DataViewRowState
enumeration, 116

DbType enumerations,
definitions, 275

Default (command
objects), 249

DiffGram (XmlReadMode
enumeration), 178-179

Error, 296-299
Fragment (XmlReadMode

enumeration), 178-179
Hidden (MappingType

attribute), 162
Ignore, 296-299
IgnoreSchema

(XmlReadMode
enumeration), 178

InferSchema
(XmlReadMode
enumeration), 178

values 629

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 629

KeyInfo (command
objects), 249

MissingMappingAction.
Passthrough, 148

multiple (table columns),
279-281

None (UpdateRowSource
enumeration), 323

OutputParameters
(UpdateRowSource
enumeration), 323

Passthrough
(MissingMappingAction
enumeration), 299

ReadSchema
(XmlReadMode enumer-
ation), 178

return, 263-265
SequentialAccess (com-

mand objects), 249
SetDefault, primary keys,

103
SetNull, primary keys, 103
single (table columns),

retrieving, 274-278
SingleResult (command

objects), 249
SingleRow (command

objects), 249
strongly typed (table

columns), code to
retrieve, 274-275

types, definition, 19
UpdateRowSource enu-

meration, 323
Var function, 64
varbinary data type, com-

paring with binary data
type and image data type,
339

varchar data type, compar-
ing with char data type
and nvarchar data type,
339

variables
df, 509
initializing, 139

VaryByParam attribute, 540
VB (Visual Basic)

array declarations, 280
code, ComputeBooks data

provider, 375
.NET, consuming data in

XML Web Services,
522-529

.vb file extension, 517
VC# .NET console applica-

tion project, strongly
typed DataSet classes, 134

version numbers, creating
for assemblies, 146

versioning, strongly typed
DataSet classes, 146-148

versions of rows, 113-117
VID (Visual InterDev), 10
view states, 441-442
viewing

code, 37-38
CTS (Common Type

System) type enumera-
tion mappings, 363

DataSet classes, 137
GAC (Global Assembly

Cache), 19
performance counters, 231
Reviews element in XML

Schema Designer, 168
row versions, code, 117
TitlesDs class, 138
XML schema, 136

views
Class View (Solution

Explorer), 138

definition, 347
external, data services tier,

411-413
internal, data services tier,

413-414
managing in DataView

objects, 77-78
stored procedures, 347
XML View, mapping

tables to XSD schemas,
355

XML Views, definition,
355

ViewState property, 441
Visual Basic: Building

Distributed Applications
with Visual Basic .NET, 41

Visual Basic .NET, mapping
Integer data type, 97

Visual InterDev (VID), 10
VS .NET (Visual Studio

.NET), 27
business services applica-

tions, 28
code, viewing, 37-38
command-line utilities,

running, 138
concurrency, definition, 32
Data Adapter

Configuration Wizard,
31-34

data, 28, 31-35
DataSets, creating, 35-36
extensions, 557
.NET Framework, 31
presentation applications,

28
Professional edition, man-

aging data, 30
projects, referencing

SqlServer namespace,
555

630 values

29 3869 index 5/20/02 1:19 PM Page 630

Server Explorer window,
28-30

two-tier applications,
definition, 28

user interfaces, 38-45
XSD schema, importing,

135

W

W3C (World Wide Web
Consortium), 12-13, 169,
514

Web browsers, Internet
Explorer (MSIE), 11

Web Forms applications,
presentation services tier,
431-445

Web method,
SoapRpcMethod attribute,
520

content, VaryByParam
attribute, 540

Load event (DataSets),
code, 41

Web References folder, 524
Web Service Description

Language (WSDL), 13,
514

Web Services. See XML
Web Services

Web sites
Cold Rooster Consulting

home page, Web service
results, 529

InformIT
“Asynchronous Design

Pattern Overview,”
505

ObjectSpaces frame-
work and EJB
(Enterprise Java
Beans), comparing,
559

Microsoft
FxCop, 461
MDAC (Microsoft

Data Access
Components) SDK,
downloading, 12

MMIT (Microsoft
Mobile Internet
Toolkit), download-
ing, 405

“Object Role
Modeling: An
Overview,” 335

ODBC .NET Data
Provider, download-
ing, 362

ODBC .NET Provider,
downloading, 23

XML tutorials and
FAQs, 157

ODBC .NET Provider,
downloading, 23

Sams Publishing (data fac-
tory class), downloading
code files, 486

UDDI (Universal
Description, Discovery
and Integration), 523

W3C (World Wide Web
Consortium), 13, 169

SOAP (Simple Object
Access Protocol), 514

WSDL (Web Services
Description
Language), 514

Web User Control, 525-528
WebData class, 516

WebMethod attribute, 517
WHERE clause, 63-65
Wildcard Characters

(expression syntax rule),
selecting data, 64

windows
Available References,

522-523
customizing, 28
Properties binding,

420-421, 433
Server Explorer, 28-30,

134
Solution Explorer, viewing

DataSet classes, 137
Windows Forms applica-

tions, 418-431
Windows Open Systems

Architecture (WOSA), 9
wizards

Data Adapter
Configuration Wizard,
31-34, 320

Index Tuning Wizard, 537
words (camel case, Pascal

case, uppercase)
definitions, 463

workbooks (Excel), code to
create, 367-369

Workstation ID attribute
(SqlClient provider), 221

World Wide Web
Consortium (W3C) Web
site, 12, 169, 514

World Wide Web. See
WWW

WOSA (Windows Open
Systems Architecture), 9

wrappers
CCW (COM callable

wrapper), 545
RCW (runtime callable

wrapper), 545-546

wrappers 631

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 631

WriteLine method, 76,
89-90

WriteSqlSchema method,
169-170

WriteTitleXml function,
code to copy rows, 160-161

WriteXml method, 105,
158-160

data readers, code for
polymorphism, 283-284

DataSet class, 56
DiffGrams (XML),

creating, 123-125
WriteXmlChanges method,

118, 121-123
WriteXmlSchema method,

56
writing

arrays, code, 280-281
code, conforming to

Services Framework,
139

data as XML (eXtensible
Markup Language),
158-163

DataSets as XML
(eXtensible Markup
Language)

code, 158-159
WSDL (Web Service

Description Language), 13,
514

WWW (World Wide Web),
12

DataSet data, returning,
529

improvements, 12-14

X

XML (eXtensible Markup
Language), 12-13

AUTO mode (FOR XML
statement), 253

Bulkload, definition, 357
common language run-

time, 13
data, writing as, 158-163
DataSets, 157-159,

179-183
DiffGrams, 124-125, 160
documents, accessing, 374
EXPLICIT mode (FOR

XML statement), 253
FOR XML statement, 13
GetXml method, 160
Global XML Web Service

Architecture (SOAP), 13
loading with

XmlDataDocument
class, 181

mapping files, 561-562
msdata namespace, 164
My Services initiative, 13
output (FOR XML state-

ment), code, 254
RAW mode (FOR XML

statement), 253
reformatted, code,

162-163
sales data (ComputeBooks

stores), code, 176
Sams Teach Yourself XML

in 21 Days, Second
Edition, 12, 157

schema, 136, 163-179
Schema Designer, 165,

168

Schema Toolbox (XML
Schema tab), icons,
166-167

Schemas/DataTypes utility
(XSD.exe), strongly
typed DataSet classes,
137

standards, integrating into
ADO.NET, 15

templates, code, 356
tutorials and FAQs,

Microsoft Web site, 157
UpdateGram, definition,

356
Views, 355
WriteXml method, 105,

160
WriteXmlChanges

method, code for output,
122-123

WSDL (Web Service
Description Language),
13

XmlDataDocument class,
adding nodes, 181

XmlReadMode enumera-
tion, ReadXml method,
178-179

XSD (XML Schema
Definition), 173-175

XML Stylesheet Language
(XSL), 256-257

XML Web Services, 513
ASP.NET page output

caching, 528
building, 517-520
Catalog, 517-529
Cold Rooster Consulting

home page, 529
ComputeBooks, code to

expose top sellers, 516
data, 514-530

632 WriteLine method

29 3869 index 5/20/02 1:19 PM Page 632

DataSet objects, 524
HTTP (Hypertext Transfer

Protocol) context
information, 517

methods, 519-520
multi-tiered applications,

406
protocols, 514
references, updating, 525
RPCs (remote procedure

calls), 514
SOAP (Simple Object

Access Protocol), 514
testing, 519-520
UDDI (Universal

Description, Discovery
and Integration), defini-
tion and Web site, 523

Web User Control,
525-528

WSDL (Web Services
Description Language),
514

XmlDataDocument class,
21, 179-181

XmlDocument class, 179
XmlObjectSpace class, 563
XmlReader, code to

transform, 255
XmlReadMode enumera-

tion, 178-179
XmlSerializer class, 479
XmlTextReader class

(System.Xml namespace),
121

XmlTextWriter class
(System.Xml namespace),
121

XSD (XML Schema
Definition)

creating, 134
documents, code, 164-165

mapping rules to DataSets,
173-174

modifying, code, 174-175
schemas, 135, 355
types, .NET type

equivalent, 173
W3C (World Wide Web

Consortium) Web site,
169

XML Schema, creating
dynamically, 169

.xsd files, opening, 163
XSD.exe (XML

Schemas/DataTypes
utility)

strongly typed DataSet
classes, 137

skeleton classes, 479
XSL (XML Stylesheet

Language), 256-257
XSLT (eXtensible Stylesheet

Language
Transformation), 13

Y-Z

yellow barrel icon, 433
Yukon (SQL Server .NET),

554
functions code to create,

555-556
SQL Server Work Bench,

557
VS .NET extensions, 557

Yukon (SQL Server .NET) 633

How can we make this index more useful? Email us at indexes@samspublishing.com

29 3869 index 5/20/02 1:19 PM Page 633

	Sams Teach Yourself ADO.NET in 21 Days
	Copyright © 2002 by Sams Publishing
	Contents at a Glance
	Table of Contents
	About the Author
	We Want to Hear from You!

	Introduction
	The Structure of This Book
	Conventions Used in This Book
	The Audience for and Purpose of This Book

	WEEK 1 At a Glance
	DAY 1 ADO.NET in Perspective
	Microsoft Data Access Technologies
	ADO.NET Design Goals
	ADO.NET in .NET
	Summary
	Workshop

	DAY 2 Getting Started
	ADO.NET in Visual Studio .NET
	ADO.NET in Code
	Summary
	Workshop
	Answers for Day 2

	DAY 3 Working with DataSets
	Understanding the ADO.NET DataSet
	Populating a DataSet
	Manipulating Multiple DataSets
	Using a DataView
	Summary
	Workshop
	Answers for Day 3

	DAY 4 DataSet Internals
	Data Table Structure
	Constraints
	Extended Properties
	Summary
	Workshop
	Answers for Day 4

	DAY 5 Changing Data
	Making Modifications
	Handling Changes
	Summary
	Workshop
	Answers for Day 5

	DAY 6 Building Strongly Typed DataSet Classes
	Strongly Typed DataSet Classes Defined
	DataSet Serialization
	Summary
	Workshop
	Answers for Day 6

	DAY 7 XML and the DataSet
	Writing Data as XML
	Creating the XSD Schema
	Using a DataSet as XML
	Summary
	Workshop
	Answers for Day 7

	WEEK 1 In Review
	WEEK 2 At a Glance
	DAY 8 Understanding .NET Data Providers
	Provider Architecture
	Provider Functionality
	Summary
	Workshop
	Answers for Day 8

	DAY 9 Using Connections and Transactions
	Opening Connections and Handling Events
	Storing Connection Strings
	Pooling Connections
	Using Transactions
	Summary
	Workshop
	Answers for Day 9

	DAY 10 Using Commands
	Using Command Objects
	Handling Parameters
	Summary
	Workshop
	Answers for Day 10

	DAY 11 Using Data Readers
	Data Reader Characteristics
	Traversing a Data Reader
	Advanced Features
	Summary
	Workshop
	Answers for Day 11

	DAY 12 Using Data Adapters
	Retrieving Data
	Updating a Data Store
	Summary
	Workshop
	Answers for Day 12

	DAY 13 Working with SQL Server
	SqlClient Internals
	Database Design
	Alternative Data Access Techniques
	Summary
	Workshop

	DAY 14 Working with Other Providers
	Accessing ODBC Data Sources
	Building a .NET Data Provider
	Summary
	Workshop
	Answers for Day 14

	WEEK 2 In Review
	WEEK 3 At a Glance
	DAY 15 Using ADO.NET in a Multi-Tier Application
	The Multi-Tiered Architecture
	ADO.NET in Context
	Summary
	Workshop

	DAY 16 ADO.NET in the Presentation Services Tier
	Windows Forms Applications
	Web Forms Applications
	Summary
	Workshop
	Answers for Day 16

	DAY 17 ADO.NET in the Data Services Tier
	Using an Abstract Base Class
	Designing Data Access Classes
	Summary
	Workshop
	Answers for Day 17

	DAY 18 Building a Data Factory
	Creating a Data Factory
	Summary
	Workshop
	Answers for Day 18

	DAY 19 ADO.NET and XML Web Services
	Exposing Data Through a Web Service
	Consuming Data in a Web Service
	Summary
	Workshop
	Answers for Day 19

	DAY 20 Performance and Interoperation
	Performance and Scalability Optimizations
	Interoperating with ADO
	Summary
	Workshop
	Answers for Day 20

	DAY 21 Futures and Wrap Up
	Programming SQL Server .NET
	Using ObjectSpaces
	Summary and Final Thoughts
	Workshop

	WEEK 3 In Review
	INDEX

